山东青岛中考《数学》试题-中考.doc

合集下载

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a <10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD =90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b 的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a ﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a ﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图⑦这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,∠ACB =90°,AB =10cm ,BC =8cm ,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.过点P 作PE ⊥AB ,交BC 于点E ,过点Q 作QF ∥AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为t (s )(0<t <5),解答下列问题:(1)当t 为何值时,点E 在∠BAC 的平分线上?(2)设四边形PEGO 的面积为S (cm 2),求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE =EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE ﹣S △OEC )构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

2020年山东省青岛市中考数学试卷(含解析)

2020年山东省青岛市中考数学试卷(含解析)

2020年山东省青岛市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共24分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.2.下列四个图形中,中心对称图形是()A.B.C.D.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣94.如图所示的几何体,其俯视图是()A.B.C.D.5.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO 的长为()A.B.C.2D.48.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A. B.C.D.二、填空题(每小题3分,共18分)9.计算:(﹣)×=.10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).甲乙应聘者项目学历9 8经验7 6工作态度 5 711.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC =120°,AB+AC=16,的长为π,则图中阴影部分的面积为.三、解答题(共78分)15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C 位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在?ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE =BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取 a (1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,2 1,3 2,32个整数之和 3 4 5如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,2 1,3 1,4 2,3 2,4 3,42个整数之和 3 4 5 5 6 7如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF =90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.2.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.3.【解答】解:将0.000000022用科学记数法表示为 2.2×10﹣8.故选:B.4.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.5.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.6.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.7.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.8.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y=x﹣b的图象经过二三四象限.故选:B.二、填空题9.【解答】解:原式=(2﹣)×=×=4,故答案为:4.10.【解答】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.11.【解答】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.12.【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.13.【解答】解:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴=,∴AE===2,∴=,∴AH=,即点A到DF的距离为,故答案为:.14.【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.三、解答题15.【解答】解:如图所示:⊙O即为所求.16.【解答】解:(1)原式=(+)÷(﹣)=÷=?=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.17.【解答】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.18.【解答】解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE?tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×≈4.3(海里).答:观测塔A与渔船C之间的距离约为 4.3海里.19.【解答】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.20.【解答】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.22.【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN?GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.23.【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5=9,这2个整数之和共有9﹣3+1=7种不同情况;故答案为:7;(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为n+n﹣1=2n﹣1,这2个整数之和共有2n﹣1﹣3+1=2n﹣3种不同情况;故答案为:2n﹣3;探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为2+3+4=9,这3个整数之和共有9﹣6+1=4种不同情况;故答案为:4;(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为n+(n﹣1)+(n﹣2)=3n﹣3,这3个整数之和共有3n﹣3﹣6+1=3n﹣8种不同结果,故答案为:3n﹣8;探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和的最小值为1+2+3+4=10,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)=4n﹣6,因此这4个整数之和共有4n﹣6﹣10+1=4n﹣15种不同结果,归纳总结:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取a个整数,这a个整数之和的最小值为1+2+…+a=,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)+…+(n﹣a+1)=na﹣,因此这a个整数之和共有na﹣﹣+1=a(n﹣a)+1种不同结果,故答案为:a(n﹣a)+1;问题解决:将n=100,a=5,代入a(n﹣a)+1得;5×(100﹣5)+1=476,故答案为:476;拓展延伸:(1)设从1,2,3,…,36这36个整数中任取a个整数,使得取出的这些整数之和共有204种不同的结果,由上述结论得,a(36﹣a)+1=204,解得,a=7或a=29;答:从1,2,3,…,36这36个整数中任取7个整数或取29个整数,能使取出的这些整数之和共有204种不同的结果;(2)根据上述规律,从(n+1)个连续整数中任取a个整数,这a个整数之和共有a(n+1﹣a)+1,故答案为:a(n+1﹣a)+1.24.【解答】解:(1)∵AB∥CD,∴,∴,∴CM=,∵点M在线段CQ的垂直平分线上,∴CM=MQ,∴1×t=,∴t=;(2)如图1,过点Q作QN⊥AF于点N,∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,∴AC===10cm,EF===10cm,∵CE=2cm,CM=cm,∴EM===,∵sin∠PAH=sin∠CAB,∴,∴,∴PH=t,同理可求QN=6﹣t,∵四边形PQNH是矩形,∴PH=NQ,∴6﹣t=t,∴t=3;∴当t=3时,四边形PQNH为矩形;(3)如图2,过点Q作QN⊥AF于点N,由(2)可知QN=6﹣t,∵cos∠PAH=cos∠CAB,∴,∴,∴AH=t,∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,∴S=×6×(8﹣t+6+8﹣t+)﹣××[6﹣(6﹣t)]﹣×(6﹣t)(8﹣t+6)=﹣t2+t+;(4)存在,理由如下:如图3,连接PF,延长AC交EF于K,∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,∴△ABC≌△EBF(SSS),∴∠E=∠CAB,又∵∠ACB=∠ECK,∴∠ABC=∠EKC=90°,∵S△CEM=×EC×CM=×EM×CK,∴CK==,∵PF平分∠AFE,PH⊥AF,PK⊥EF,∴PH=PK,∴t=10﹣2t+,∴t=,∴当t=时,使点P在∠AFE的平分线上。

