曲线拟合的最小二乘法原理及实现

合集下载

第4章4.6.2曲线拟合的最小二乘法

第4章4.6.2曲线拟合的最小二乘法
2 i 1 i 1 2 2 i 2 m m
由极值的必要条件得 m Q 2 2 ( a a x a x 0 1 i 2 i yi ) 0 a 0 i 1 m Q 2 2 ( a a x a x a 0 1 i 2 i y i ) xi 0 i 1 1 m Q 2 2 2 ( a a x a x y ) x 0 1 i 2 i i i 0 a i 1 2
1 x1 y1 a0 1 x y 2 Let A , a , y 2 , we have Aa y. a1 1 x y m m
考察方程组:ATAa = ATy,即
m
(3.3)成为拟合曲线的法方程(正规方程组)。
解之得 a,b。 代入 p(x) = a +b x, 即得所求的拟合曲线(曲线的回归 方程)。
m m m m m m 2 2 2 a ( y x x x y ) /( m x ( x ) ), i i i i i i i i 1 i 1 i 1 i 1 i 1 i 1 m m m m m b (m xi y i xi y i ) /(m xi2 ( xi ) 2 ). i 1 i 1 i 1 i 1 i 1
b x
y’ =lna bx’
b x
y=ae
y=ae
b x
(3) 幂函数型
b
y axb
x0
ax ,v=lny 令u ln y, c ln a ,v bu ln x u c ,u=lnx ,得到: v ln a
(4). 对数曲线型
令u=lgx,得到:
y a b lg x

计算方法 第三章 最小二乘法与曲线拟合

计算方法 第三章  最小二乘法与曲线拟合

j1 i1
i1
称(2)为(1)的正规方程组(法方程组)。 (2)的解即为(1)的解,称此方法为最小二乘法。
例:利用最小二乘法求矛盾方程组:
2x+4y=11
3x 5y 3 x 2 y 6
4x 2 y 14
解:将原方程组改写为
4
1 2x 4 y 11 2 3x 5y 3 3 x 2 y 6

Q
n
i2
n
m
2
(aij x j bi ) (求Q的最小值)
i 1
i1 j1
Q
xk
n i 1
2
m
(aij x j
j 1
bi )aik
n
2
i 1
m
(aij x j
j 1
bi )aik
0

m
n
aij aik
x
j
n
aik bi
(k 1, 2,
, m)
——(2)
注:拟合时尽量使i 0
2. 常用方法:
m
m
(1)使偏差绝对值之和最小,即 | i | | (xi ) yi |最小。
i 1
i 1
(2)
使偏差最大绝对值最小,即max 1im
|
i
|
max
1im
|
( xi
)
yi
|
最小。
m
m
(3)使偏差平方和最小,即 i2 [(xi ) yi]2最小。
解得:x 2.977,y 1.226
§3.2 曲线拟合
一、已知 x x1 x2 xn
y y1 y2
yn
n-1的多项式 Q(x) a0 a1x

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合是一个重要的数值分析方法,它是通过最小二乘法对样本点与直线或曲线之间的关系进行拟合和分析,从而估算出一个函数的一组参数。

最小二乘法曲线拟合是一种经典的数值分析方法,可以用来拟合函数和曲线,估算出参数,预测数据,分析函数,优化模型,甚至可以分析复杂多变量函数。

最小二乘法曲线拟合的核心方法是使用最小二乘法把拟合的曲线拟合到观察到的数据,通过求解方程的最小二乘法,把一系列的观察数据点拟合为最小二乘法曲线,计算出拟合曲线的最佳系数,满足拟合效果的最佳拟合曲线。

最小二乘法曲线拟合的核心目标是通过计算拟合曲线的最小均方误差(SSE)、平均均方误差(MSE)、最大均方误差(MAXE)等方法,使拟合曲线与观察数据点之间的差距最小,从而求解出最佳拟合曲线系数。

