历年数列高考题汇编

合集下载

高考数学真题专题分类汇编专题六 数列(教师版)

高考数学真题专题分类汇编专题六 数列(教师版)

专题六 数列真题卷题号 考点 考向2023新课标1卷7等差数列等差数列的判定、等差数列的性质 20 等差数列 求等差数列的通项公式及基本量计算2023新课标2卷8等比数列 等比数列的性质18等差数列、数列的综合应用 求等差数列的通项公式及前n 项和、数列的综合应用(不等式证明) 2022新高考1卷 17 数列的通项公式、数列求和 由递推公式求通项公式、裂项相消法求和 2022新高考2卷17 等差数列、等比数列 等差、等比数列的通项公式2021新高考1卷16数列的实际应用 错位相减法求和17 数列的通项公式、数列求和由递推公式求通项公式、公式法求和2021新高考2卷12等比数列 数列的新定义问题17 等差数列 求等差数列的通项公式、等差数列求和 2020新高考1卷14等差数列 等差数列的性质、等差数列求和 18 等比数列、数列求和求等比数列的通项公式、数列求和 2020新高考2卷15等差数列 求等差数列的通项公式、等差数列求和 18等比数列 求等比数列的通项公式、等比数列求和【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn 为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 【答案】C 【解析】 【分析】本题考查等差数列的判定、等差数列前n 项和、充分必要条件的判定,属于中档题. 结合等差数列的判断方法,依次证明充分性、必要性即可. 【解答】 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d −=+,111222n S n d da d n a n −=+=+−,112n n S S d n n +−=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++−+−−==+++为常数,设为t 即1(1)n nna S t n n +−=+,故1(1)n n S na t n n +=−⋅+故1(1)(1)n n S n a t n n −=−−⋅−,2n … 两式相减有:11(1)22nn n n n a na n a tn a a t ++=−−−⇒−=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d −=+, 则11(1)222n S n d da d n a n −=+=+−,故{}n S n为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S SD n n +−=+,1(1).n S S n D n =+−即1(1).n S nS n n D =+−当2n …时,11(1)(1)(2).n S n S n n D −=−+−− 上两式相减得:112(1)n n n a S S S n D −=−=+−, 所以12(1).n a a n D =+−当1n =时,上式成立. 又1112(2(1))2n n a a a nD a n D D +−=+−+−=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C .2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =−,6221S S =,则8S = ( ) A. 120 B. 85C. 85−D. 120−【答案】C 【解析】 【分析】本题考查等比数列的基本性质,属于中档题.利用等比数列前n 项和之间差的关系可知2S ,42S S −,64S S −,86S S −成等比数列,列出关系式计算即可得解. 【解答】解:2S ,42S S −,64S S −,86S S −成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S−= +=− −+⇒ −= = 从而计算可得24681,5,21,85S S S S =−=−=−=− 故选.C3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T −=,求.d【答案】解:因为21333a a a =+,故3132d a a d ==+, 即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ××+=,即22730d d −+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d××××=+++,即2211320a a d d −+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T −=, 即99100991029922d d ⋅⋅−=,即250510d d −−=,所以5150d =或1(d =−舍); 当12a d =时,(1)n a n d =+,n n b d =,故(3)2n n n d S +=,(1)2n n n T d+=,又999999S T −=, 即99102991009922d d ⋅⋅−=,即251500d d −−=,所以50(51d =−舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+−,则211(1)n n n n nb dn a d dn a d ++⋅==+−+− 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +−”需满足10a d −=或者11da d=−,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d++⋅==+−+−可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=, 即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d −+=, 解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T −=等价于50501a b −=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d−−,得 250510(5051)(1)0d d d d −−=⇒−+=,解得5150d =或者1d =−, 因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d−=−=,化简得 251500(5150)(1)0d d d d −−=⇒+−=,解得5051d =−或者1d =,因为1d >,所以均不取; 综上所述,51.50d =【解析】本题第一问考查数列通项公式的求解,第二问考查等差数列有关性质,等差数列基本量的求解,计算量较大,为较难题.4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【答案】解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+−=+(2)由(1)知23na n =+,,212121n n b b n −+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=−=+++−+−=+−, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n −=+−+=−=−>, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n nT S n n n n n n n n −=+−−+=−−=+−>∴当5n >时,n S .n T >【解析】本题考查了等差数列的通项公式、前n 项和公式等.(1)由已知432S =,316T =,根据等差数列的前n 项和公式展开,即可得出等差数列的首项15a =,公差2d =,进而得出通项公式2 3.na n =+ (2)由(1)知23na n =+,可得(4)n S n n =+,数列的通项公式,进而212121n n b b n −+=+,分两情况讨论,当n 为偶数时,n T 中含有偶数项,相邻两项两两一组先求和,得出237.22nT n n =+当n 为奇数时,1n +为偶数,此时11.n n n T T b ++=−最后只需证明0n n T S −>即可.【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112.na a a +++< 【答案】 解:1112(1)(1)33n n S S n n a a +=+−=,则23n n n S a +=①,1133n n n S a +++∴=②;由②-①得:111322;33n n n n n a n n n a a a a n++++++=−⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a a a a a a a −−−=⋅⋅ 1543(1)(1)1232122nn n n n n n a n n +++=⋅⋅⋅=⇒=−− , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2()(1)1n a n n n n ==−++ ,1211111111112()2(1)2122311n a a a n n n ∴+++=−+−++−=−<++ , 即原不等式成立.【解析】本题考查了数列与不等式,涉及裂项相消法求和、等差数列的通项公式、根据数列的递推公式求通项公式等知识,属中档题.