山东省青岛市2021年中考数学试题和答案解析详解完整版

山东省青岛市2021年中考数学试题和答案解析详解完整版
【答案】
三、作图题(本大题满分4分)
15.已知: 及其一边上的两点 , .
求作: ,使 ,且点 在 内部, .
【答案】见解析
四、解答题(本大题共9小题,共74分)
16.(1)计算: ;
(2)解不等式组: ,并写出它的整数解.
【答案】(1) ;(2) ,整数解 -1,0,1
17.为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘.请用列表或画树状图的方法说明这个游戏是否公平.
21.如图,在 中, 为 边的中点,连接 并延长,交 的延长线于点 ,延长 至点 ,使 ,分别连接 , , .
(1)求证: ;
(2)当 平分 时,四边形 是什么特殊四边形?请说明理由.
【答案】(1)见解析;(2)矩形,见解析
22.科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度 (米)与小钢球运动时间 (秒)之间的函数关系如图所示;小钢球离地面高度 (米)与它的运动时间 (秒)之间的函数关系如图中抛物线所示.
【答案】>
13.如图,正方形 内接于 , , 分别与 相切于点 和点 , 的延长线与 的延长线交于点 .已知 ,则图中阴影部分的面积为___________.

山东省青岛市2020年中考数学试题(解析版)

山东省青岛市2020年中考数学试题(解析版)

山东省青岛市2020年中考数学试题(解析版)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.【分析】(1)当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

2022山东青岛中考数学试卷+答案解析

2022山东青岛中考数学试卷+答案解析

2022年山东青岛中考数学一、选择题(本大题共8小题,每小题3分,共24分),它与π的误差小于0.000 1.我国古代数学家祖冲之推算出π的近似值为355113000 3。

将0.000 000 3用科学记数法可以表示为()A.3×10-7B.0.3×10-6C.3×10-6D.3×1072.北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4 506件,其中很多设计方案体现了对称之美。

以下4幅设计方案中,既是轴对称图形又是中心对称图形的是()A B C D的结果是() 3.计算(√27-√12)×√13A.√3B.1C.√5D.334.如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”。

图②“堑堵”的俯视图是()图①图②A B C D5.如图,正六边形ABCDEF内接于☉O,点M在AB上,则∠CME的度数为()A.30°B.36°C.45°D.60°6.如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是()A.(2,0)B.(-2,-3)C.(-1,-3)D.(-3,-1)7.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形。

若AB=2,则OE的长度为()B.√6C.2√2D.2√3A.√628.已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0二、填空题(本大题共6小题,每小题3分,共18分)的绝对值是.9.-1210.小明参加“建团百年·我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项得分分别是9分、8分、8分,若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为分。

山东省青岛市2020年中考数学试题(含答案与解析)

山东省青岛市2020年中考数学试题(含答案与解析)

