高考数学试题分类汇编

合集下载

福建高考数学试题分类汇编(文)集合

福建高考数学试题分类汇编(文)集合

【2009福建文】1.若集合{}{}|0,|3A x x B x x =>=<,则A B 等于A .{|0}x x <B {|03}x x <<C {|4}x x >D R1. 解析解析 本题考查的是集合的基本运算.属于容易题.解法1 利用数轴可得容易得答案B.解法2(验证法)去X=1验证.由交集的定义,可知元素1在A 中,也在集合B 中,故选B.【2010福建文】1.若集合{}A=x|1x 3≤≤,{}B=x|x>2,则A B ⋂等于( )A .{}x|2<x 3≤B .{}x|x 1≥C .{}x|2x<3≤D .{}x|x>2【答案】A【解析】A B ⋂={}x|1x 3≤≤⋂{}x|x>2={}x|2<x 3≤,故选A .【命题意图】本题考查集合的交运算,属容易题.【2010福建文】12.设非空集合|||S x m x l =≤≤满足:当x S ∈时,有2x S ∈。

给出如下三个命题工:①若1m =,则|1|S =;②若12m =-,则114l ≤≤;③若12l =,则02m -≤≤。

其中正确命题的个数是A .0B .1C .2D .3【答案】D 【2011福建文】1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}【2012福建文】2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是A.N ⊆MB.M ∪N=MC.M ∩N=ND.M ∩N={2}【2013福建文】3.若集合{}{}=1,2,3=1,3,4A B ⋂,,则A B 的子集个数为A .2B .3C .4D .16【2009福建文】【2009福建文】【2009福建文】。

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(数列)汇编【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S = ( ) A. 120B. 85C. 85-D. 120-3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求.d4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}nb 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+剟中元素个数.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω-=8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.(1)(2)10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-参考答案1. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d , 则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n 为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C . 2. (2023·新课标II 卷 第8题)解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=- 故选.C3. (2023·新课标I 卷 第20题)解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=, 即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍); 当12a d =时,(1)n a n d =+,n n b d=,故(3)2n n n d S +=,(1)2n n n T d +=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+- 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d ++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得 250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得 251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取; 综上所述,51.50d =4. (2023·新课标II 卷 第18题) 解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+-> ∴当5n >时,n S .n T >5.(2022·新高考I 卷 第17题)解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②; 由②-①得:111322;33n n n n n a n n n a a a a n ++++++=-⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a aa a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2((1)1n a n n n n ==-++, 1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ , 即原不等式成立.6.(2022·新高考II 卷 第17题) 解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m 剟,故1221000k -剟,解得210k 剟, 故集合1{|,1500}k m k b a a m =+剟中元素的个数为9个. 7.(2021·新高考II 卷 第12题)(多选)解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形. 对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111(224822n n n n n n T T T ++-==++++-113113322222n n n n n ++++=--=-, 得332n nn T +=-,123240(3)2n n n S S S +∴++=⨯-, 故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷 第17题)解:⑴12b a =,且21+1=2a a =,则1=2b , 24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+-⨯=-.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和10.(2021·新高考II 卷 第17题)解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=, 设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-, 则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->, 解得1n <或6n >,又n 为正整数,故n 的最小值为7.(2)11.(2020·新高考I 卷 第14题、II 卷 第15题)解:数列 的首项是1,公差为2的等差数列; 数列 的首项是1,公差为3的等差数列; 公共项构成首项为1 ,公差为6的等差数列; 故 的前n 项和S n 为: .故答案为232.n n -12.(2020·新高考I 卷 第18题)解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =, 以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===, 3263...5b b ===,64100...6b b ===, 10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=13.(2020·新高考II 卷 第18题)解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, {21}n -{32}n -{}n a1q > ,122a q =⎧∴⎨=⎩, 1222.n n n a -∴=⋅=1223(2)a a a a -+…11(1)n n n a a -++- 35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----。