(1)利用11n n n a S S ++=−进行求解然后化简可求出{}n a 的通项公式; (2)由(1)可求出1112()1n a n n =−+,然后再利用裂项相消法求和可得. 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}n b 为公比为2的等比数列,且223344.a b a b b a −=−=−(1)证明:11;a b =(2)求集合1{|,1500}km k b a a m =+剟中元素个数. 【答案】解:(1)设等差数列{}n a 公差为d由2233a b a b −=−,知1111224a d b a d b +−=+−,故12d b = 由2244a b b a −=−,知111128(3)a d b b a d +−−+,故11124(3);a d b d a d +−−+故1112a d b d a +−=−,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1km b a a =+知:11112(1)k b a m d a −⋅=+−⋅+ 即111112(1)2k b b m b b −⋅=+−⋅+,即122k m −=,因为1500m 剟,故1221000k −剟,解得210k 剟, 故集合1{|,1500}km k b a a m =+剟中元素的个数为9个. 【解析】本题考查等差、等比数列的通项公式,解指数不等式,集合中元素的个数问题,属于中档题.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a −−=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω−=【答案】ACD 【解析】 【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【解答】解:对于A 选项,010112222k k k k n a a a a −−=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +−=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则()21ω=,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅, 所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n −−+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ×的长方形纸,对折1次共可以得到10dm 12dm ×,20dm 6dm ×两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ×,10dm 6dm ×,20dm 3dm ×三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 【答案】5 ; 3240(3)2nn +×− 【解析】 【分析】本题考查实际生活中的数列问题,由特殊到一般的数学思想.根据题设列举,可以得到折叠4次时会有五种规格的图形.由面积的变化关系得到面积通项公式,从而由错位相减法得到面积和. 【解答】解:对折3次时,可以得到2.512dm dm ×,56dm dm ×,103dm dm ×,20 1.5dm dm ×四种规格的图形. 对折4次时,可以得到2.56dm dm ×,1.2512dm dm ×,53dm dm ×,10 1.5dm dm ×,200.75dm dm ×五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==×,2180360S ==×,3120430S ==×,475515S ==×,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N =+×∈, 121111240[234(1)]2482n n S S S n ∴++=××+×+×++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111()224822n n n n n n T T T ++−==++++−113113322222n n n n n ++++=−−=−, 得332n n n T +=−, 123240(3)2n nn S S S +∴++=×−, 故答案为5;3240(3).2n n +×−9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.【答案】解:⑴12b a =,且21+1=2a a =,则1=2b ,24b a =,且4321215a a a +++,则25b =; 1222121213n n n n n b a a a b +++++++,可得13n n b b +−=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+−×=−.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ×++++=+++×× , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和【解析】本题考查了数列递推关系式运用,等差数列通项公式求法,数列求和,考查了分析和运算能力,属于中档题.(1)结合题干给的递推关系,可以快速的算出1b 和2b ,同时利用1222121213n n n n n b a a a b +++++++可判(1)(2)(2)断出数列n b 为等差数列,即可求出数列通项公式;(2)n a 的前20项的和可分组求和,求出其对应的偶数项的和,再结合奇数项与偶数项的关系求解即可. 10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解:(1)由等差数列的性质可得:535S a =,则3335,0a a a ∴,设等差数列的公差为d ,从而有22433()()a a a d a d d =−+=−, 412343333(2)()()2S a a a a a d a d a a d d =+++=−+−+++=−,从而22d d −=−,由于公差不为零,故:2d =,数列的通项公式为:*3(3)26().n a a n d n n N =+−=−∈ (2)由数列的通项公式可得1264a =−=−, 则2(1)(4)252n n n S n n n −=×−+×=−, 则不等式n n S a >即2526n n n −>−,整理可得(1)(6)0n n −−>,解得1n <或6n >,又n 为正整数,故n 的最小值为7.【解析】本题考查等差数列基本量的求解,是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n −与{32}n −的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.【答案】232n n −【解析】【分析】本题考查数列的特定项与性质以及等差数列求和.利用公共项构成首项为1 ,公差为6的等差数列,利用求和公式即可求出答案.【解答】解:数列 的首项是1,公差为2的等差数列;数列 的首项是1,公差为3的等差数列;公共项构成首项为1 ,公差为6的等差数列;故 的前n 项和S n 为:.故答案为232.n n − 12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +== (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S【答案】解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,{21}n −{32}n −{}n a则当1m =时,10b =,当2m =时,21b =,以此类推,31b =,45672b b b b ====, 815...3b b ===,1631...4b b ===,3263...5b b ===,64100...6b b ===,10012100...S b b b ∴=+++0122438416532637480.=+×+×+×+×+×+×=【解析】本题考查了数列求和及等比数列通项公式,属中档题.(1)根据等比数列通项公式列出方程,求出首项和公比,即可求出通项公式;(2)根据等比数列通项公式,归纳数列{}m b 的规律,从而求出其前100项和.13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a = (1)求{}n a 的通项公式;(2)求1223a a a a −+…11(1).n n n a a −++−【答案】解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q +=+= ==, 1q > ,122a q = ∴ =, 1222.n n n a −∴=⋅=1223(2)a a a a −+…11(1)n n n a a −++−35792222=−+−+…121(1)2n n −++−⋅,322322[1(2)]82(1).1(2)55n n n +−−==−−−− 【解析】本题考查等比数列的通项公式,前n 项求和公式,考查转化思想和方程思想,属于基础题.(1)根据题意,列方程组32411231208a a a q a q a a q +=+= ==,解得1a 和q ,然后求出{}n a 的通项公式; (2)根据条件,可知12a a ,23a a −,…11(1)n n n a a −+−,是以32为首项,22−为公比的等比数列,由等比数列求和公式,即可得出答案.。

