语音信号的降噪研究

语音信号的降噪研究
语音信号的降噪研究

龙源期刊网 https://www.360docs.net/doc/e212904922.html,

语音信号的降噪研究

作者:姚萍萍何恩南

来源:《珠江水运》2016年第23期

摘要:近年来我国通信技术发展非常迅速,各种先进的通信设备更迭频繁,为社交沟通

和交流带来了数次变革。为保证语音通信质量,语音信号的降噪处理日益得到人们更为广泛的关注。语音信号在编码、传输环节会受到各种噪声的污染,不利于语音信号的识别,为此,需要运用专门的处理技术进行降噪处理,以提高语音清晰度与质量。本文在给出含噪去噪模型的基础上,介绍了小波与EMD降噪理论,通过仿真对降噪结果进行分析,为提高语音信号降噪效果提供一些参考。

关键词:语音信号降噪研究

1.引言

随着社会发展,人们的生产生活对语音信号质量不断提出更高要求,而语音信号传输过程中不可避免的要受到噪声污染,因此,加强语音信号降噪研究,对改善语音信号质量,提高语音信号清晰度,具有重要的现实意义。语音信号降噪时需先将其变换到临时的域中,对语音信号进行降噪处理再进行恢复,变换的关键在于实现语音信号与噪声信号的良好分离。这种变化的实现需要借助专门的技术如小波变换、经验模态分解(EMD)以及短时傅里叶变换等,其

中小波变换具有多尺度、多分辨率等优点,在语音降噪中效果明显。EMD降噪的实现原理主要是借助其滤波特性,其中阀值法和尺度滤波法是常用的降噪方法。

2.含噪声信号去噪模型

语音的产生是随机的,具有非平稳性、时变性特点。众所周知,语音信号传输需进行编码处理,并通过介质完成传输的整个过程,期间受多种因素影响形成多种类型的噪声,与干净的语音信号进行叠加,给语音信号造成干扰,由此便得出含噪声信号的去噪模型:干净的语音信号f(t)与噪声n(t)叠加形成的x(t),并经过语音增强系统处理得到含有噪声语音信号y (t),其中这里的噪声为高斯白噪声,方差为σ,服从正态分布N(0,σ2),表达式为:x (t)=n(t)+f(t)。

3.两种降噪理论分析

3.1小波降噪

语音信号处理与及其MATLAB实现分析

目录 摘要 (2) 第一章绪论 (3) 1.1 语音课设的意义 (3) 1.2 语音课设的目的与要求 (3) 1.3 语音课设的基本步骤 (3) 第二章设计方案论证 (5) 2.1 设计理论依据 (5) 2.1.1 采样定理 (5) 2.1.2 采样频率 (5) 2.1.3 采样位数与采样频率 (5) 2.2 语音信号的分析及处理方法 (6) 2.2.1 语音的录入与打开 (6) 2.2.2 时域信号的FFT分析 (6) 2.2.3 数字滤波器设计原理 (7) 2.2.4 数字滤波器的设计步骤 (7) 2.2.5 IIR滤波器与FIR滤波器的性能比较 (7) 第三章图形用户界面设计 (8) 3.1 图形用户界面概念 (8) 3.2 图形用户界面设计 (8) 3.3 图形用户界面模块调试 (9) 3.3.1 语音信号的读入与打开 (9) 3.3.2 语音信号的定点分析 (9) 3.3.3 N阶高通滤波器 (11) 3.3.4 N阶低通滤波器 (12) 3.3.5 2N阶带通滤波器 (13) 3.3.6 2N阶带阻滤波器 (14) 3.4 图形用户界面制作 (15) 第四章总结 (18) 附录 (19) 参考文献 (24)