高考数学试题分类汇编三角函数

高考数学试题分类汇编三角函数

高考数学试题分类汇编——三角函数一、选择题:1、(2007福建 理科)已知函数f(x)=sin()()的最小正周期为,则该函数的图象A 关于点(,0)对称B 关于直线x =对称C 关于点(,0)对称D 关于直线x =对称 答案:2、(2007山东 理科) 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为(A ),1π (B ) π (C )2,1π (D ) 2π答案:B3、(2007安徽 理科)函数)3π2sin(3)(--x x f 的图象为C ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .(A )0(B )1(C )2 (D )3答案:C4、 (2007广东 理科)若函数21()sin (),()2f x x x R f x =-∈则是 A.最小正周期为2π的奇函数 B.最小正周期为π的奇函数C.最小正周期为π2的偶函数D.最小正周期为π的偶函数答案:D5、(2007湖北 理科)将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭答案:A6、(2007江西 理科)若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.2答案:A7、(2007江西 理科)若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x <D.224sin πx x >答案:D8、(2007全国1 理科)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-答案:9、(2007全国1 理科)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭, B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,答案:10、(2007全国2 理科)sin 210=( )A .2B .2-C .12D .12-答案:D11、(2007全国2 理科)函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 答案:C12、 (2007陕西 理科)已知sin α=55,则sin 4α-cos 4α的值为 (A )-51(B)-53 (C)51 (D)53 答案:A13、(2007天津 理科) “2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( )A.充分而不必要条件B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件答案:A14、(2007浙江 理科)若函数()2sin(),f x x x R ωϕ=+∈,(其中0,||2πωϕ><)的最小正周期是π,且(0)f =(A )1,26πωϕ== (B )1,23πωϕ== (C )2,6πωϕ== (D )2,3πωϕ== 答案:D15、(2007江苏 理科)下列函数中,周期为2π的是(D ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 16、(2007江苏 理科)函数()sin ([,0])f x x x x π=∈-的单调递增区间是(B ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 18、 (2007浙江 文科)已知cos()2πϕ+=,且||2πϕ<,则tan ϕ= (A)-3(B) 3 (C)(D)答案:C二、填空题:1、(2007湖南 理科)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b,c =π3C =,则B = . 答案:5π62、(2007上海 理科)函数⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=2πs i n3πs i nx x y 的最小正周期=T .答案:π3、 (2007四川 理科)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 ) 答案:① ④4、(2007江苏 理科)若13cos(),cos()55αβαβ+=-=,.则tan tan αβ= 1/2 . (12) (2007浙江 文科)若sin θ+cos θ=15,则sin 2θ的值是________.答案:[0,1)5、(2007安徽 文科)函数)32s in (3)(π-=x x f 的图象为C ,如下结论中正确的是(写出所有正确结论的编号). ①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称; ③函数125,12()(ππ-在区间x f )内是增函数;④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C. 答案:①②③三、计算题:1、 (2007浙江 文科) (本题14分)已知△ABC+1,且sinA +sin Bsin C(I)求边AB 的长;(Ⅱ)若△ABC 的面积为16sin C ,求角C 的度数.答案:本题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.满分14分.解:(I)由题意及正弦定理,得AB+BC+AC1. BC+ACAB ,两式相减,得 AB =1.(Ⅱ)由△ABC 的面积=12BC ·ACsinC =16sin C ,得 BC ·AC =13,由余弦定理,得2221cos 22AC BC AB C AC BC +-==⋅ 所以C =600.2、(2007福建 文科)(12分)在ABC ∆中,13tan ,tan 45A B ==。

历年(2020-2023)全国高考数学真题分类(计数原理)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(计数原理)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(计数原理)汇编【2023年真题】1. (2023·新课标I 卷 第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有_______种(用数字作答).2. (2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种【2022年真题】3.(2022·新高考I 卷 第13题)8(1)y x y x-+的展开式中26x y 的系数为__________(用数字作答).4.(2022·新高考II 卷 第5题)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( ) A. 12种B. 24种C. 36种D. 48种【2020年真题】5.(2020·新高考I 卷 第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种B. 90种C. 60种D. 30种6.(2020·新高考II 卷 第6题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A. 2种 B. 3种C. 6种D. 8种参考答案1. (2023·新课标I 卷 第13题)解:当从这8门课中选修2门课时,共有1144.16C C =; 当从这8门课中选修3门课时,共有12214444..48C C C C +=;综上,共有64种. 2. (2023·新课标II 卷 第3题)解:结合题意初中部和高中部所占的比例为2:1,抽取初中部40人,高中部20人,故不同的抽样结果为4020400200C C ⋅ 种,故选.D3.(2022·新高考I 卷 第13题)解:因为8()x y +展开式的通项818r r r r T C x y -+=,令5r =,则35x y 的系数为5856C =;令6r =,则26x y 的系数为6828C =,所以26x y 的系数为562828.-+=- 4.(2022·新高考II 卷 第5题)解:先利用捆绑法排乙丙丁成四人,再用插空法选甲的位置,则有23123224A A C =种. 5.(2020·新高考I 卷 第3题)解:可以按照先选1名志愿者去甲场馆,再选择2名志愿者去乙场馆,剩下3名安排到丙场馆,安排方法有123653C C C 60.=故选:.C6.(2020·新高考II 卷 第6题)解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:212312 6.C C A =故选:.C。