最小二乘法曲线拟合具有很强的解析性,可以用数学计算方法快速求解,可以满足各种不同应用场景的需求,因而被广泛应用于科学研究、工程设计、市场分析等领域。

最小二乘法曲线拟合最常见的应用场景有:根据观察数据拟合和估计函数的参数;分析函数的性质;优化模型的能力;预测数据等等。

当应用最小二乘法拟合函数时,首先需要把观察数据用直线或曲线拟合,然后使用极小化残差平方和的方法,来求解参数,这是一个典型的最优化问题,利用一般最优化算法来求解,如梯度下降算法、牛顿法等。

此外,在应用最小二乘法曲线拟合的过程中,还可以考虑几种情况,比如样本数据受到误差的影响,具有某种偏差性;偏差是否服从正态分布;样本数据的分布是否同分布;拟合曲线的拟合是否收敛,参数计算是否准确等等。

总之,最小二乘法曲线拟合是一种重要的数值分析方法,可以用来拟合函数和曲线、估算参数、预测数据、优化模型等。

在应用最小二乘法曲线拟合时,需要考虑一些影响因素,比如样本数据受到误差的影响、偏差是否服从正态分布等,因此,它是一种有效的数值分析方法。

计算方法课件-第五章 曲线拟合的最小二乘法

计算方法课件-第五章 曲线拟合的最小二乘法

max
1i N
( xi
)
yi
i 1
的大小来衡量拟合曲线的优劣。均方误差和最大偏差
较小的拟合曲线为较优的拟合曲线。
2.在解决实际问题时,有时通过观察选择多个函数类
型进行计算、分析、比较,最终获得较好的数学模型; 有时把经验公式作为数学模型,只是用最小二乘法来 确定公式中的待定常数。
Remark 3.当拟合曲线(x)中的待定常数是线性形式时,可直
值点。
问题:二次函数Q=f(x1,x2,…,xn)是否存在最小值?
若最小值存在,如何求出该最小值点?
2.最小二乘解的存在唯一性
引理1:设n元实函数f(x1,x2,…,xn)在点P0(a1,a2,…,an)
的某个邻域内连续,且有一阶及二阶连续的偏导数,如
果 (1) (2)矩阵
f
0
(k 1,2,, n)
(m , 1 )
(0,m ) c0 (0, b)
(1,m
)
c1
(1,
b)
(m
,m
)
cm
(m
,
b)
n
(k ,j ) k (xi )j (xi ), i0
n
(k ,b) k (xi )yi i0
Remark
1.同一问题可以有不同的拟合曲线,通常根据均方误
差 N [ (xi 和) 最yi大]2 偏差
c00
(
x1
)
c11
(
x1
)
c00 (xn ) c11(xn )
cmm (x0 ) y0 cmm (x1) y1
cmm (xn ) yn
明显该方程组无解,是矛盾方程组,可以寻 求其在最小二乘意义下的解。对应的正规方程 组为

曲线拟合的最小二乘法

曲线拟合的最小二乘法

a11(xm ) a22 (xm ) ann (xm ) bm
简写为
(xi ) bi , i 1, 2,..., m
一般计算步骤
(1)计算 A [ j (xi )]mn,其中 i 1, 2, , m, j 1, 2, , n (2)计算ATA, ATb ,形成法方程组ATAx = ATb
30
则法方程组为
3
3
49
x1
x2
33
9
求得法方程组的解为
x1 x2
2.979 1.2259
这也就是超定方程组的最小二乘解。
3.5.3 可线性化模型的最小二乘拟合
例 已知观测数据(1,–5),(2,0),(4,5),(5,6) ,试用最小二乘法求
形如(x) ax b 的经验公式。
xi c3
x
2 i
c3
xi2 xi3
yi xi yi
c1
xi2 c2
xi3 c3
xi4
xi2 yi
3 一般情形
( x) c11( x) c2 2 ( x) cm m ( x),(m n) 1( x) 1 ,2( x) x , 3( x) x2 , ,m ( x) xm1
AT
y
1 x1
1 x2
... ...
1 xn
y2
yn
yi
xi yi
记号指 对i从1到n 取和
法方程组
c1n c2 xi yi
c1 xi c2
xi2
xi yi
2 二次拟合、抛物拟合
( x) c1 c2 x c3 x2
作超定方程组
c1
c2 x1
c3
求得法方程组的解为