专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。

历年高考理科数列真题汇编含答案解析

历年高考理科数列真题汇编含答案解析

高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a(2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 (2016天津)(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(2016浙江)6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .93.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列2.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .35.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14高考数列填空题部分(2016全国I )(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .(2016上海)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.(2016北京)12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..(2016江苏)8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .(2016浙江)13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。

2024年高考数学分类汇编三 数列

2024年高考数学分类汇编三 数列

2024年高考数学分类汇编三数列一、单选题1.(2024·全国)等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .292.(2024·全国)等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .2二、填空题3.(2024·全国)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .4.(2024·北京)已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是 .①n a ,n b 均为等差数列,则M 中最多一个元素; ②n a ,n b 均为等比数列,则M 中最多三个元素; ③n a 为等差数列,n b 为等比数列,则M 中最多三个元素; ④n a 单调递增,n b 单调递减,则M 中最多一个元素.5.(2024·上海)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=−∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是 . 三、解答题6.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j −可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j −可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13−可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j −可分数列的概率为m P ,证明:18m P >.7.(2024·全国)已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y . (1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=. 8.(2024·全国)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.9.(2024·全国)记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −=−,求数列{}n b 的前n 项和为n T .10.(2024·北京)设集合(){}{}{}{}(){},,,1,2,3,4,5,6,7,8,2M i j s t i j s t i j s t =∈∈∈∈+++.对于给定有穷数列{}():18n A a n ≤≤,及序列12:,,...,s ωωωΩ,(),,,k k k k k i j s t M ω=∈,定义变换T :将数列A 的第1111,,,i j s t 项加1,得到数列()1T A ;将数列()1T A 的第2222,,,i j s t 列加1,得到数列()21T T A …;重复上述操作,得到数列()21...s T T T A ,记为()A Ω. (1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω; (2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,证明:“存在序列Ω,使得()A Ω为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.11.(2024·天津)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==−. (1)求数列{}n a 前n 项和n S ;(2)设11,2,k n n k k k n a b b k a n a −+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b −≥⋅; (ⅱ)求1nS i i b =∑.答案详解1.D【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理. 【解析】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D 2.B【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【解析】由105678910850S S a a a a a a −=++++==,则80a =, 则等差数列{}n a 的公差85133a a d −==−,故151741433a a d ⎛⎫=−=−⨯−= ⎪⎝⎭. 故选:B. 3.95【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【解析】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =−⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯−+⨯=. 故答案为:95. 4.①③④【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.【解析】对于①,因为{}{},n n a b 均为等差数列,故它们的散点图分布在直线上, 而两条直线至多有一个公共点,故M 中至多一个元素,故①正确. 对于②,取()112,2,n n n n a b −−==−−则{}{},n n a b 均为等比数列,但当n 为偶数时,有()1122n n n n a b −−===−−,此时M 中有无穷多个元素,故②错误.对于③,设()0,1nn b Aq Aq q =≠≠±,()0n a kn b k =+≠,若M 中至少四个元素,则关于n 的方程n Aq kn b =+至少有4个不同的正数解,若0,1q q >≠,则由n y Aq =和y kn b =+的散点图可得关于n 的方程n Aq kn b =+至多有两个不同的解,矛盾;若0,1q q <≠±,考虑关于n 的方程n Aq kn b =+奇数解的个数和偶数解的个数, 当n Aq kn b =+有偶数解,此方程即为nA q kn b =+, 方程至多有两个偶数解,且有两个偶数解时ln 0Ak q >, 否则ln 0Ak q <,因,ny A q y kn b ==+单调性相反, 方程nA q kn b =+至多一个偶数解,当n Aq kn b =+有奇数解,此方程即为nA q kn b −=+,方程至多有两个奇数解,且有两个奇数解时ln 0Ak q −>即ln 0Ak q < 否则ln 0Ak q >,因,ny A q y kn b =−=+单调性相反, 方程nA q kn b =+至多一个奇数解,因为ln 0Ak q >,ln 0Ak q <不可能同时成立,故n Aq kn b =+不可能有4个不同的正数解,故③正确.对于④,因为{}n a 为单调递增,{}n b 为递减数列,前者散点图呈上升趋势, 后者的散点图呈下降趋势,两者至多一个交点,故④正确. 故答案为:①③④【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化. 5.2q ≥【分析】当2n ≥时,不妨设x y ≥,则[][][]2121110,,0,n n n n x y a a a a a a a a ++−∈−−−−,结合n I 为闭区间可得212n q q −−≥−对任意的2n ≥恒成立,故可求q 的取值范围.【解析】由题设有11n n a a q −=,因为10,1a q >>,故1n n a a +>,故[]1111,,n n n n a a a q a q −+⎡⎤=⎣⎦,当1n =时,[]12,,x y a a ∈,故[]1221,x y a a a a −∈−−,此时1I 为闭区间, 当2n ≥时,不妨设x y ≥,若[]12,,x y a a ∈,则[]210,x y a a −∈−, 若[][]121,,,n n y a a x a a +∈∈,则[]211,n n x y a a a a +−∈−−, 若[]1,,n n x y a a +∈,则[]10,n n x y a a +−∈−, 综上,[][][]2121110,,0,n n n n x y a a a a a a a a ++−∈−−−−,又n I 为闭区间等价于[][][]2121110,,0,n n n n a a a a a a a a ++−⋃−−⋃−为闭区间, 而11121n n n a a a a a a ++−>−>−,故12n n n a a a a +−≥−对任意2n ≥恒成立, 故1220n n a a a +−+≥即()11220n a q q a −−+≥,故()2210n q q −−+≥,故212n q q −−≥−对任意的2n ≥恒成立,因1q >,故当n →+∞时,210n q −−→,故20q −≥即2q ≥.故答案为:2q ≥.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理. 6.(1)()()()1,2,1,6,5,6(2)证明见解析 (3)证明见解析【分析】(1)直接根据(),i j −可分数列的定义即可; (2)根据(),i j −可分数列的定义即可验证结论;(3)证明使得原数列是(),i j −可分数列的(),i j 至少有()21m m +−个,再使用概率的定义.【解析】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d−=+=+', 得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可. 换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行. 回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6. 所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m −++,共3m −组. (如果30m −=,则忽略②)故数列1,2,...,42m +是()2,13−可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立, 则数列1,2,...,42m +一定是(),i j −可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈; 命题2:3j i −≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i −≠. 此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈. 则由i j <可知124142k k +<+,即2114k k −>−,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后, 剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列: ①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k −−−,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++−−+,共21k k −组; ③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++−++,共2m k −组.(如果某一部分的组数为0,则忽略之) 故此时数列1,2,...,42m +是(),i j −可分数列. 第二种情况:如果,i B j A ∈∈,且3j i −≠. 此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈. 则由i j <可知124241k k +<+,即2114k k −>,故21k k >. 由于3j i −≠,故()()2141423k k +−+≠,从而211k k −≠,这就意味着212k k −≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k −−−,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =−,共212k k −−组; ④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++−++,共2m k −组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k −−个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j −可分数列. 至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j −可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i −=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +−+=. 但这导致2112k k −=,矛盾,所以,i B j A ∈∈. 设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +−+=,即211k k −=. 所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m −,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m −+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +−.