摘要 数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。 数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声的语音信号进行频谱分析及滤波 一、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。 二、实现步骤 1.语音信号的采集 利用Windows下的录音机,录制一段自己的话音,时间在1 s内。然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。 2.语音信号的频谱分析 要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。 在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。 3.数字滤波器设计 给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容 一、实验原理 含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。 二、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。 三、实验程序 1、原始信号采集和分析 clc;clear;close all; fs=10000; %语音信号采样频率为10000 x1=wavread('C:\Users\acer\Desktop\voice.wav'); %读取语音信号的数据,赋给x1 sound(x1,40000); %播放语音信号 y1=fft(x1,10240); %对信号做1024点FFT变换 f=fs*(0:1999)/1024; figure(1); plot(x1) %做原始语音信号的时域图形 title('原始语音信号'); xlabel('time n'); ylabel('fuzhi n'); figure(2); plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形 title('原始语音信号频谱') xlabel('Hz'); ylabel('fuzhi');

基于Matlab的语音信号的特征提取与分类

基于Matlab的语音信号的特征提取与分类语音信号处理是研究数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。本文采用Matlab7.0综合运用GUI界面设计,各种函数调用等对语音信号进行采集、提取、变频、变幅,傅里叶变换、滤波等简单处理。程序界面简练,操作简便,具有一定的实际应用意义。 关键词:语音信号Matlab 信号处理GUI 1、语音信号的低通滤波 本文中设计了一个截止频率为200Hz切比雪夫—Ⅰ型低通滤波器,它的性能指标为:wp=0.075pi, ws=0.125pi, Rp=0.25;Rs=50dB。低通滤波器处理程序如下: [x,fs,bits]=wavread('voice.wav'); wp=0.075;ws=0.125;Rp=0.25;Rs=50; [N,Wn]=cheb1ord(wp,ws,Rp,Rs); [b,a]=cheby1(N,Rp,Wn); [b,a]=cheby1(N,Rp,Wn); X=fft(x); subplot(221);plot(x);title('滤波前信号的波形'); subplot(222);plot(X);title('滤波前信号的频谱'); y=filter(b,a,x); %IIR低通滤波 sound(y,fs,bits);%听取滤波后的语音信号

wavwrite(y,fs,bits,’低通’);%将滤波后的信号保存为“低通.wav” Y=fft(y); subplot(223);plot(y);title(' IIR滤波后信号的波形'); subplot(224);plot(Y);title(' IIR滤波后信号的频谱'); 经过低通滤波器处理后,比较滤波前后的波形图的变化 低通滤波后,听到声音稍微有些发闷,低沉,原因是高频分量被低通滤波器衰减。但是很接近原来的声音。 2、语音信号的高通滤波 运用切比雪夫—Ⅱ型数字高通滤波器,对语音信号进行滤波处理。高通滤波器性能指标:wp=0.6, ws=0.975 ,Rp=0.25;Rs=50dB。高通滤波器处理程序如下: [x,fs,bits]=wavread('voice.wav'); wp=0.6;ws=0.975;Rp=0.25;Rs=50;

ANC、ENC、CVC、DSP四种降噪方式

ANC、ENC、CVC、DSP四种降噪方式 降噪功能对耳机的作用很重要,一是减少噪音,避免过度放大音量,从而减少对耳朵的损害。二是过滤噪音从而提高音质和通话质量。 降噪可分为被动式降噪和主动式降噪。 被动式降噪也就是物理降噪,被动式降噪是指利用物理特性将外部噪声与耳朵隔绝开,主要通过耳机的头梁设计得紧一些、耳罩腔体进行声学优化、耳罩内部放上吸声材料……等等来实现耳机的物理隔音。被动降噪对高频率声音(如人声)的隔绝非常有效,一般可使噪声降低大约为15-20dB。 主动式降噪就是商家在宣传耳机降噪功能时会主打的ANC、ENC、CVC、DSP等降噪技术,这四种降噪分别是什么原理,又有什么作用呢? ANC降噪

ANC降噪(Active Noise Control,主动降噪)的工作原理是麦克风收集外部的环境噪音,然后系统变换为一个反相的声波加到喇叭端,最终人耳听到的声音是:环境噪音+反相的环境噪音,两种噪音叠加从而实现感官上的噪音降低,受益人是自己。 主动降噪根据拾音麦克风位置的不同,分为前馈式主动降噪与反馈式主动降噪。 (ANC降噪原理示意图) ENC降噪 ENC(Environmental Noise Cancellation,环境降噪技术),能有效抑制90%的反向环境噪声,由此降低环境噪声最高可达35dB以上,让游戏玩家可以更加自由的语音沟通。通过双麦克风阵列,精准计算通话者说话的方位,在保护主方向目标语音的同时,去除环境中的各种干扰噪声。