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合(LeastSquaresCurveFitting,简称LSCF)是采用数学统计技术进行多元函数拟合所用的一种技术。

它可以快速、准确地根据已经给定的实验数据拟合出一条实验曲线,从而给出诸如拟合函数的系数值等信息。

因此,最小二乘法曲线拟合在各种科学、工程实验中有着广泛的应用。

最小二乘法曲线拟合的原理很简单,它是基于“最小化误差”的概念,即拟合出来的曲线应尽可能接近给定的实验数据,使实验数据与拟合函数之间的差距最小。

这就要求我们求出实验数据与拟合函数之间的差距,这一差距被称为拟合误差,也称为“残差”。

最小二乘法曲线拟合的基本思想就是使残差的平方和(即拟合误差的平方和)取得最小值,从而实现拟合函数接近实验数据的目的。

最小二乘法曲线拟合的求解流程主要是:首先确定拟合函数的形式,然后利用已经给定的实验数据,建立最小二乘拟合问题,即求解各系数的拟合关系,然后利用几何极值法或矩阵方法求解给定拟合函数的拟合系数值,最后就可以得到拟合函数的数学公式及其系数值了。

最小二乘法曲线拟合由于给出的实验数据精度不同和系数组合不同,可以曲线拟合许多不同的函数形式,数学模型复杂度从一次函数到高阶复合函数都可以拟合。

例如,它可以拟合出多项式函数、指数函数、对数函数、三次样条函数、双曲线函数等。

由于最小二乘法曲线拟合能够实现快速、准确地根据实验数据拟合出实验曲线,因此它在科学、工程实验中有着广泛的应用。

例如可以用它来估计经济预期的变化趋势,也可以用于关键的工艺参数的优化设计,也可以用于机械性能的预测,还可以应用于心理研究中,帮助心理学家了解人类心理活动的变化规律。

最小二乘法曲线拟合的最大优点在于曲线拟合的精度较高,可以得到较为精确的拟合结果,模型的复杂度也很强,可以拟合许多不同的函数形式,但其缺点也是与优点相对应的,可能会使拟合结果产生畸变,拟合精度也会受到实验数据的精度的影响。

综上,最小二乘法曲线拟合是一种重要的数学统计技术,它能够根据已经给定的实验数据拟合出接近实验数据的函数,广泛应用于科学、工程实验,从而可以深入探究实验过程背后的规律,帮助人们更好地理解实验结果,是科学研究中不可缺少的一种技术。

最小二乘法的曲线拟合问题


量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是 y 的误差。设 x 和 y 的
函数关系由理论公式
y=f(x;c1,c2,……cm)
(3-3-1)
给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。对于每组观测数据(xi,yi)
i=1,2,……,N。都对应于 xy 平面上一个点。若不存在测量误差,则这些数据点都准确
曲线拟合(5)
最小二乘法的曲线拟合问题 ——曲线拟合(5)
目录
1 绪论………………………..……………………………….………………………….1 1.1 课题研究的背景和方法………………………………………………………………1
2 曲线拟合……………………………….…………………………………...1 2.1 曲线拟合………………………………………………………...…………………….1 2.2 常用函数………………………………………………………...…………………….1
根据式(3-3-8)的要求,应有
a 0 i N 1 y i a 0 a 1 x i 2 a a ˆ 2 i N 1 y i a ˆ 0 a ˆ 1 x i 0 , a 1 i N 1 y i a 0 a 1 x i 2 a a ˆ 2 i N 1 y i a ˆ 0 a ˆ 1 x i 0 .
在 X 上满足 Haar 条件,此时(3.1.5)的解存在唯
从而得到最小二乘拟合曲线
可以证明对
,有
(3.1.6)
曲线拟合(5)
故(3.1.6)得到的 均方误差为
即为所求的最小二乘解.它的平方误差为 (3.1.7)
在最小二乘逼近中,若取
,则
,表示为
(3.1.8)