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j −可分数列的(),i j 至少有()21m m +−个. 所以数列1242,,...,m a a a +是(),i j −可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+−++⎝⎭≥=>==++++++++. 这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论. 7.(1)23x =,20y = (2)证明见解析 (3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可; (2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可. 【解析】(1)由已知有22549m =−=,故C 的方程为229x y −=. 当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y −=联立得到22392x x +⎛⎫−= ⎪⎝⎭.解得3x =−或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q −,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =−+,与229x y −=联立,得到方程()()229n n x k x x y −−+=.展开即得()()()2221290n n n n k x k y kx x y kx −−−−−−=,由于(),n n n P x y 已经是直线()n n y k x x y =−+和229x y −=的公共点,故方程必有一根n x x =. 从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k −−−=−=−−,相应的()2221n n nn n y k y kx y k x x y k+−=−+=−. 所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫−−+− ⎪−−⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x −−−−,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+−+− ⎪−−⎝⎭. 这就得到21221n n nn x k x ky x k ++−=−,21221n n n n y k y kx y k ++−=−. 所以2211222211n n n n n nn n x k x ky y k y kx x y k k+++−+−−=−−− ()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=−=−=−−−−−. 再由22119x y −=,就知道110x y −≠,所以数列{}n n x y −是公比为11k k+−的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b =,(),UW c d =,则12UVWSad bc =−.(若,,U V W 在同一条直线上,约定0UVWS =)证明:211sin ,1cos ,22UVWS UV UW UV UW UV UW UV UW =⋅=⋅−()222211122UV UW UV UW UV UW UV UW UV UW ⎛⎫⋅⎪=⋅−=⋅−⋅⎪⋅⎭==12ad bc ==−. 证毕,回到原题.由于上一小问已经得到21221n n nn x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−, 故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 而又有()()()111,n n n n n n P P x x y y +++=−−−−,()122121,n n n n n n P P x x y y ++++++=−−, 故利用前面已经证明的结论即得 ()()()()1212112112n n n n P P P n n n n n n n n S Sx x y y y y x x ++++++++==−−−+−−()()()()12112112n n n n n n n n x x y y y y x x ++++++=−−−−− ()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=−+−−− 2219119119112211211211k k k k k k k k k k k k ⎛⎫−+−+−+⎛⎫⎛⎫⎛⎫⎛⎫=−+−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+−+−+−⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−, 故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++−+⎛⎫−=−=− ⎪+−⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫−+⎛⎫⎛⎫−=−=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++−−−=−−−. 移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++−−+=−−+. 故()()()()321213n n n n n n n n y y x x y y x x ++++++−−=−−.而()333,n n n n n n P P x x y y +++=−−,()122121,n n n n n n P P x x y y ++++++=−−.所以3n n P P +和12n n P P ++平行,这就得到12123n n n n n n P P P P P P SS+++++=,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8.(1)153n n a −⎛⎫= ⎪⎝⎭(2)353232n⎛⎫− ⎪⎝⎭ 【分析】(1)利用退位法可求公比,再求出首项后可求通项; (2)利用等比数列的求和公式可求n S .【解析】(1)因为1233n n S a +=−,故1233n n S a −=−,所以()12332n n n a a a n +=−≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =−=⨯−=−,故11a =,故153n n a −⎛⎫= ⎪⎝⎭.(2)由等比数列求和公式得5113353523213n nn S ⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==− ⎪⎝⎭−. 9.(1)14(3)n n a −=⋅− (2)(21)31n n T n =−⋅+【分析】(1)利用退位法可求{}n a 的通项公式. (2)利用错位相减法可求n T .【解析】(1)当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a −−=+,所以1144433n n n n n S S a a a −−−==−即13n n a a −=−, 而140a =≠,故0n a ≠,故13nn a a −=−, ∴数列{}n a 是以4为首项,3−为公比的等比数列, 所以()143n n a −=⋅−.(2)111(1)4(3)43n n n n b n n −−−=−⋅⋅⋅−=⋅,所以123n n T b b b b =++++0211438312343n n −=⋅+⋅+⋅++⋅故1233438312343n n T n =⋅+⋅+⋅++⋅ 所以1212443434343n n n T n −−=+⋅+⋅++⋅−⋅()1313444313n nn −−=+⋅−⋅−()14233143n n n −=+⋅⋅−−⋅(24)32n n =−⋅−, (21)31n n T n ∴=−⋅+.10.(1)():3,4,4,5,8,4,3,10A Ω (2)不存在符合条件的Ω,理由见解析 (3)证明见解析【分析】(1)直接按照()A Ω的定义写出()A Ω即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可; (3)分充分性和必要性两方面论证.【解析】(1)由题意得():3,4,4,5,8,4,3,10A Ω;(2)假设存在符合条件的Ω,可知()A Ω的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++,则()()()()121234342642a a a a s a a a a s ⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列()21...k T T T A 为{}(),18k n a n ≤≤,特别规定()0,18n n a a n =≤≤. 必要性:若存在序列12:,,...,s ωωωΩ,使得()A Ω为常数列.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+. 根据()21...k T T T A 的定义,显然有,21,21,211,2k j k j k j k j a a a a −−−−+=+,这里1,2,3,4j =,1,2,...k =. 所以不断使用该式就得到,12345678a a a a a a a a +=+=+=+,必要性得证.充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+−+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()A Ω中,使得,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−最小的一个.上面已经证明,21,21,211,2k j k j k j k j a a a a −−−−+=+,这里1,2,3,4j =,1,2,...k =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+. 同时,由于k k k k i j s t +++总是偶数,所以,1,3,5,7k k k k a a a a +++和,2,4,6,8k k k k a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数. 下面证明不存在1,2,3,4j =使得,21,22s j s j a a −−≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a −−≥,即,1,22s s a a −≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a −+−+−=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a −≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++−+−+−+−相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a −+−+−>,不妨设,3,40s s a a −>.情况2-1:如果,3,41s s a a −≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++−+−+−+−相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−的最小性矛盾;情况2-2:如果,4,31s s a a −≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++−+−+−+−相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a −−≤. 假设存在1,2,3,4j =使得,21,21s j s j a a −−=,则,21,2s j s j a a −+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a −−≤可知必有{}{},21,2,,1s j s j a a N N −=+. 而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j s t 之和为偶数,对该数列进行一次变换(),,,i j s t ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++−+−+−+−等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a −+−+−+−的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j −−==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),s na A =Ω是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析. 11.(1)21n n S =− (2)①证明见详解;②()131419nn S ii n b =−+=∑【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k −==+,()121n k k b −=−,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k −−−=⎡⎤=−−−⎣⎦∑,再结合裂项相消法分析求解.【解析】(1)设等比数列{}n a 的公比为0q >, 因为1231,1a S a ==−,即1231a a a +=−,可得211q q +=−,整理得220q q −−=,解得2q =或1q =−(舍去), 所以122112nn n S −==−−.(2)(i )由(1)可知12n n a −=,且N*,2k k ∈≥,当124kk n a +=≥=时,则111221111k k k k k a n n a a −++⎧=<−=−⎨−=−<⎩,即11k k a n a +<−<可知12,1k k n a b k −==+,()()()1111222121k k k n a k k b b a a k k k k −−+=+−−⋅=+−=−,可得()()()()1112112122120k n k n k k k k k k k k b k a b −−−=−−+=−−≥−−=−⋅≥−,当且仅当2k =时,等号成立, 所以1n k n b a b −≥⋅;(ii )由(1)可知:1211nn n S a +=−=−,若1n =,则111,1S b ==;若2n ≥,则112k k k a a −+−=,当1221k k i −<≤−时,12i i b b k −−=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k −−−−−−−=−⎡⎤=⋅+=⋅=−−−⎣⎦∑, 所以()()()232113141115424845431434499nn S n n i i n b n n −=−+⎡⎤=+⨯−⨯+⨯−⨯+⋅⋅⋅+−−−=⎣⎦∑, 且1n =,符合上式,综上所述:()131419nn S ii n b =−+=∑.【点睛】关键点点睛:1.分析可知当1221k k i −<≤−时,12i i b b k −−=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k kk ii b k k −−−=⎡⎤=−−−⎣⎦∑.。