ENC降噪原理 DSP降噪 DSP是英文(digital signal processing)的简写。主要是针对高、低频噪声。工作原理是麦克风收集外部环境噪音,然后系统复制一个与外界环境噪音相等的反向声波,将噪音抵消,从而达到更好的降噪效果。DSP降噪的原理和ANC降噪相似。但DSP降噪正反向噪音直接在系统内部相互中和抵消。CVC降噪 CVC(Clear Voice Capture)是通话软件降噪技术。主要针对通话过程中产生的回声。通过全双工麦克风消噪软件,提供通话的回声和环境噪音消除功能,是目前蓝牙通话耳机中最先进的降噪技术。

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

语音信号分析与处理2011

数字信号处理实验二:语音信号分析与处理 学号 姓名 注:1)此次实验作为《数字信号处理》课程实验成绩的重要依据,请同学们认真、独立完成,不得抄袭。 2)请在授课教师规定的时间内完成; 3)完成作业后,请以word 格式保存,文件名为:学号+姓名 4)请通读全文,依据第2及第3 两部分内容,认真填写第4部分所需的实验数据,并给出程序内容。 1. 实验目的 (1) 学会MATLAB 的使用,掌握MATLAB 的程序设计方法 (2) 掌握在windows 环境下语音信号采集的方法 (3) 掌握MATLAB 设计FIR 和IIR 滤波器的方法及应用 (4) 学会用MATLAB 对语音信号的分析与处理方法 2. 实验内容 录制一段自己的语音信号,对录制的语音信号进行采样,画出采样后语音信号的时域波形和频谱图,确定语音信号的频带范围;使用MATLAB 产生白噪声信号模拟语音信号在处理过程中的加性噪声并与语音信号进行叠加,画出受污染语音信号的时域波形和频谱图;采用双线性法设计出IIR 滤波器和窗函数法设计出FIR 滤波器,画出滤波器的频响特性图;用自己设计的这两种滤波器分别对受污染的语音信号进行滤波,画出滤波后语音信号的时域波形和频谱图;对滤波前后的语音信号进行时域波形和频谱图的对比,分析信号的变化;回放语音信号,感觉与原始语音的不同。 3. 实验步骤 1)语音信号的采集与回放 利用windows 下的录音机或其他软件录制一段自己的语音(规定:语音内容为自己的名字,以wav 格式保存,如wql.wav ),时间控制在2秒之内,利用MATLAB 提供的函数wavread 对语音信号进行采样,提供sound 函数对语音信号进行回放。 [y,fs,nbits]=wavread(file), 采样值放在向量y 中,fs 表示采样频率nbits 表示采样位数。Wavread 的更多用法请使用help 命令自行查询。 2)语音信号的频谱分析 利用fft 函数对信号进行频谱分析 3)受白噪声干扰的语音信号的产生与频谱分析 ①白噪声的产生: N1=sqrt (方差值)×randn(语音数据长度,2)(其中2表示2列,是由于双声道的原因) 然后根据语音信号的频谱范围让白噪声信号通过一个带通滤波器得到一个带限的白噪声信号 N2; 带通滤波器的冲激响应为: h B (n )= ))((sin ))((sin 1122απ ωπωαπωπω---n c n c c c c c