山东省青岛市 2020 年中考试题数学考试时间: 120 分钟;满分: 120 分)说明:1.本试题分第 I 卷和第 II 卷两部分,共 24 题,第 I 卷为选择题,共 8 小题,24 分;第 II 卷为填空题、作图题、解答题,共 16小题, 96 分.2.所有题目均在答题卡上作答,在试题上作答无效第 I 卷(共 24 分)、选择题(本大题共 8 小题,每小题 3分,共 24 分)1.-4 的绝对值是(3.2020 年 6 月 23 日,中国第 55 颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的 22 纳米工艺射频基带一体化导航定位芯片,已实现规模化应用,=0.000000022 米,将 0.000000022 用科学记数法表示为(4. 如图所示的几何体,其俯视图是(5.如图,将 ABC 先向上平移 1 个单位, 再绕点 P 按逆时针方向旋转 90 ,得到 则点 A 的对应点 A '的坐标是( )1 B.42. 下列四个图形中,中心对称图形是(A. 4C. - 41 D.4A.B. C. D.22 纳米A. 22×10 8B.2.2 ×10-8C.0.22 ×10-7 D. 22×10-9BC',A.B. C.D.2,-2) C.3,-26.如图,BD是O的直径,点A,C在O 上,AB AD,) D. (-1 ,4)AC 交BD 于点G .若COD 126 .则AGB 的度数为(A. 99B. 108C.1107.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF ,D. 117EF 与AC 交于点O.若A. 5B. 325 C. 2 58. 已知在同一直角坐标系中二次函数ax2 bx 和反比例函数D. 4 5cy 的图象如图所示,则xc一次函数y x b 的图象可能是(二、填空题(本大题共 6 小题,每小题3分,共18 分)9. 计算12 43 的结果是___.10. 某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 _________ 将被录用(填甲或乙)应聘者项目甲乙学历98经验76工作态度57的面积为6.若点P a,7 也在此函数的图象上,则 a _____________k11. 如图,点A 是反比例函数y (x 0)图象上x一点,AB 垂直于x轴,垂足为B .OAB212.抛物线y 2x 22 k 1 x k ( k 为常数)与 x 轴交点的个数是 ______________ . 13. 如图,在正方形 ABCD 中,对角线 AC 与BD 交于点 O ,点 E 在CD 的延长线上,连接 AE ,点 F 是 AE 的中点, 连接 OF 交 AD 于点 G .若 DE 2 ,OF 3 ,则点 A 到 DF 的距离为 _________ .14. 如图,在 ABC 中,O 为 BC 边上的一点,以 O 为圆心的半圆分别与 AB ,AC 相切于点 M , N .已知 BAC 120 , AB AC 16 , MN 的长为请用直尺、圆规作图,不写作法,但要保留作图痕迹15. 已知: ABC ..求作: O ,使它经过点 B 和点 C ,并且圆心 O 在 A 的平分线上,四、解答题(本大题共 9小题,共 74 分)17. 小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游A , B 是两个可以自由转动的转盘,每个转盘都被分成面积相等个扇形、同时转动两个转盘,如果其中一个转盘转出了红色, 另一个转盘转出了蓝色, 那么 可以配成紫色. 若配成紫色,则小颖去观看, 否则小亮去观看.这个游戏对双方公平吗?请,则图中阴影部分的16. (1)计算 : 1 1ababba2x 3 52)解不等式组 : 1x 2 x318. 如图,在东西方向的海岸上有两个相距 6 海里的码头 B ,D.某海岛上的观测塔A距离海岸 5 海里,在A处测得 B 位于南偏西22 方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C 位于南偏东67 方向,求此时观测塔精确到0.1 海里).19. 某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如下的频数直方图和扇形统计图.3152125cos22 ≈ ,tan22 ≈ ,sin67,cos6781651313参考数据: sin 22oA与渔船C 之间的距离(结果tan6712说明理由.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“ 70~80”这组的百分比m ______________ ;(3)已知“ 80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n 名学生测试成绩的中位数是_________ 分;(4)若成绩达到80 分以上(含80 分)为优秀,请你估计全校1200 名学生对海洋科普知识了解情况为优秀的学生人数.20. 为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注3水,游泳池的蓄水量y m3与注水时间t h 之间满足一次函数关系,其图象如图所示.3y m3与注水时间t h 之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;2)现将游泳池水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游44倍.求单独打开甲进水口注满3游泳池需多少小时?O,点E,F 分别在BD和DB的延1)根据图象求游泳池的蓄水量泳池所用时间是单独打开乙进水口注满游泳池所用时间的21.如图,在ABC中,对角线AC 与BD相交于点长线上,且DE BF ,连接AE ,C2)连接AF ,CE,当B四边形AFCE 是什么特殊四边形?