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

五年(2018-22)全国高考数学真题分类汇编(全国卷新高考卷卷等)专题9 不等式(解析版)

五年(2018-22)全国高考数学真题分类汇编(全国卷新高考卷卷等)专题9  不等式(解析版)
A. B. C. D.
【答案】【答案】A
【思路分析】本题可根据相应的对数式与指数式与整数进行比较即可得出结果.
【解析】由题意,可知: , , ,所以 .故选A.
【归纳与总结】本题主要考查对数式与指数式的大小比较,可利用整数作为中间量进行比较.本题属基础题.
【题目栏目】不等式\不等式的性质及其应用\比较实数或代数式的大小
【题目来源】2019年高考天津文·第5题9.(2019年高考天津文·第2题)设变量 满足约束条件 则目标函数 的最大值为( )
A.2B.3C.5D.6
【答案】【答案】C
【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
【解析】由约束条件 作出可行域如图
据此结合目标函数的几何意义可知目标函数在点A处取得最小值,
联立直线方程: ,可得点A的坐标为: ,据此可知目标函数的最小值为:
且目标函数没有最大值.故目标函数的取值范围是 .故选:B
【题目栏目】不等式\简单的线性规划问题\线性型目标函数的最值问题
【题目来源】2020年浙江省高考数学试卷·第3题
7.(2019年高考浙江文理·第3题)若实数 , 满足约束条件 则 的最大值是( )
二、多选题
12.(2020年新高考全国Ⅰ卷(山东)·第11题)已知a>0,b>0,且a+b=1,则( )
A. B.
C. D.
【答案】ABD
解析:对于A, ,
当且仅当 时,等号成立,故A正确;对于B, ,所以 ,故B正确;
对于C, ,因为 ,
所以 ,当且仅当 时,等号成立,故D正确; 故选:ABD
6.(2020年浙江省高考数学试卷·第3题)若实数x,y满足约束条件 ,则z=2x+y的取值范围是( )

2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

A.{1, 2} B.{1, 2}
C.{1, 4}
D.{1, 4}
【答案】B
解析: B x | 0 x 2 ,故 A B 1, 2 . 故选 B.
【题目栏目】集合\集合的基本运算 【题目来源】2022 新高考全国 II 卷·第 1 题
4.(2022 新高考全国 I 卷·第 1 题)若集合 M {x∣ x 4}, N {x∣3x 1} ,则 M N ( )
【题目栏目】集合\集合的基本运算 【题目来源】2020 年高考数学课标Ⅰ卷理科·第 2 题 12.(2020 年高考数学课标Ⅱ卷理科·第 1 题)已知集合 U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},
则 ðU ( A B) ( )
D.{2, 0}
【答案】D
解析:由题意, B= x x2 4x 3 0 1,3 ,所以 A B 1,1, 2,3 ,所以 ðU A B 2,0 .故选:
D. 【题目栏目】集合\集合的基本运算 【题目来源】2022 年全国甲卷理科·第 3 题
2.(2022 年全国乙卷理科·第 1 题)设全集U {1, 2, 3, 4, 5} ,集合 M 满足 ðUM {1,3},则( )
A.{x|2<x≤3}
B.{x|2≤x≤3}
C.{x|1≤x<4}
D.{x|1<x<4}
【答案】C
解析: A U B [1, 3] U (2, 4) [1, 4) 故选:C
【题目栏目】集合\集合的基本运算 【题目来源】2020 年新高考 I 卷(山东卷)·第 1 题
8.(2020 新高考 II 卷(海南卷)·第 1 题)设集合 A={2,3,5,7},B={1,2,3,5,8},则 A B =( )