专题06 数列-【中职专用】河南省近十年对口高考数学真题分类汇编(原卷版)

专题06 数列-【中职专用】河南省近十年对口高考数学真题分类汇编(原卷版)

专题06数列1.(2021年河南对口高考)若工厂每年的总产值以10%的速度增长,如果2021年的总产值为1000万元,那么2024年该厂的总产值为()A.1331万元B.1320万元C.1310万元D.1300万元2.(2021年河南对口高考)在等差数列{}n a 中,13a =,1715a=,则数列{}n a 的公差d 为.3.(2021年河南对口高考)在等比数列{}n a 中,0n a >,24a =,4128S a -=,求数列{}n a 的公比q 为.4.(2020年河南对口高考)在等差数列{}n a 中,知3412a a +=,则数列{}n a 的前6项和6S 等于()A.18B.45C.36D.725.(2020年河南对口高考)在等比数列{}n a 中,23a =,53a =-,则数列{}n a 的公比q 为.6.(2020年河南对口高考)已知等比数列{}n a 中,公比1q ≠,且1n a +,n a ,2n a +成等差数列,求证:等比数列{}n a 的公比2q =-.7.(2019年河南对口高考)已知等差数列{}n a 的前项和为n S ,若32132S S -=,则数列{}n a 的公差d 的值为()A.12B.1-C.2D.38.(2019年河南对口高考)等比数列{}n a 中,公比1q ≠,它的前项和为n S ,若66332S =,且2a ,4a ,3a 成等差数列.(1)求数列{}n a 的通项公式(2)求数列{}n a 的前n 项和nS 9.(2019年河南对口)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为.10.(2018年河南对口高考)设首项为1,公比为32的等比数列{}n a 的前n 项和为n S ,则()A.12-=n n a SB.23-=n n a SC.nn a S 34-= D.nn a S 23-=11.(2018年河南对口高考)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则公差=d .12.(2018年河南对口)已知数列{}n a 是公比不为1的等比数列,n S 为其前n 项和,满足22a =,且116a ,49a ,72a 成等差数列,求3S 的值.13.(2017年河南对口高考)等差数列{}n a 的前n 项和为n S ,若5151912a a S ,则+==A.114B.228C.216D.10814.(2017年河南对口高考)在等差数列{}n a 中,若24351016a a a a ,+=+=,则通项n a =.15.(2017年河南对口)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =()A .2B .7C .14D .2816.(2016年河南对口高考)若数列数列{}n a 的前n 项和2n S n n =+,则6a =.17.(2016年河南对口高考)在等差数列{}n a 中,若610a =,1420a=,则10a =.18.(2016年河南对口高考)在等比数列{a n }中,若311a a -=,422a a -=,求首项1a 及公比q .19.(2015年河南对口高考)等比数列{}n a 中,若62=a ,123=a ,则6S 等于()A .186B .192C .189D .19520.(2015年河南对口高考)已知三个数成等差数列,其和为18,其平方和为126,求此三个数.21.(2015年河南对口)记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=.22.(2014年河南对口高考)等差数列{}n a 中,若35a =,59a =,则6S 等于()A .38B .36C .48D .4623.(2014年河南对口高考)已知数列{}n a 的前n 项和为n S ,且满足11a =和21n n S a =-(其中n N *∈).(1)求数列{}n a 的前四项;(2)求数列{}n a 的通项公式.24.(2014年河南对口)已知数列{}n a 满足211a a -=,其前n 项和为n S ,当2n ≥时,11n S --,n S ,1n S +成等差数列,求证:{}n a 为等差数列.25.(2013年河南对口高考)等比数列{}n a 中,若210a =,320a =,则5S 等于()A .155B .150C .160D .16526.(2013年河南对口高考)有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.27.(2013年河南对口)已知正项等比数列{}n a 的前n 项和为n S ,若418a =,3134-=S a ,则4S =()A .116B .18C .3116D .15828.(2012年河南对口高考)在等差数列{}n a 中,若31710a a +=,则19S 等于()A .65B .75C .85D .9529.(2012年河南对口高考)设{}n a 是公比为q 的等比数列,且243,,a a a 成等差数列,则q =.30.(2012年河南对口)已知等差数列{}n a 的前n 项和为n S ,若471S a =+,474a a +=,则10a =()A .133B .4C .113D .143。