请说明理1)求证:ADE ≌3)根据市场调查,以单价650 元销售(2)中B 型活动板房,每月能售出100个,而单价每降低10 元,每月能多售出20 个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售 B 型活动板房所获利润w 最大?最大利润是多少?23. 实际问题:某商场为鼓励消费,设计了投资活动.100张面值分别为1元、 2 元、3元、张、3张、4 张、⋯等若干张奖券,奖券的面值金额之和即为优抽取 5 张奖券的机会,小明想知道该顾客共有多少种不同的优惠金问题建模:从1,2,3,⋯,n(n为整数,且n 3)这n个整数中任整数之和共有多少种不同的结果?每次抽奖时可以从次任意抽由.22.某公司生产A型活动板房成本是每个425 元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD 4m,宽AB 3m ,抛物线的最高点E到BC的距离为4m .1)按如图①所示的直角坐标系,抛物线可以用y kx2m k 0 表示,求该抛物线的函数表达式;(2)现将A型活动板房改造为 B型活动板房.如图②,在抛物线与AD 之间区域内加装一扇长方形窗户FGMN ,点G ,M在AD上,点N ,F在抛物线上,窗户的成本为50 元/m2.已知GM 2m,求每个 B型活动板房的成本是多少?(每个 B 型活动板房的成本我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.=每个A 型活动板房的成本+一扇窗户FGMN 的成本)⋯、100 元的奖券中(额.某顾客获a 1 a整数,这a方案如下:根据不同的消费金探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的 2 个整数之和可以为3,4,5,也就是从 3 到 5 的连续整数,其中最小是3,最大是5,所以共有 3 种不同的结果.(2)从1,2,3,4这4个整数中任取 2 个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有 5 种不同的结果.(3)从1,2,3,4,5 这 5 个整数中任取 2 个整数,这 2 个整数之和共有 ____ 种不同的结果.(4)从1,2,3,⋯,n (n为整数,且n 3)这n个整数中任取2个整数,这2个整数之和共有_____ 种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有____ 种不同的结果.(2)从1,2,3,⋯,n (n为整数,且n 4)这n个整数中任取3个整数,这3个整数之和共有_____ 种不同的结果.探究三:从1,2,3,⋯,n(n为整数,且n 5)这n个整数中任取4个整数,这4个整数之和共有____ 种不同的结果.归纳结论:从1,2,3,⋯,n (n为整数,且n 3 )这n个整数中任取a 1 a n 个整数,这 a 个整数之和共有_______ 种不同的结果.问题解决:从100张面值分别为1元、2元、3元、⋯、100元的奖券中(面值为整数),一次任意抽取5 张奖券,共有____ 种不同的优惠金额.拓展延伸:(1)从1,2,3,⋯,36 这36 个整数中任取多少个整数,使得取出的这些整数之和共有204 种不同的结果?(写出解答过程)(2)从3,4,5,⋯,n 3(n为整数,且n 2)这n 1 个整数中任取a 1 a n 1 个整数,这 a 个整数之和共有_________________ 种不同的结果.24.已知:如图,在四边形ABCD和Rt△EBF 中,AB//CD ,CD AB,点C在EB上,ABC EBF 90 ,AB BE 8cm ,BC BF 6cm,延长DC 交EF 于点M ,点P从点A出发,沿AC方向匀速运动,速度为2cm s;同时,点Q从点M 出发,沿MF 方向匀速运动,速度为1cm s,过点 P作GH AB于点H ,交CD 于点G .设运动时间1)当t 为何值时,点M 在线段CQ 垂直平分线上?2)连接PQ ,作QN AF 于点N ,当四边形PQNH 为矩形时,求t的值;3)连接QC ,QH ,设四边形QCGH 的面积为S cm2,求S 与t 的函数关系式;4)点P在运动过程中,是否存在某一时刻t,使点 P在AFE 的平分线上?若存在,求出t的值;若不存在,请说明理由数学参考答案与解析根据绝对值的概念计算即可. (绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这 个数的绝对值 . )【详解】根据绝对值的概念可得 -4 的绝对值为 4.点睛】错因分析:容易题 . 选错的原因是对实数的相关概念没有掌握,与倒数、相反数的 概念混淆 .2. 下列四个图形中,中心对称图形是( )【解析】【分析】 根据中心对称图形的概念结合各图形的特点求解. 【详解】解: A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、 中心对称图形,符合题意.故选: D .一、选择题(本大题共8 小题,每小题3 分,共 24分)1.-4 的绝对值是( )A. 41 B. 4C. - 4【答案】 A【解析】【分析】D.D.A. B. 答案】 D点睛】 本题考查了中心对称图形与轴对称图形的概念. 心,图形旋转 180 度后与原图形重合.3.2020 年 6 月 23 日,中国第 55 颗北斗导航卫星成功发射,顺利完成全球组网.其中支持 北斗三号新信号的 22 纳米工艺射频基带一体化导航定位芯片,已实现规模化应用, 22 纳米=0.000000022 米,将 0.000000022 用科学记数法表示为( )8 -8 -7A. 22× 108B. 2.2 ×10-8C. 0.22 ×10 -7D.-922×10 -9【答案】 B 【解析】 【分析】科学记数法的形式是: a 10n,其中 1 a <10, n 为整数.所以 a 2.2, n 取决于原 数小数点的移动位数与移动方向, n 是小数点的移动位数,往左移动, n 为正整数,往右移 动, n 为负整数。