语音信号特征的提取

语音信号特征的提取 摘要 随着计算机技术的发展,语音交互已经成为人机交互的必要手段,语音特征参数的精确度直接影响着语音合成的音质和语音识别的准确率。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 本文采用Matlab软件提取语音信号特征参数,首先对语音信号进行数字化处理,其次,进行预处理,包括预加重、加窗和分帧,本文讨论了预处理中各种参数的选择,以使信号特征提取更加准确。第三,讨论了各种时域特征参数的算法,包括短时能量、短时过零率等。 关键词:语音信号, 特征参数, 提取, Matlab 目录 第一章绪论 1.1语音信号特征提取概况 1.1.1研究意义 语音处理技术广泛应用于语音通信系统、声控电话交换、数据查询、计算机控制、工业控制等领域,带有语音功能的计算机也将很快成为大众化产品,语音将可能取代键盘和鼠标成为计算机的主要输入手段,为用户界面带来一次飞跃。 语音信号特征的提取是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信和准确的语音识别,才能建立语音合成的语音库。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 1.1.2 发展现状 语音信号处理是一门综合性的学科,包括计算机科学、语音学、语言学、声学和数学等诸多领域的内容。它的发展过程中,有过两次飞跃。第一次飞跃是1907年电子管的发明和1920年无线电广播的出现,电子管放大器使很微弱的声

音也可以放大和定量测量,从而使电声学和语言声学的一些研究成果扩展到通信和广播部门;第二次飞跃是在20世纪70年代初,电子计算机和数字信号处理的发展使声音信号特别是语音信号,可以通过模数转换器(A/D)采样和量化转换为数字信号,这样就可以用数字计算方法对语音信号进行处理和加工,提高了语音信号处理的准确性和高效性。 语音信号处理在现代信息科学中的地位举足轻重,但它仍有些基础的理论问题和技术问题有待解决,这些难题如听觉器官的物理模型和数学表示及语音增强的技术理论等,目前还有待发展。 1.2 本课题研究内容 本文主要介绍语音信号处理的理论及Matlab的相关内容,然后从Matlab仿真角度验证了录音、预处理、提取语音信号时域特征参数,主要讨论了预处理中各种参数的选择,以使信号特征提取更加准确。再次讨论了各种时域特征参数的算法,包括短时能量、短时过零率等,介绍了各环节的不同软件实现方法。最后对基于Matlab的语音信号特征参数提取进行总结。 第二章Matlab简介 MATLAB是国际上仿真领域最权威、最实用的计算机工具。它是MathWork 公司于1984年推出,它以强大的科学计算与可视化功能、简单易用、开放式可扩展环境,特别是所附带的30多种面向不同领域的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。 2.1 发展概况 Matlab是Matrix Laboratory(矩阵实验室的缩写),最初由美国Cleve Moler 博士在70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack与Eispack组成,旨在使应用人员免去大量经常重复的矩阵运算和基本数学运算等繁琐的编程工作。1984年成立的Math Works公司正式把Matlab推向市场,并从事Matlab的研究和开发。1990年,该公司推出了以框图为基础的控制系统仿真工具Simulink,它方便了系统的研究与开发,使控制工程师可以直接构造系统框图进行仿真,并提供了控制系统中常用的各种环节的模块库。1993年,Math Works 公司推出的Matlab4.0版在原来的基础上又作了较大改进,并推出了Windows版,

语音信号处理试验教程

语音信号处理试验 实验一:语音信号时域分析 实验目的: (1)录制两段语音信号,内容是“语音信号处理”,分男女声。 (2)对语音信号进行采样,观察采样后语音信号的时域波形。 实验步骤: 1、使用window自带录音工具录制声音片段 使用windows自带录音机录制语音文件,进行数字信号的采集。启动录音机。录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。将录制好文件保存,记录保存路径。男生女生各录一段保存为test1.wav和test2.wav。 图1基于PC机语音信号采集过程。 2、读取语音信号 在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。通过使用wavread函数,理解采样、采样频率、采样位数等概念! Wavread函数调用格式: y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。

[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。 y=wavread(file,N),读取前N点的采样值放在向量y中。 y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。 3、编程获取语音信号的抽样频率和采样位数。 语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。在M文件中分别输入以下程序,可以分两次输入便于观察。 [y1,fs1,nbits1]=wavread('test1.wav') [y2,fs2,nbits2]=wavread('test2.wav') 结果如下图所示 根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。 4、语音信号的时域分析 语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。语音信

数字信号处理 语音信号分析与处理及其MATLAB实现..