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合原理是指用曲线来拟合已知数据点的一种优化算法,也叫“误差最小化法”,更多的称之为“最小二乘法”,简称LSM。

最小二乘法曲线拟合的应用范围很广,拟合分析复杂数据的应用越来越多。

最小二乘法曲线拟合的原理最小二乘曲线拟合的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差(SSE)最小。

均方误差是指观测值和拟合函数值之间的差的平方(SSE = SΣ(Yi - Xk)^2)。

均方误差最小,表明拟合函数就是最适合拟合数据的函数,而最小二乘法的基本思想就是求均方误差最小,即求解最优解的函数,这个函数就是最合适拟合给定数据点的曲线函数,即最小二乘法曲线拟合函数。

最小二乘法曲线拟合的应用最小二乘法曲线拟合最常见的应用是拟合曲线,以解决未知函数形式的问题。

拟合曲线可以使用曲线来估计一组数据,曲线拟合可以使得模型更准确地拟合数据,并且可以获得该曲线的未知参数。

如果数据不符合一个函数,可以使用自定义函数进行拟合,比如指数函数、sin函数、双曲线等。

最小二乘法也可以用于拟合回归模型,这是一种统计学中常用的方法,它可以用来推断大量随机变量的变化趋势,或者用来分析一个可能受其他变量影响的变量之间的关系。

最小二乘法也可以用于数值估计,比如最小二乘法用于数值拟合,用于数值拟合可以求出未知函数的参数,用于回归分析中,可以估计因变量受自变量影响的参数。

最小二乘法曲线拟合的缺点最小二乘法曲线拟合的最大缺点是其依赖性强:由于拟合的曲线函数有固定形式,因此无法拟合数据点的异常值,也无法拟合数据不具有规律性的情况;另外,最小二乘法曲线拟合也可能因过拟合导致拟合出的函数复杂度较高,从而影响精度。

总结最小二乘法曲线拟合原理指用曲线来拟合已知数据点的一种优化算法,它的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差最小。

最小二乘法曲线数据拟合

最小二乘法曲线数据拟合
首先,最小二乘法的基本原理是通过最小化拟合曲线与实际数
据之间的误差平方和来确定最佳拟合曲线的参数。

这意味着拟合曲
线的参数将被调整,以使拟合曲线上的点与实际数据点的残差之和
最小化。

其次,最小二乘法可以用于拟合各种类型的曲线,例如线性曲线、多项式曲线、指数曲线等。

对于线性曲线拟合,最小二乘法可
以得到最佳拟合直线的斜率和截距;对于多项式曲线拟合,最小二
乘法可以确定最佳拟合多项式的系数;对于指数曲线拟合,最小二
乘法可以找到最佳拟合曲线的底数和指数。

此外,最小二乘法还可以通过添加约束条件来进行拟合。

例如,可以通过添加正则化项来控制拟合曲线的复杂度,以避免过拟合问题。

常见的正则化方法包括岭回归和Lasso回归。

在实际应用中,最小二乘法曲线数据拟合可以用于许多领域,
如经济学、统计学、物理学等。

它可以用于分析趋势、预测未来值、估计参数等。

例如,在经济学中,最小二乘法可以用于拟合经济模型,以评估不同因素对经济指标的影响。

最后,最小二乘法的计算通常可以通过数值方法来实现,例如
使用最小二乘法的矩阵形式求解线性方程组,或者使用迭代算法来
拟合非线性曲线。

总结起来,最小二乘法是一种常用的数据拟合方法,通过最小
化拟合曲线与实际数据之间的误差平方和来确定最佳拟合曲线的参数。

它可以适用于各种类型的曲线拟合,并可以通过添加约束条件
来进行拟合。

在实际应用中,最小二乘法可以用于分析趋势、预测
未来值、估计参数等。

最小二乘法的计算可以通过数值方法来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线拟合的最小二乘法原理及实现
任务名称简介
在数据处理和统计分析中,曲线拟合是一种常见的技术,旨在通过数学函数找到最佳拟合曲线,以尽可能准确地描述给定数据集的变化趋势。