2021年山东省青岛市数学中考真题含答案解析


所以,当 n=6 时,m=1.
综上所述,可得:表①
n
3
4
5
6
m
1
0
1
1
【探究二】
(1)用 7 根相同的木棒搭一个三角形,能搭成多少种不同的三角形?
(仿照上述探究方法,写出解答过程,并将结果填在表②中)
(2)用 8 根、9 根、10 根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
(只需把结果填在表②中)
8.(3 分)(2015•青岛)如图,正比例函数 y1=k1x 的图象与反比例函数 y2= 的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当 y1>y2 时,x 的取值范围是( )
A.x<﹣2 或 x>2
B.x<﹣2 或 0<x<2
C.﹣2<x<0 或 0<x<﹣2
D.﹣2<x<0 或 x>2
左边起第一个不为零的数字前面的 0 的个数所决定.
3.(3 分)(2015•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
考点:中心对称图形。轴对称图形. 菁优网版权所有
5
23.(10 分)(2015•青岛)【问题提出】用 n 根相同的木棒搭一个三角形(木棒无剩余),能
搭成多少种不同的等腰三角形?
【问题探究】不妨假设能搭成 m 种不同的等腰三角形,为探究 m 与 n 之间的关系,我们可以
先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.
【探究一】
(1)用 3 根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
2021 年山东省青岛市中考数学试卷
一、选择题(本题满分 24 分,共有 8 小题,每小题 3 分)下列每小题都给出标号为 A,B,C,D