[2014-2018]北京高考数学真题分类汇编 专题六 数列

[2014-2018]北京高考数学真题分类汇编 专题六 数列

专题六 数列1.(2018.9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 . 2.(2017.10)若等差数列{a n }和等比数列{b n }满足a 1=b 1=﹣1,a 4=b 4=8,则a 2b 2= .3.(2017.20)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n =1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数. (1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c n n>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.4.(2016.12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= .5.(2016.20)设数列A :a 1,a 2,…,a N (N ≥2).如果对小于n (2≤n ≤N )的每个正整数k 都有a k <a n ,则称n 是数列A 的一个“G 时刻”,记G (A )是数列A 的所有“G 时刻”组成的集合.(Ⅰ)对数列A :﹣2,2,﹣1,1,3,写出G (A )的所有元素; (Ⅱ)证明:若数列A 中存在a n 使得a n >a 1,则G (A )≠∅;(Ⅲ)证明:若数列A 满足a n ﹣a n ﹣1≤1(n =2,3,…,N ),则G (A )的元素个数不小于a N ﹣a 1.6. (2015.6)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>√a 1a 3D .若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)>07.(2015.20)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1={2a n ,a n ≤182a n −36,a n >18(n =1,2,…),记集合M ={a n |n ∈N *}.(Ⅰ)若a 1=6,写出集合M 的所有元素;(Ⅱ)如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.8. (2014.5)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2014.12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n = 时,{a n }的前n 项和最大.专题六 数列 答案部分1.解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36, ∴{a 1=3a 1+d +a 1+4d =36, 解得a 1=3,d =6,∴a n =a 1+(n ﹣1)d =3+(n ﹣1)×6=6n ﹣3. ∴{a n }的通项公式为a n =6n ﹣3. 故答案为:a n =6n ﹣3.2. 解:等差数列{a n }和等比数列{b n }满足a 1=b 1=﹣1,a 4=b 4=8, 设等差数列的公差为d ,等比数列的公比为q . 可得:8=﹣1+3d ,d =3,a 2=2; 8=﹣q 3,解得q =﹣2,∴b 2=2. 可得a 2b 2=1.故答案为:1.3. 解:(1)a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5, 当n =1时,c 1=max {b 1﹣a 1}=max {0}=0,当n =2时,c 2=max {b 1﹣2a 1,b 2﹣2a 2}=max {﹣1,﹣1}=﹣1,当n =3时,c 3=max {b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max {﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n+1﹣c n=﹣1对∀n∈N*均成立,∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n+1﹣c n=d2﹣a1,∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n ≥m 时,c n =b 1﹣a 1n ,此时c n +1﹣c n =﹣a 1,故数列{c n }从第m 项开始为等差数列,命题成立; ③若d 1<0,此时﹣d 1n +d 2为一个关于n 的一次项系数为正数的一次函数, 故必存在s ∈N *,使得n ≥s 时,﹣d 1n +d 2>0,则当n ≥s 时,(b i ﹣a i n )﹣(b n ﹣a n n )=(i ﹣1)(﹣d 1n +d 2)≤0,(i ∈N *,1≤i ≤n ), 因此,当n ≥s 时,c n =b n ﹣a n n , 此时=b n −a n n n =−a n +bn n, =﹣d 2n +(d 1﹣a 1+d 2)+b 1−d 2n, 令﹣d 1=A >0,d 1﹣a 1+d 2=B ,b 1﹣d 2=C , 下面证明:c n n=An +B +Cn 对任意正整数M ,存在正整数m ,使得n ≥m ,c n n>M ,若C ≥0,取m =[|M−B|A+1],[x ]表示不大于x 的最大整数,当n ≥m 时,c n n≥An +B ≥Am +B =A [|M−B|A+1]+B >A •M−B A+B =M ,此时命题成立; 若C <0,取m =[|M−C−B|A]+1,当n ≥m 时,c n n≥An +B +Cn ≥Am +B +C >A •|M−C−B|A+B +C ≥M ﹣C ﹣B +B +C =M ,此时命题成立,因此对任意正数M ,存在正整数m ,使得当n ≥m 时,c n n>M ;综合以上三种情况,命题得证.4. 解:∵{a n }为等差数列,S n 为其前n 项和. a 1=6,a 3+a 5=0, ∴a 1+2d +a 1+4d =0, ∴12+6d =0, 解得d =﹣2,∴S 6=6a 1+6×52d =36﹣30=6. 故答案为:6.5. 解:(Ⅰ)根据题干可得,a 1=﹣2,a 2=2,a 3=﹣1,a 4=1,a 5=3,a 1<a 2满足条件,2满足条件,a 2>a 3不满足条件,3不满足条件,a 2>a 4不满足条件,4不满足条件,a 1,a 2,a 3,a 4,均小于a 5,因此5满足条件,因此G (A )={2,5}.(Ⅱ)因为存在a n >a 1,设数列A 中第一个大于a 1的项为a k ,则a k >a 1≥a i ,其中2≤i ≤k ﹣1,所以k ∈G (A ),G (A )≠∅;(Ⅲ)设A 数列的所有“G 时刻”为i 1<i 2<…<i k ,对于第一个“G 时刻”i 1,有a i 1>a 1≥a i (i =2,3,…,i 1﹣1),则 a i 1−a 1≤a i 1−a i 1−1≤1.对于第二个“G 时刻”i 1,有a i 2>a i 1≥a i (i =2,3,…,i 1﹣1),则 a i 2−a i 1≤a i 2−a i 2−1≤1.类似的a i 3−a i 2≤1,…,a i k −a i k−1≤1.于是,k ≥(a i k −a i k−1)+(a i k−1−a i k−2)+…+(a i 2−a i 1)+(a i 1−a 1)=a i k −a 1. 对于a N ,若N ∈G (A ),则a i k =a N .若N ∉G (A ),则a N ≤a i k ,否则由(2)知a i k ,a i k+1,…,a N ,中存在“G 时刻”与只有k 个“G 时刻”矛盾. 从而k ≥a i k −a 1≥a N ﹣a 1.6. 解:若a 1+a 2>0,则2a 1+d >0,a 2+a 3=2a 1+3d >2d ,d >0时,结论成立,即A 不正确; 若a 1+a 3<0,则a 1+a 2=2a 1+d <0,a 2+a 3=2a 1+3d <2d ,d <0时,结论成立,即B 不正确; {a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2√a 1a 3,∴a 2>√a 1a 3,即C 正确; 若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .7. 解:(Ⅰ)若a 1=6,由于a n +1={2a n ,a n ≤182a n −36,a n >18(n =1,2,…),M ={a n |n ∈N *}.故集合M 的所有元素为6,12,24;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数,由a n +1={2a n ,a n ≤182a n −36,a n >18(n =1,2,…),可归纳证明对任意n ≥k ,a n 是3的倍数. 如果k =1,M 的所有元素都是3的倍数;如果k >1,因为a k =2a k ﹣1,或a k =2a k ﹣1﹣36,所以2a k ﹣1是3的倍数;于是a k ﹣1是3的倍数;类似可得,a k ﹣2,…,a 1都是3的倍数; 从而对任意n ≥1,a n 是3的倍数;综上,若集合M 存在一个元素是3的倍数,则集合M 的所有元素都是3的倍数 (Ⅲ)对a 1≤36,a n ={2a n−1,a n ≤182a n−1−36,a n >18(n =1,2,…),可归纳证明对任意n ≥k ,a n <36(n =2,3,…)因为a 1是正整数,a 2={2a 1,a 1≤182a 1−36,a 1>18,所以a 2是2的倍数.从而当n ≥2时,a n 是2的倍数.如果a 1是3的倍数,由(Ⅱ)知,对所有正整数n ,a n 是3的倍数. 因此当n ≥3时,a n ∈{12,24,36},这时M 的元素个数不超过5. 如果a 1不是3的倍数,由(Ⅱ)知,对所有正整数n ,a n 不是3的倍数. 因此当n ≥3时,a n ∈{4,8,16,20,28,32},这时M 的元素个数不超过8. 当a 1=1时,M ={1,2,4,8,16,20,28,32},有8个元素. 综上可知,集合M 的元素个数的最大值为8.5.解:等比数列﹣1,﹣2,﹣4,…,满足公比q =2>1,但{a n }不是递增数列,充分性不成立.若a n =﹣1⋅(12)n−1为递增数列,但q =12>1不成立,即必要性不成立, 故“q >1”是“{a n }为递增数列”的既不充分也不必要条件, 故选:D .6. 解:由等差数列的性质可得a 7+a 8+a 9=3a 8>0, ∴a 8>0,又a 7+a 10=a 8+a 9<0,∴a 9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.。