高考理科数学试题19个专题分类大汇编

高考理科数学试题19个专题分类大汇编

全国高考理科数学试题分类汇编1:集合一、选择题1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U=,集合{}=12A ,,{}=23B ,,则()=U AB ð( )A. {}134,,B. {}34,C. {}3D. {}4【答案】D2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A. ()01,B. (]02,C. ()1,2D. (]12, 【答案】D3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2},A = {x ∈R | x ≤1}, 则AB ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]【答案】D4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合对不是“保序同构”的是( ) A.*,A N B N==B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C. {|01},A x x B R =<<=D. ,A Z B Q ==【答案】D5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞【答案】B.6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9【答案】C7 . (高考陕西卷(理))设全集为R , 函数()f x M , 则C M R 为(A) [-1,1] (B) (-1,1) (C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D8 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A)3 (B)4 (C)5 (D)6 【答案】B9 . (高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅【答案】A10. (高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则( )A. A∩B=∅B. A∪B=RC. B ⊆AD. A ⊆B【答案】B.11. (高考湖北卷(理))已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R AC B =( )A. {}|0x x ≤B. {}|24x x ≤≤C. {}|024x x x ≤<>或D. {}|024x x x <≤≥或【答案】C12. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0【答案】A13. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B.{}0,2C.{}2,0-D.{}2,0,2-【答案】D14. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A. (2,1]-B. ]4,(--∞C. ]1,(-∞D. ),1[+∞【答案】C15. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =. 令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉ B. (),,y z w S ∈,(),,x y w S ∈C.(),,y z w S ∉,(),,x y w S ∈D.(),,y z w S ∉,(),,x y w S ∈(一)必做题(9~13题) 【答案】B16. (高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )A. {0}B. {-1,0}C. {0,1}D. {-1,0,1} 【答案】B17. (上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( ) (A)u ZN ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð【答案】A 二、填空题18. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.【答案】8 三、解答题19. (普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}1,2,3,,m I n =,,m m m P I k I ⎫=∈∈⎬⎭. (1)求集合7P 中元素的个数;(2)若m P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”. 求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.【答案】全国高考理科数学试题分类汇编2:函数一、选择题20 . (高考江西卷(理))函数的定义域为A. (0,1)B. [0,1)C. (0,1]D. [0,1] 【答案】D21 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A. (),a b 和(),b c 内 B. (),a -∞和(),a b 内 C. (),b c 和(),c +∞内 D. (),a -∞和(),c +∞内【答案】A22 . (上海市春季高考数学试卷(含答案))函数12()f x x -=的大致图像是( )【答案】A23 . (高考四川卷(理))设函数()f x =a R ∈,e 为自然对数的底数). 若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+【答案】A24 . (高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A. (,0]-∞B. (,1]-∞C. [2,1]-D. [2,0]-【答案】D25 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x -(A)()1021x x >- (B)()1021xx ≠- (C)()21x x R -∈ (D)()210xx ->【答案】A26 . (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知y x ,为正实数,则A. y x yx lg lg lg lg 222+=+ B. y x y x lg lg )lg(222∙=+ C. y x yx lg lg lg lg 222+=∙ D. y x xy lg lg )lg(222∙=【答案】D27 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2【答案】A28 . (高考陕西卷(理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30] 【答案】C29. (普通高等学校招生统一考试重庆数学(理)试题(含答案))y =()63a -≤≤的最大值为( )A. 9B.92 C. 3【答案】B30. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫⎪⎝⎭【答案】B31. (高考湖南卷(理))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A. 3B. 2C. 1D. 0 【答案】B32. (高考四川卷(理))函数231x x y =-的图象大致是( )【答案】C33. (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A)2216a a -- (B)2216a a +- (C)16- (D)16【答案】B34. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4 B. 3C. 2D. 1【答案】C35. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数3()=+b +f x x x c有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是 (A)3 (B)4 (C) 5 (D)6 【答案】A36. (普通高等学校招生统一考试天津数学(理)试题(含答案))函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4 【答案】B37. (高考北京卷(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )= A. 1ex + B. 1ex - C. 1ex -+ D. 1ex --【答案】D38. (上海市春季高考数学试卷(含答案))设-1()f x 为函数()f x =,下列结论正确的是( )(A) 1(2)2f -= (B) 1(2)4f -= (C) 1(4)2f -= (D) 1(4)4f -=【答案】B39. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A)[-1,0] (B)[1,)-+∞ (C)[0,3] (D)[3,)+∞【答案】D二、填空题40. (上海市春季高考数学试卷(含答案))函数2log (2)y x =+的定义域是_______________ 【答案】(2,)-+∞ 41. (高考上海卷(理))方程1313313x x-+=-的实数解为________ 【答案】3log 4x =.42. (高考上海卷(理))对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【答案】02x =.43. (高考新课标1(理))若函数()f x =22(1)()xx ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.【答案】16.44. (上海市春季高考数学试卷(含答案))方程28x=的解是_________________ 【答案】345. (高考湖南卷(理))设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____.(2)若,,a b c ABC ∆是的三条边长,则下列结论正确的是______. (写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,,,x x x x R xa b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使【答案】(1)]10(,(2)①②③ 46. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))已知)(x f 是定义在R 上的奇函数. 当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为___________.【答案】()()+∞-,50,547. (高考上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________ 【答案】87a ≤-. 三、解答题48. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值.【答案】解: (Ⅰ))1,0(0])1([)(22aa x x a a x x f +∈⇒>+-=. 所以区间长度为21a a+. (Ⅱ) 由(Ⅰ)知,aa a al 1112+=+=恒成立令已知k kk k k k a k k -1110-111.1-10),1,0(2>+∴>⇒>++≤≤<∈. 22)1(11)1(1111)(k kk k l k a a a a g -+-=-+-≥⇒-=+=⇒这时时取最大值在 所以2)1(111k kl k a -+--=取最小值时,当. 49. (上海市春季高考数学试卷(含答案))本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分.已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”. 判断该命题的真假. 如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++,整理得33y x x =-,由于函数33y x x =-是奇函数,由题设真命题知,函数()g x 图像对称中心的坐标是(12)-,. (2)设22()log 4xh x x=-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数. 设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x a f x b a x +=---. 由不等式2204x aa x+>--的解集关于原点对称,得2a =.此时22(2)()log (2 2)2x f x b x x+=-∈--,,. 任取(2,2)x ∈-,由()()0f x f x -+=,得1b =,所以函数22()log 4xh x x=-图像对称中心的坐标是(2 1),. (3)此命题是假命题.举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数. 修改后的真命题:“函数()y f x =的图像关于直线x a =成轴对称图像”的充要条件是“函数()y f x a =+是偶函数”.全国高考理科数学试题分类汇编3:三角函数一、选择题50 . (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43C. 43-D. 34-【答案】C51 . (高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 【答案】B52 . (普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠ =【答案】C53 . (普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A) 34π (B) 4π (C)0 (D) 4π-【答案】B54 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A. 6π B. 3π C. 23π D. 56π【答案】A55 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x的最大值为2(D)()f x 既奇函数,又是周期函数 【答案】C56 . (普通高等学校招生统一考试山东数学(理)试题(含答案))函数cos sin y x x x =+的图象大致为【答案】D57 . (高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π 【答案】A58 . (上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =【答案】B59. (普通高等学校招生统一考试重庆数学(理)试题(含答案))04cos50tan 40-=( )1 【答案】C60. (高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b . 