2021年山东青岛中考真题数学试卷

2021年山东青岛中考真题数学试卷-学生用卷一、选择题(本大题共8小题,每小题3分,共24分)1、【来源】 2021年山东青岛中考真题第1题3分剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是().A.B.C.D.2、【来源】 2021年山东青岛中考真题第2题3分下列各数为负分数的是().A. −1B. −1C. 0D. √323、【来源】 2021年山东青岛中考真题第3题3分如图所示的几何体,其左视图是().A.B.C.D.4、【来源】 2021年山东青岛中考真题第4题3分2021年3月5日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为().A. 5575×104B. 55.75×105C. 5.575×107D. 0.5575×1085、【来源】 2021年山东青岛中考真题第5题3分如图,将线段AB先绕原点O按逆时针方向旋转90°,再向下平移4个单位,得到线段A′B′,则点A的对应点A′的坐标是().A. (1,−6)B. (−1,6)C. (1,−2)D. (−1,−2)6、【来源】 2021年山东青岛中考真题第6题3分如图,AB是⊙O的直径,点E,C在⊙O上,点A是EC⌢的中点,过点A作⊙O的切线,交BC的延长线于点D,连接EC.若∠ADB=58.5°,则∠ACE的度数为().A. 29.5°B. 31.5°C. 58.5°D. 63°7、【来源】 2021年山东青岛中考真题第7题3分如图,在四边形纸片ABCD中,AD//BC,AB=10,∠B=60°.将纸片折叠,使点B落在AD 边上的点G处,折痕为EF.若∠BFE=45°,则BF的长为().A. 5B. 3√5C. 5√3D. √358、【来源】 2021年山东青岛中考真题第8题3分的图象如图所示,则一次函数y=cx+a和二次函数y=ax2+bx+c在同已知反比例函数y=bx一直角坐标系中的图象可能是().A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9、【来源】 2021年山东青岛中考真题第9题3分)×√2=.计算:(√8+√1210、【来源】 2021年山东青岛中考真题第10题3分在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同.摇匀后从中摸出一个球,记下颜色后再放回袋中.不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是.11、【来源】 2021年山东青岛中考真题第11题3分列车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示,若列车要在2.5h内到达,则速度至少需要提高到km/ h.12、【来源】 2021年山东青岛中考真题第12题3分已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为S 甲2、S 乙2,则S 甲2 S 乙2.(填“>”“=”或“<”)13、【来源】 2021年山东青岛中考真题第13题3分如图,正方形ABCD 内接于⊙O ,PA ,PD 分别与⊙O 相切于点A 和点D ,PD 的延长线与BC 的延长线交于点E .已知AB =2,则图中阴影部分的面积为 .14、【来源】 2021年山东青岛中考真题第14题3分已知正方形ABCD的边长为3,E为CD上一点,连接AE并延长,交BC的延长线于点F,过点D作DG⊥AF,交AF于点H,交BF于点G,N为EF的中点,M为BD上一动点,分别连接MC,MN.若S△DCGS△FCE =14,则MN+MC的最小值为.三、作图题(本大题共1小题,共4分)15、【来源】 2021年山东青岛中考真题第15题4分请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.四、解答题(本大题共9小题,共74分)16、【来源】 2021年山东青岛中考真题第16题8分(每题4分)解答下列各题:(1) 计算:(x+2x+1x )÷x2−1x.(2) 解不等式组:{1−2x⩽3①3x−24<1②,并写出它的整数解.17、【来源】 2021年山东青岛中考真题第17题6分为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘.请用列表或画树状图的方法说明这个游戏是否公平.18、【来源】 2021年山东青岛中考真题第18题6分某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度,如图所示,其中观景平台斜坡DE 的长是20米,坡角为37°,斜坡DE 底部D 与大楼底端C 的距离CD 为74米,与地面CD 垂直的路灯AE 的高度是3米,从楼顶B 测得路灯AE 顶端A 处的俯角是42.6°.试求大楼BC 的高度.(参考数据:sin⁡37°≈35,cos⁡37°≈45,tan⁡37°≈34,sin⁡42.6°≈1725,cos⁡42.6°≈3445,tan⁡42.6°≈910)19、【来源】 2021年山东青岛中考真题第19题6分在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n 名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图.其中“90⩽x⩽100”这组的数据如下:90,92,93,95,95,96,96,96,97,100.请根据以上信息,解答下列问题:(1) a=.(2) “90⩽x⩽100”这组数据的众数是分.(3) 随机抽取的这n名学生竞赛成绩的平均分是分.(4) 若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.20、【来源】 2021年山东青岛中考真题第20题8分某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的4.