数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
所以 .
【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020年新高考I卷(山东卷)·第18题
7.(2020新高考II卷(海南卷)·第18题)已知公比大于 的等比数列 满足 .
(1)求 通项公式;
(2)求 .
【答案】(1) ;(2)
解析:(1)设等比数列 的公比为q(q>1),则 ,
整理可得: ,
解析:(1)由已知 得 ,且 , ,
取 ,由 得 ,
由于 为数列 的前n项积,
所以 ,

所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.

数列的通项公式为: .
(2)由于: ,故:

【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020新高考II卷(海南卷)·第18题
8.(2021年高考全国乙卷理科·第19题)记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
(2)求 的通项公式.
【答案】(1)证明见解析;(2) .
当 时, ,当 时, 满足等差数列的定义,此时 为等差数列;
当 时, , 不合题意,舍去.
综上可知 为等差数列.
【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.

历年高考试题汇编——数列

历年高考试题汇编——数列

aa2aa8aa{a} (5)已知,则,为等比数列,104716n55577 ) (D (B) (C)

(A)

na(1)a2n1{a}}{a60项和为 ,则 (16)数列 满足的前 n1nnn 

ma32SS0SSn , 7、设等差数列,,的前,则项和为1mm1mnnA、3 B、4

C、5 D、6

a,b,cBCABCSA,的三边长分别为n=1,2的面积为,,12、设3,… nnnnnnnnnnc+ab+a

nnnn

若b>c,b+c=2a,a=a,b=,c=,则( )

11nn1n11111n+++22A、{S}为递减数列 nB、{S}为递增数列 nC、{S}为递增数列,{S}为递减数列

n2n12- }为递增数列}为递减数列,{SD、{Sn122n-

21aaaSaSn______. ,的通项公式是14、若数列的前项和为,则数列

nnnnnn

33 

1a0aaSaaSn为,=1已知数列(14年I卷)17.{}的前,项和为,,其中nnnn11nn.

常数aa (I)证明:;nn2a. })是否存在{,使得为等差数列?并说明理由II(n 

a1aaa3. 满足=1已知数列年(14II卷)17. ,nn11n1aa 的通项公式;是等比数列,

并求(Ⅰ)证明 nn23111+…. (Ⅱ)证明: aaa2n12

(15年I卷) 20aS4Saa3a ,.为数列(17) n的前项和已知nnnnnna (I)求的通项公式:

n

1bbn项和的前 (II)设,求数列

nnaann1

aaaaaa ( a}满足a=3, )

=21,则年(15II卷)(4)等比数列{1n731355(A)21 (B)42 (C)63 (D)84 

aa1SaSSS,的前n项和,且________.设(15年II卷()16) 是数列,则n1n1nn1nn

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品 -可编辑- 历年高考真题汇编---数列(含) 1、(全国新课标卷理)

等比数列na的各项均为正数,且212326231,9.aaaaa

(1)求数列na的通项公式.