在曲线拟合的过程中,最小二乘法是一种常用的数学方法,用于选择最佳拟合曲线。

本文将详细介绍最小二乘法的原理和实现方法。

最小二乘法原理
最小二乘法是一种通过最小化误差平方和来拟合数据的方法。

其基本原理是将数据集中的每个数据点与拟合曲线上对应点的差值进行平方,然后将所有差值的平方相加,得到误差平方和。

最小二乘法的目标是通过调整拟合曲线的参数,使得误差平方和达到最小值。

假设我们有一个包含n个数据点的数据集,每个数据点的横坐标为x,纵坐标为y。

我们希望找到一个拟合曲线,可以通过曲线上的点与数据点的差值来评估拟合效果。

拟合曲线的一般形式可以表示为:
y = f(x, β)
其中,β为拟合曲线的参数,f为拟合曲线的函数。

最小二乘法的基本思想是选择适当的参数β,使得误差平方和最小化。

误差平方
和可以表示为:
S(β) = Σ(y - f(x, β))^2
其中,Σ表示求和操作,拟合曲线上的点的横坐标为x,纵坐标为f(x, β)。

为了找到误差平方和的最小值,我们需要对参数β进行求解。

最常用的方法是对
参数β求导数,令导数为0,从而得到参数的估计值。

求解得到的参数估计值就
是使得误差平方和最小化的参数。

最小二乘法实现步骤
最小二乘法的实现可以分为以下几个步骤:
1.确定拟合曲线的函数形式。

根据数据的特点和拟合的需求,选择合适的拟合
曲线函数,例如线性函数、多项式函数等。

2.建立误差函数。

根据选择的拟合曲线函数,建立误差函数,即每个数据点与
拟合曲线上对应点的差值的平方。

3.求解参数估计值。

对误差函数求导数,并令导数为0,求解得到参数的估计
值。

4.进行拟合曲线的评估。

通过计算误差平方和等指标来评估拟合曲线的质量,
可以使用残差平方和、R方值等指标。

5.优化拟合结果(可选)。

根据评估的结果,如有必要可以调整拟合曲线的参
数或选择其他拟合曲线函数,以得到更好的拟合效果。

最小二乘法的应用
最小二乘法广泛应用于各种领域,以下列举几个常见的应用场景:
1.经济学中的回归分析。

最小二乘法可以用于拟合经济模型,分析各个因素对
于某个经济指标的影响。

2.物理学中的数据处理。

最小二乘法可以用于拟合实验数据,找到实验数据的
规律,从而得到物理模型或测量精确度。

3.金融学中的资产定价模型。

最小二乘法可以用于拟合资产定价模型,估计资
产的风险和预期收益。

4.机器学习中的参数估计。

最小二乘法可以用于拟合模型参数,例如线性回归
中的参数估计。

总结
最小二乘法是一种常用的曲线拟合方法,通过最小化误差平方和来选择最佳拟合曲线。

其核心思想是找到使误差最小化的参数估计值。

本文介绍了最小二乘法的原理和实现步骤,并举例了其应用场景。

最小二乘法在数据分析、统计建模、机器学习等领域都有广泛的应用,具有重要的理论和实际意义。

参考文献
•Montgomery, D.C., Peck, E.A., & Vining, G.G. (2020). Introduction to Linear Regression Analysis, Sixth Edition. Wiley.
•Kutner, M.H., Nachtsheim, C.J., Neter, J., & Li, W. (2004).
Applied Linear Statistical Models, Fifth Edition. McGraw-Hill.。

相关文档
最新文档