若2sin ,a B A 则角等于A.12π B. 6π C. 4π D. 3π【答案】D61. (高考湖北卷(理))将函数()sin yx x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12π B.6π C.3π D.56π【答案】B 二、填空题62. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))ABC ∆中,090=∠C ,M是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.【答案】63. (高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】. 64. (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图ABC ∆中,已知点D在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________【答案】65. (上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_____________【答案】2π66. (高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.【答案】67. (高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=【答案】2sin()3x y +=.68. (高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)【答案】1arccos3C π=- 69. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________.【答案】70. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))函数)42sin(3π+=x y 的最小正周期为___________.【答案】π71. (上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B ===,,,则b=_______ 【答案】772. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设ABC ∆的内角,,A B C所对边的长分别为,,a b c . 若2b c a +=,则3sin 5sin ,A B =则角C =_____.【答案】π3273. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________.【答案】74. (高考江西卷(理))函数2sin2y x x =+的最小正周期为T 为_________.【答案】π75. (上海市春季高考数学试卷(含答案))函数4s i n 3c o s y x x =+的最大值是_______________ 【答案】5三、解答题76. (高考北京卷(理))在△ABC 中,a =3,b ,∠B =2∠A .(I)求cos A 的值; (II)求c 的值.【答案】解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin sin 2A A =. 所以2sin cos sin 3A A A =. 故cos 3A =.(II)由(I)知cos 3A =,所以s i n 3A ==. 又因为∠B=2∠A,所以21c o s 2c o s 13B A =-=. 所以sin 3B ==.在△ABC 中,sin sin()sin cos cos sin C A B A B A B =+=+=. 所以sin 5sin a Cc A==.77. (高考陕西卷(理))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】解:(Ⅰ)()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.78. (普通高等学校招生统一考试重庆数学(理)试题(含答案))在ABC 中,内角,,A B C 的对边分别是,,a b c ,且222a b c +=.(1)求C ; (2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,求tan α的值. 【答案】由题意得79. (普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】80. (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设向量)()s i n ,s i n ,c o s ,s i n x ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =求的最大值【答案】81. (高考上海卷(理))(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>;(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.【答案】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=. 82. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B(II)若1sin sin 4A C =,求C . 【答案】83. (高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-.(Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.【答案】解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a b A B =,所以,sin sin 2b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC方向上的投影为cos BA B =84. (普通高等学校招生统一考试山东数学(理)试题(含答案))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.【答案】解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC中,sin 9B ==,由正弦定理得sin sin 3a B A b ==,因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin A B A B A B -=-=.85. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数()4co s s i n (0)4f x x x πϖϖϖ⎛⎫=⋅+>⎪⎝⎭的最小正周期为π.(Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.【答案】解:(Ⅰ)2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ. 所以1,2)42sin(2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x 所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =86. (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.【答案】解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点87. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分. 已知(cos ,sin )(cos ,sin )a b ααββ==,,παβ<<<0. (1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值.【答案】解:(1)∵2||=-b a ∴2||2=-b a 即()22222=+-=-,又∵1sin cos ||2222=+==ααa a ,1sin cos ||2222=+==ββb b ∴222=-∴0=b a ∴b ⊥a(2)∵)1,0()sin sin ,cos (cos =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0∴πβπα61,65==88. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数()co s 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【答案】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 89. (高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=.(I)若α是第一象限角,且()f α=求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.【答案】解:(I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f . 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ90. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径. 一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C . 现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m . 在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C . 假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C ACAB 1040sin sinB== (2)设乙出发t分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短.(3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 CBA法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000, 其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.91. (高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c . 已知()cos23cos 1A B C -+=.(I)求角A 的大小;(II)若ABC ∆的面积S =,5b =,求sin sin B C 的值.【答案】解:(I)由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A == 25sin sin 47bc B C R ∴== 92. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△ABC 在内角CBADMN,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.【答案】93. (高考新课标1(理))如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA【答案】(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA=o 1132cos3042+-=74; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得osin sin(30)αα=-,化简得4sin αα=, ∴tan αtan PBA ∠. 94. (上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈. (1)若31arctan3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值.[解](1) (2)【答案】[解](1)设(0 )A t ,,根据题意,12n n x -=. 由31arctan 3θ=,知31tan 3θ=,而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =. 故点A 的坐标为(0 4),或(0 8),. (2)由题意,点n P 的坐标为1(20)n -,,1tan n n OAP -∠=.111212tan tan()1n n n n n n n OAP OAP θ--+-=∠-∠===.n +≥,所以tan n θ≤=当且仅当2nn=,即4n =时等号成立. 易知0 tan 2n y x πθ<<=,在(0 )2π,上为增函数, 因此,当4n =时,n θ最大,其最大值为arctan4. 95. (高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等学校招生全国统一考试数学分类解析数学分类解析——概率统计一.选择题:1.(安徽理)(10).设两个正态分布2111()(0)N µσσ>,和2222()(0)N µσσ>,的密度函数图像如图所示。