(2)设 31323loglog......log,nnbaaa求数列1nb的前项和.

解:(Ⅰ)设数列{an}的公比为q,由2

3269aaa得32349aa所以219q。有条件可

知a>0,故13q。

由12231aa得12231aaq,所以113a。故数列{an}的通项式为an=13n。 (Ⅱ )111111loglog...lognbaaa

(12...)(1)2nnn

故12112()(1)1nbnnnn



12111111112...2((1)()...())22311nnbbbnnn

所以数列1{}nb的前n项和为21nn

2、(全国新课标卷理)设数列na满足21112,32nnnaaag

(1) 求数列na的通项公式; (2) 令nnbna,求数列的前n项和nS 解(Ⅰ)由已知,当n≥1时,111211[()()()]nnnnnaaaaaaaaL

21233(222)2nnL2(1)12n

。

而 12,a所以数列{na}的通项公式为212nna。

(Ⅱ)由212nnnbnan

知

35211222322nnSnL ① 精品 -可编辑- 从而 23572121222322nnSn

L ②

①-②得 2352121(12)22222nnnSn

L 。

即 211[(31)22]9nnSn



3.设}{na是公比大于1的等比数列,Sn为数列}{

na

的前n项和.已知

S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列

}{

na

的通项公式;

(2)令2,1,ln13nabnn,求数列}{nb的前n项和Tn. 。

4、(辽宁卷)已知等差数列{an}满足a2=0,a6+a8=-10 (I)求数列{an}的通项公式; (II)求数列12nna的前n项和

解:(I)设等差数列{}na的公差为d,由已知条件可得

1

1

0,21210,adad



解得11,1.ad



故数列{}na的通项公式为2.nan ………………5分

(II)设数列1{}2nnnanS的前项和为,即2111,122nnnaaSaSL故

12.2242nnnSaaaL

所以,当1n时, 精品

-可编辑- 1211111222211121()2422121(1)22nnnnnnnnnnSaaaaaann











LL

=.2nn所以1.2nnnS

综上,数列11{}.22nnnnannS的前项和

5、(陕西省) 已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{an}的通项; (Ⅱ)求数列{2an}的前n项和Sn.

解 (Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得121d=1812dd, 解得d=1,d=0(舍去), 故{an}的通项an=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2ma=2n,由等比数列前n项和公式得 Sn=2+22+23+…+2n=2(12)12n=2n+1- 6、(全国卷) 设等差数列{na}的前n项和为ns,公比是正数的等比数列{nb}的前n项

和为nT,已知1133331,3,17,12,},{}nnababTSb求{a的通项公式。

解: 设na的公差为d,nb的公比为q

由3317ab

得212317dq ①

由3312TS

得24qqd ②

由①②及0q解得 2,2qd 故所求的通项公式为 121,32nnnanb

7、(浙江卷)已知公差不为0的等差数列}{na的首项为)(Raa,且11a,精品 -可编辑- 21a,41a成等比数列.(Ⅰ)求数列}{

na的通项公式;

(Ⅱ)对*Nn,试比较naaaa2322221...111与11a的大小.

解:设等差数列{}na的公差为d,由题意可知2214111()aaa

即2111()(3)adaad,从而21add 因为10,.ddaa所以

故通项公式.nana

(Ⅱ)解:记22222111,2nnn

nTaaaaaL因为

所以211(1())111111122()[1()]1222212nnnnTaaa

L

从而,当0a时,1

1nTa;当110,.naTa时

8、(湖北卷) 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列nb中的b、b、b。

(I) 求数列nb的通项公式;

(II) 数列nb的前n项和为nS,求证:数列54nS是等比数列。 精品

-可编辑- 9、(2010年山东卷) 已知等差数列na满足:73a,2675aa,na的前n项和为nS

(Ⅰ)求na及nS;

解:(Ⅰ)设等差数列na的首项为1a,公差为d,

由于73a,2675aa,所以721da,261021da,

解得31a,2d,由于dnaan)1(1,2)(1nnaanS ,

所以12nan,)2(nnSn

(Ⅱ)因为12nan,所以)1(412nna

n

因此)111(41)1(41nnnnb

n 精品 -可编辑- 故nnbbbT21)1113121211(41nn

)111(41n)1(4nn 所以数列nb的前n项和)1(4n

nTn

(Ⅱ)令112nnab(*Nn),求数列nb的前n项和为nT。

10、(重庆卷) 已知na是首项为19,公差为-2的等差数列,nS为na的前n项和.

(Ⅰ)求通项na及nS;

(Ⅱ)设nnba是首项为1,公比为3的等比数列,求数列nb的通

项公式及其前n项和nT.

11、(四川卷) 已知等差数列{}na的前3项和为6,前8项和为-4。 (Ⅰ)求数列{}na的通项公式; (Ⅱ)设1*(4)(0,)nnnbaqqnN,求数列{}nb的前n项和n

S

Ⅱ)由(Ⅰ)得解答可得,1nnbnqg,于是 0121123nnSqqqnqgggLg

. 精品 -可编辑- 若1q,将上式两边同乘以q有121121nnnqSqqnqnqggLgg. 两式相减得到 12111nnnqSnqqqqgL

11nnqnqq

1111nnnqnqq

.

于是12111nnnnqnqSq. 若1q,则11232nnnSnL.

所以,121,1,211,1.1nnnnnqSnqnqqq…………………………………(12) 12、(上海卷)

已知数列na的前n项和为nS,且585nnSna,*nN

证明:1na是等比数列;并求数列{}na的通项公式

解:由*585,nnSnanN

(1)

可得:1111585aSa,即114a

同时 11(1)585nnSna

(2)

从而由(2)(1)可得:1115()nnnaaa

即:*151(1),6nnaanN,从而{1}na为等比数列,首项1115a,公比为56,通项公式为15115*()6nna,从而1515*()16nna

相关文档
最新文档