摘要 (2) 1 设计目的与要求 (3) 2 设计步骤 (4) 3 设计原理及内容 (5) 3.1 理论依据 (5) 3.2 信号采集 (6) 3.3 构造受干扰信号并对其FFT频谱分析 (8) 3.4 数字滤波器设计 (9) 3.5 信号处理 (10) 总结 (12) 致谢 (13) 参考文献 (14)

用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。 数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR滤波器的低的多。信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。 关键词:MATLAB;语音信号;加入噪声;滤波器;滤波

1. 设计目的与要求 (1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号 (2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。

2. 设计步骤 (1)选择一个语音信号或者自己录制一段语音文件作为分析对象; (2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图; (3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析; (4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化; (5)对语音信号进行回放,感觉声音变化。

10实验十:随机信号分析应用在语音信号分析中

实验十:随机信号分析应用在语音信号分析中 ——音频信号时域特征和频域特征分析【实验目的】 ⑴ 了解随机信号分析的应用领域。 ⑵ 了解如何利用随机信号分析相关知识点对语音信号进行分析。【实验原理】 我们在这里主要研究语音信号检索的部分内容。在语音信号研究中,一般对音频信号需要进行三方面的研究: 1)音频信号的产生,这方面的研究集中在为音频信号建立产生模型,通过产生模型提取音频特征。 2)音频的传播,音频信号如何通过另外介质传播到人的耳朵里。 3)音频的接收,音频信号如何被人所感知。 在这里,我们只涉及到音频信号的产生,而其它方面不涉及。 音频是一种重要媒体。人耳能够听到的音频频率范围是60Hz- 20KHz,其中语音大约分布在300Hz-4KHz之内。人耳听到的音频是连续模拟信号,而计算机只能处理数字化信息。所以要将连续音频信号数字化后才能在计算机上进行处理。音频信号数字化时的采样频率必须高于信号带宽的2倍才能正确恢复信号。 在音频处理中,一般假定音频信号特性在很短时间区间内变化是很缓慢的,所以在这个变化区间内所提取的音频特征保持稳定。这样,对音频信号处理的一个基本概念就是将离散的音频信号分成一定长度单位进行处理,将离散的音频采样点分成一个个音频帧,也就是音频信 号“短时”处理方法。一般一个“短时”音频帧持续时间长度约为几个到几十个微妙。可以从音频信号中提取三类基本特征:时域特征、频域特征和时频特征。 1 时域特征提取 连续音频信号x经过采样后,得到k个采样点x(n)(1≤n≤k)。在音

频时域提取中,认为每个采样点x(n)(1≤n≤k)包含了这一时刻音频信号的所有信息,所以可以直接从x(n)(1≤n≤k)提取信息。可以提取的信息有:短时平均能量、过零率、线性预测系数。 对于采样得到的x(n)(1≤n≤k)音频信号,考虑到信号在段时间内的连贯性,首先把音频信号的K个采样点分割成前后迭代的音频帧,相邻帧之间的迭加率一般为30%-50%,音频处理中的“短时帧”均是这样得到的。 ① 短时平均能量 短时平均能量指在一个短时音频帧内采样点所聚集的能量。它能够方便的表示整个时间段内幅度的变化。其定义如下: 短时平均能量特征可以直接应用到有声/静音检测中,短时平均能量某一短时帧平均能量低于一个事先设定的阀值,则短时帧为静音,否则为非静音。如果静音的短时祯数超过了一定比例,则将这个例子判为静音音频例子。 2 过零率 过零率指在一个短时帧内,离散采样信号值由正到负和由负到正变化的次数。它可以有效的刻画不同的音频信号。其定义如下: 其中, 对于语音信号,辅音信号过零率低,而元音信号的过零率高。语音信号开始和结束都大量集中了辅音信号,所以在语言信号中,开始和结束部分得过零率会有明显身高,所以利用过零率可以判断语音是否开始和结束。 3 频率中心(FC):它是量度声音亮度的指标。即: ,其中是f t(n)的Fourier变换,,STE是短时平均能量。一般的,一段音乐的频率中心变化比较单一,语音的频率中心会出现连续的变化。 4 带宽(BW):它是衡量频率范围的指标。其定义为:

处理主动降噪耳机设计

处理主动降噪耳机设计的两大挑战 耳机主动降噪(Active Noise Cancellation) 的基本概念并不复杂,但如何实现高品质的降噪效果却并不简单,特别是滤波电路的设计及生产过程控制更加关键。本文针对ANC耳机设计者所遇到的困难,针对性地讨论如何采用创新技术进行滤波器及量产时调节,设计及生产高性能的降噪耳机。 两种结构的ANC系统的选择 主动降噪,是指采集环境噪音,并产生与噪音反相的信号用耳机等装置回放,用以抵消噪音的技术。通常,主动降噪技术与被动降噪技术(采用吸音或隔音材料来降低进入耳朵声音的强度)相结合,以产生最佳的降噪效果。 典型的降噪系统由下列部份组成: ● 用以采集噪音的麦克风系统; ● 电子控制部份,用以处理声音信号,并生成降噪信号; ● 喇叭系统,用以产生降噪声音信号。 大部分ANC系统采用两种主要结构中的一种:前馈式或反馈式。在前馈式系统(如图1)中,采样麦克风位于耳机外部,用以采集进入耳机的噪音,喇叭用以播放反相信号,用以抵消噪音。前馈系统通常用于入耳式耳机设计。在反馈式系统(如图2)中,麦克风位于耳机内部,采集所谓“误差信号”,这就是说,麦克风采集了正常播放的音乐信号与残留噪音混合的信号,把正常播放的音乐信号减去后,就得到残留的噪音。通过恰当的反馈电路,可以使误差信号与正常音乐的差别尽可能的小,也就是说,降低了噪音。 在前馈系统中,由喇叭产生的用以抵消噪音的声音称之为反相声音(anti-phase sound),因为要实现两个声音最好的抵消效果,必须幅度相同,相位相差180度(反相)。

如图3所示,从麦克风到位置A,组成了降噪回路。这个降噪回路的传递函数必须被精确测量,因为在电声系统中,各种衰减及延时必须被考虑到。换句话说,噪音从被麦克风捕获并通过信号处理到喇叭回放再传到耳道必须与噪音从耳机外部穿过耳机再传入耳道保持一致。另外,因为耳机吸音材料所造成的被动降噪作用,麦克风在耳机外部捕获的噪音与真正穿过耳机传入耳道的的噪音并不完全一致。在此,电子处理电路G(W)必须这些在整个降噪回路中的衰减及延时进行补偿。 反馈式工作原理有些不一样。反馈式处理旨在衰减在A点(图4)的残留噪音。反馈式设计必须要非常小心,在相应的频率范围内,必须进行负反馈设计从而降低残留噪音。同时,必须小心过滤其余频率范围信号,特别是高频部份。这是因为由于延时引起的相们改变将会随着频率的升高而增大,一旦相位差大于60度,负反馈将会变成正反馈。这将引入严重的声学问题—高频噪音甚至是高频震荡引起啸叫。与前馈系统相同的是,精确的声学测量是非常重要的。测量结果将被计算并用于补偿降噪回路中的各种衰减与延时。 前馈式耳机设计 前面讨论了ANC系统在理想情况下如何工作。对设计人员来说,真正的目标是在现在世界里如何获得尽可能好的性能。以下为一个实际的例子,用以描述如何进行设计ANC耳机。

语音信号的时域特征分析

中北大学 课程设计说明书 学生姓名:蒋宝哲学号: 24 学生姓名:瓮泽勇学号: 42 学生姓名:侯战祎学号: 47 学院:信息商务学院 专业:电子信息工程 题目:信息处理实践:语音信号的时域特征分析指导教师:徐美芳职称: 讲师 2013 年 6 月 28 日

中北大学 课程设计任务书 2012-2013 学年第二学期 学院:信息商务学院 专业:电子信息工程 学生姓名:蒋宝哲学号: 24 学生姓名:瓮泽勇学号: 42 学生姓名:侯战祎学号: 47 课程设计题目:信息处理实践:语音信号的时域特征分析起迄日期: 2013年6 月7日~2013年6月 28 日 课程设计地点:学院楼201实验室、510实验室、608实验室指导教师:徐美芳 系主任:王浩全 下达任务书日期: 2013 年 6 月 7 日