则有(A )A .1212,µµσσ<<B .1212,µµσσ<>C .1212,µµσσ><D .1212,µµσσ>>2.(福建理)(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是(B )A.16625 B.96625 C.192625 D.2566253.(福建文)(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是(C )A.12125 B.16125C.48125D.961254.(广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为(C )A .24B .18C .16D .125.(湖南理)4.设随机变量ζ服从正态分布N (2,9),若P (ζ>c+1)=P (ζ<c -)1,则c =(B)A.1B.2C.3D.46.(江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为(C )A .1180B .1288C .1360D .14807.(辽宁理文)(7).4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,一年级二年级三年级女生373xy男生377370z则取出的2张卡片上的数字之和为奇数的概率为(C )A.13B.12C.23D.348.(山东理)(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(B )(A )511(B )681(C )3061(D )40819.(山东理)(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(B )(A )304.6(B )303.6(C)302.6(D)301.610.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为(B )分数54321人数2010303010A .3B .210C .3D .8510.(陕西文)(3).某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为(C )A .30B .25C .20D .1511.(重庆理)(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(D)(A)15(B)14(C)13(D)1212.(重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法(C)随机数表法(D)分层抽样法13.(重庆文)(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(B )(A)184(B)121(C)25(D)35二.填空题:1.(广东文)(11).为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品7420136203851192数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75的人数是13.2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271273280285285287292294295301303303307308310314319323325325328331334337352乙品种:284292295304306307312313315315316318318320322322324327329331333336337343356由以上数据设计了如下茎叶图31277550284542292587331304679403123556888553320224797413313673432356甲乙根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①;②.以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3).甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm .(4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.3.(湖北文)11.一个公司共有1000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是10.4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是0.98.5.(湖南理)15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则P 1m =4()m n m −;所有P if (1≤i <j ≤)n 的和等于6.6.(湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60____人。

7.(江苏)(2).一个骰子连续投2次,点数和为4的概率1128.(江苏)(7).某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,下表是50位老人日睡眠时间频率分布表:序号(i )分组睡眠时间组中值(G i )频数(人数)频率(F i )1[4,5) 4.560.122[5,6) 5.5100.203[6,7) 6.5200.404[7,8)7.5100.205[8,9]8.540.08在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值为 6.42.9.(上海理文)(7).在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是34(结果用分数表示)10.(上海理文)(9).已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是10.5和10.511.(上海文)8.在平面直角坐标系中,从五个点:(00)(20)(11)(02),,,,,,,,A B C D (22),E 中任取三个,这三点能构成三角形的概率是45(结果用分数表示).12.(天津文)(11).一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工10人.13.三.解答题:1.(安徽理)(19).(本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。

某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望3E ξ=,标准差σξ(1)求n,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率解:(1)由233,()(1),2E np np p ξσξ===−=得112p −=,从而16,2n p ==ξ的分布列为ξ0123456P164664156420641564664164(2)记”需要补种沙柳”为事件A,则()(3),P A P ξ=≤得16152021(),6432P A +++==或156121()1(3)16432P A P ξ++=−>=−=2.(安徽文)(18).(本小题满分12分)在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(1)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。

求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。

(2)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

解:(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g ”的概率为310,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为333271*********××=。

(2)设(1,2,3)i A i =表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为(),i P A 则127323107()40C C P A C ==,3333101()120C P A C ==因而所求概率为23237111()()()4012060P A A P A P A +=+=+=。