语音信号的采集与分析 摘要 语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。 关键词:语音信号,采集与分析, Matlab 0 引言 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。 让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。 语音信号采集与分析之所以能够那样长期地、深深地吸引广大科学工作者去不断地对其进行研究和探讨,除了它的实用性之外,另一个重要原因是,它始终与当时信息科学中最活跃的前沿学科保持密切的联系.并且一起发展。语音信号采集与分析是以语音语言学和数字

《语音信号处理》实验3-LPC特征提取

华南理工大学《语音信号处理》实验报告 实验名称:LPC特征提取 姓名: 学号: 班级:10级电信5班 日期:2013年5 月24日

1. 实验目的 1、熟练运用MATLAB 软件进行语音信号实验; 2、熟悉短时分析原理、LPC 的原理; 3、学习运用MATLAB 编程进行LPC 的提取; 4、学会利用短时分析原理提取LPC 特征序列。 2. 实验原理 1、LPC 分析基本原理 LPC 分析为线性时不变因果稳定系统V (z )建立一个全极点模型,并利用均方误差准则,对已知的语音信号s(n)进行模型参数估计。 如果利用P 个取样值来进行预测,则称为P 阶线性预测。假P 个 取样值()()(){ } 1,2,S n S n S n p --- 的加权之和来预测信号当前取样值()S n ,则预测 信号()S n ∧ 为: ()() 1 p k k S n a n k ∧==-∑ (1) 其中加权系数用k a 表示,称为预测系数,则预测误差为: ()()()()() 1 p k k e n s n S n s n a n k ∧ ==-=--∑ (2) 要使预测最佳,则要使短时平均预测误差最小有: ()2 min E e n ε??==?? (3) ()20,(1) k e n k p a ????? =≤≤? (4) 令 ()()(),,i k E s n i S n k φ=--???? (5) 最小的ε可表示成: ()() min 10,00,p k k a k εφφ==-∑ (6) 显然,误差越接近于零,线性预测的准确度在均方误差最小的意义上为最佳,由此可以计算出预测系数。 通过LPC 分析,由若干帧语音可以得到若干组LPC 参数,每组参数形成一个

主动降噪技术概述

主动降噪技术概述 目前,在降噪耳机领域,比较流行的有被动式噪音控制(Passive Noise Control, PNC)和主动式噪音控制(Active Noise Control, ANC)两种。 被动式噪音控制,也称物理噪音控制,即物理降噪。物理降噪耳机指的是物理隔离,通过好的外形设计或者入耳式紧贴耳道,创造一个密闭的空间将外界的声音阻挡在耳朵外面,以此来达到消减噪音的效果。 物理降噪原理:利用外部硬质材质和内部的填充材质以堵塞声音进入人耳,能起到一定的隔离与吸收噪音的作用。 这种物理降噪的方式,简单常见,易于实现。只是物理降噪针对高频段噪音的屏蔽效果明显,对于中低频噪音则显得有点束手无策。在800Hz或更低频率的噪音范围,物理降噪则发挥不了好的作用。另一方面,物理降噪耳机在隔离外界环境噪音的同时,把人声部分的声音同时阻隔掉,使用被动式的耳塞来降噪存在一定的危险性。 主动式噪音控制,也称主动降噪,这种降噪方式是相对于被动式降噪而言的。主动降噪耳机运用了高灵敏度的声学麦克风采集周围的噪音,然后通过内置的处理器实时运算出一个与噪音完全相反的声波来抵消噪音,从而达到抵消噪音的效果。 主动降噪基础原理:所有声音都由一定的频谱组成,主动降噪技术的基本原理是对已经存在的噪声进行主动对抗和消除,与传统被动防御降噪不同,主动降噪技术通过技术手段,生成一组与所要消除的噪声相位相等的反相声波,将噪音中和,达到降噪的目的。 主动降噪耳机分类: 1.前馈式主动降噪:将麦克风暴露在噪声中,与喇叭隔离 2.反馈式主动降噪:将麦克风放置在尽可能接近喇叭的地方 3.前馈与反馈结合式:同时有两个麦克风,一个与喇叭隔离,另一个与喇叭接近 主动降噪耳机原理主要分为三步: 1.运用高灵敏麦克风为传感器,对外界环境噪音(主要为高频噪音)进行采集及分析; 2.实时运算采集到的噪音声波的波频,生成反向的声波,呈180度的两种声波结合之后,互相抵消; 3.声音进入人耳时,由于噪音和反向声波的相互抵消,达到消除噪音效果。