3.(北京理(17),文(18))(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.解:(1)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =−=.(3)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)4P P ξξ==−==,ξ的分布列是ξ13P34144.(福建理)(20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(1)求他不需要补考就可获得证书的概率;(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.解:设“科目A 第一次考试合格”为事件A ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件B ,“科目B 补考合格”为事件B .(1)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则1111211()()()323P A B P A P B =×=×=i .答:该考生不需要补考就获得证书的概率为13.(2)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+i i 2111114.3233399=×+×=+=112112122(3)()()()P P A B B P A B B P A A B ξ==++i i i i i i 2112111211114,3223223326693=××+××+××=++=12221212(4)()()P P A A B B P A A B B ξ==+i i i i i i 12111211111,3322332218189=×××+×××=+=故4418234.9993E ξ=×+×+×=答:该考生参加考试次数的数学期望为83.5.(福建文)(18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(1)求恰有二人破译出密码的概率;(2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(1)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151××+××+××=203.答:恰好二人破译出密码的概率为203.(2)设“密码被破译”为事件C ,“密码未被破译”为事件D .D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有P (D )=P (1A )·P (2A )·P (3A )=324354××=52.而P (C )=1-P (D )=53,故P (C )>P (D ).答:密码被破译的概率比密码未被破译的概率大.6.(广东理)(17).(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解:ξ的所有可能取值有6,2,1,-2;126(6)0.63200P ξ===,50(2)0.25200P ξ===20(1)0.1200P ξ===,4(2)0.02200P ξ=−==故ξ的分布列为:(2)60.6320.2510.1(2)0.02 4.34E ξ=×+×+×+−×=(3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为()60.72(10.70.01)(2)0.01 4.76(00.29)E x x x x =×+×−−−+−×=−≤≤依题意,() 4.73E x ≥,即4.76 4.73x −≥,解得0.03x ≤所以三等品率最多为3%7.(广东文)(19).(本小题满分13分)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373x y男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率.解:(1)∵0.192000x=∴380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000×=名ξ6212−P0.630.250.10.02(3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z );由(2)知500y z +=,且,y z N ∈,基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个∴5()11P A =8.(海南宁夏理)(19).(本小题满分12分)A B ,两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为X 15%10%P0.80.2(1)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;(2)将(0100)x x ≤≤万元投资A 项目,100x −万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a DX +=)解:(1)由题设可知1Y 和2Y 的分布列分别为Y 1510P0.80.2150.8100.26EY =×+×=,221(56)0.8(106)0.24DY =−×+−×=,220.280.5120.38EY =×+×+×=,2222(28)0.2(88)0.5(128)0.312DY =−×+−×+−×=.X 22%8%12%P0.20.50.3Y 22812P0.20.50.3(2)12100()100100x x f x D Y D Y −⎛⎞⎛⎞=+⎜⎟⎜⎟⎝⎠⎝⎠2212100100100x x DY DY −⎛⎞⎛⎞=+⎜⎟⎜⎟⎝⎠⎝⎠22243(100)100x x ⎡⎤=+−⎣⎦2224(46003100)100x x =−+×,当6007524x ==×时,()3f x =为最小值.9.(海南宁夏文)(19).(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.解:(1)总体平均数为1(5678910)7.56+++++=.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果.所以所求的概率为7()15P A =.10.(湖北理)(17)(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(1)求ξ的分布列,期望和方差;(2)若η=a ξ-b ,E η=1,D η=11,试求a,b 的值.解:(1)ξ的分布列为:ξ01234P1212011032015∴1113101234 1.5.22010205E ξ=×+×+×+×+×=2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=−×+−×+−×+−×+−×=(2)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以当a =2时,由1=2×1.5+b ,得b =-2;当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=−⎩或2,4a b =−⎧⎨=⎩即为所求.11.(湖南理)(16)(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求:(1)至少有1人面试合格的概率;(2)签约人数的分布列和数学期望.解用A ,B ,C 分别表示事件甲、乙、丙面试合格.由题意知A ,B ,C 相互独立,且P (A )=P (B )=P (C )=12.(1)至少有1人面试合格的概率是3171()1()()()1().28P ABC P A P B P C −=−=−=(2)ξ的可能取值为0,1,2,3.(0)()()()P P ABC P ABC P ABC ξ==++=()()()()()()()()()P A P B P C P A P B P C P A P B P C ++=3231113(()().2228++=(1)()()()P P ABC P ABC P ABC ξ==++=()()()()()()()()()P A P B P C P A P B P C P A P B P C ++=3331113(()().2228++=1(2)()()()().8P P ABC P A P B P C ξ====1(3)()()()().8P P ABC P A P B P C ξ====所以,ξ的分布列是ξ0123P38381818ξ的期望33110123 1.8888E ξ=×+×+×+×=12.(湖南文)(16).(本小题满分12分)甲乙丙三人参加一家公司的招聘面试,面试合格者可正式签约。

相关文档
最新文档