语音信号特征参数研究

语音信号特征参数研究 石海燕 (浙江工业大学信息工程学院,浙江杭州310032) 摘要:在语音技术的发展过程中使用了大量的语音信号特征参数,好的语音信号特征参数能对语音识别起至关重要的作用。本文对语音信号特征参数、语音信号特征参数的选择进行了介绍,并介绍了语音信号的短时能量、短时平均幅度的提取。 关键词:语音信号;特征参数;短时能量 中图分类号:TP391文献标识码:A文章编号:1009-3044(2008)04-10754-04 StudyonSpeechSignalFeatureParameter SHIHai-yan (CollegeofInformationEngineering,ZhejiangUniversityofTechnology,Hangzhou310032,China) Abstract:Intheprocessofdevelopingspeechtechnologyusedinalargenumberofspeechsignalfeatureparameters,agoodspeechsignalfeatureparametersplayedacriticalroleinspeechrecognition.Inthispaperweintroducedthespeechsignalfeatureparameters,thespeechsignalfeatureparametersselection,andintroducedshort-termenergy、short-termaveragerangeextraction. Keywords:speechsignal;featureparameter;short-termenergy 1引言 在语音识别的发展过程中使用了大量的语音信号特征参数。特征参数的提取是关系到语音识别系统性能好坏的一个关键技术,其基本思想是将预处理过的信号通过一次变换,去掉冗余部分,而把代表语音本质的特征参数抽出来。接下去所要作的识别处理都是建立在特征参数之上的,如果特征参数不能很好地反映语音信号的本质,识别就不能成功。 语音信号特征参数是分帧提取的,每帧特征参数一般构成一个矢量,所以语音信号特征是一个矢量序列。我们将语音信号切成一帧一帧,每帧大小大约是20 ̄30ms。帧太大就不能得到语音信号随时间变化的特性,帧太小就不能提取出语音信号的特征,每帧语音信号中包含数个语音信号的基本周期。有时希望相邻帧之间的变化不是太大,帧之间就要有重叠,帧叠往往是帧长的1/2或1/3。帧叠大,相应的计算量也大。 常用的语音特征参数有平均能量、平价跨零数或跨零率、共振峰、LPC参数、倒谱参数、临界带倒谱等。下一节介绍一些常用的语音特征。 2语音信号特征参数介绍 (1)基音周期(Pitch) 人的语音基本上由两类构成,一类是浊音(voice),另一类是清音(unvoice)。浊音的语音信号具有较强的周期性,不同的浊音波形是不同的。浊音的这种周期叫基音周期,其倒数叫做基音频率,它主要和声带的特性有关。一般来说,成年男性的语音的基音频率在60Hz ̄200Hz,而成年女性和儿童语音的基音频率在200Hz ̄450Hz。清音的语音信号具有随机噪声的特点,一般来说清音的幅度小于浊音的幅度。基音周期(Pitch)是指发浊音时声带震动所引起的周期运动时间间隔,代表声带震动的快慢,震动越快音高会越高,基音周期是声带振动频率F0的倒数,它是语音信号分析的一个重要参数。 (2)短时频谱 语音信号特征在较短的时间间隔中保持基本不变,即语音信号具有时变特性,因而可以将语音信号看作是一个短时平稳过程。语音信号具有一些重要的短时特征。短时频谱是语音信号的一个重要的短时特性。可以用下列公式计算: (1) 收稿日期:2008-01-12 个人简介:石海燕(1977-),女,浙江诸暨人,实验师,主要研究方向:语音处理、模式识别。

相关文档
最新文档