销售时,甲品牌洗衣液5的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1) 求两种品牌洗衣液的进价.(2) 若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?21、【来源】 2021年山东青岛中考真题第21题8分如图,在平行四边形ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1) 求证:△BCE=∽△FDE.(2) 当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.22、【来源】 2021年山东青岛中考真题第22题10分科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1) 直接写出y1与x之间的函数关系式.(2) 求出y2与x之间的函数关系式.(3) 小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?23、【来源】 2021年山东青岛中考真题第23题10分问题提出:最长边长为128的整数边三角形有多少个?(整数边三角形是指三边长度都是整数的三角形.)问题探究:为了探究规律,我们先从最简单的情形入手,从中找到解决问题的方法,最后得出一般性的结论.(1)如表①,最长边长为1的整数边三角形,显然,最短边长是1,第三边长也是1.按照(最长边长,最短边长,第三边长)的形式记为(1,1,1),有1个,所以总共有1×1=1个整数边三角形.表①(2)如表②,最长边长为2的整数边三角形,最短边长是1或2,根据三角形任意两边之和大于第三边,当最短边长为1时,第三边长只能是2,记为(2,1,2),有1个,当最短边长为2时,显然第三边长也是2,记为(2,2,2),有1个,所以总共有1+1=1×2=2个整数边三角形.表②(3)下面在表③中总结最长边长为3的整数边三角形个数情况:表③(4)下面在表④中总结最长边长为4的整数边三角形个数情况:表④(1) (5)请在表⑤中总结最长边长为5的整数边三角形个数情况并填空:表⑤问题解决:(2) 最长边长为6的整数边三角形有个.(3) 在整数边三角形中,设最长边长为n,总结上述探究过程,当n为奇数或n为偶数时,整数边三角形个数的规律一样吗?请写出最长边长为n的整数边三角形的个数.(4) 最长边长为128的整数边三角形有个.(5) 拓展延伸:在直三棱柱中,若所有棱长均为整数,则最长棱长为9的直三棱柱有个.24、【来源】 2021年山东青岛中考真题第24题12分已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE= 90°.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM//BE,交AD于点H,交DE于点M,过点Q作QN//BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列问题:(1) 当PQ⊥BD时,求t的值.(2) 设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式.(3) 当PQ=PM时,求t的值.(4) 若PM与AD相交于点W,分别连接QW和EW.在运动过程中,是否存在某一时刻t,使∠AWE=∠QWD若存在,求出t的值;若不存在,请说明理由.1 、【答案】 C;【解析】 A选项 : 不是轴对称图形,故A选项错误;B选项 : 不是轴对称图形,故B选项错误;C选项 : 是轴对称图形,故C选项正确;D选项 : 不是轴对称图形,故D选项错误.2 、【答案】 B;【解析】 A选项 : −1是负整数,不是负分数,故A错误;B选项 : −1是负分数,故B正确;2C选项 : 0是整数,不是负分数,故C错误;D选项 : √3是无理数,不是负分数,故D错误.3 、【答案】 A;【解析】由几何体可知,其左视图为.∴ B、 C、 D 选项错误,不符合题意.故答案为: A.4 、【答案】 C;【解析】55750000=5.575×107,∴A、B、D选项错误,不符合题意.故选C.5 、【答案】 D;【解析】将线段AB先绕原点O按逆时针方向旋转90°,可得线段A1B1,如图所示:此时A 1的坐标为(−1,2),再往下平移4个单位,可得A ′的坐标为(−1,−2),∴A ,B ,C 选项错误,不符合题意,故答案为:D .6 、【答案】 B;【解析】 ∵AD 为⊙O 的切线,∴∠BAD =90°,又∵∠D =58.5°,∴∠ABD =90°−58.5°=31.5°,又∵点A 是EC ⌢的中点,∴EA ⌢=CA ⌢,∴∠ACE =∠ABC =31.5°,∴A ,C ,D 选项错误,不符合题意,故答案为:B .7 、【答案】 C;【解析】 作AQ ⊥BC ,垂足为点Q ,∵AB=10,∠ABQ=60°,∴∠BAQ=180°−90°−60°=30°,AB=5,AQ=√3BQ=5√3,∴BQ=12∵∠BFE=45°,∴折叠后,∠EFG=45°,∴∠BFG=90°,又∵AD//BC,∴∠QAG=90°,∴四边形AGFQ为矩形,∴GF=AQ=5√3,又∵BF折叠后成为GF,∴BF=GF=5√3,A、B、D错误,故C正确.故选C.8 、【答案】 D;的图象位于第二、四象限,∴b<0,【解析】反比例函数y=bxA选项:一次函数y=cx+a过第一、三、四象限,∴c>0,a<0,∴二次函数y=ax2+bx+c的图象开口应向下,∴A选项错误,不符合题意;B选项:一次函数y=cx+a过第一、三、四象限,∴c>0,a<0,且二次函数表达式为y=ax2+bx+c,∴x=−b2a<0,即二次函数对称轴在y轴左侧,∴B选项错误,不符合题意;C选项:一次函数y=cx+a过第一、二、四象限,∴c<0,a>0,∴二次函数y=ax2+bx+c的图象开口应向上,∴C选项错误,不符合题意;D选项:一次函数y=cx+a过第一、二、四象限,∴c<0,a>0,∴二次函数y=ax2+bx+c的图象开口向上,交y轴于负半轴,且对称轴x=−b2a>0,位于y轴右侧,∴D选项正确,符合题意.9 、【答案】5;【解析】(√8+√12)×√2=√8×√2+√12×√2=4+1=5.故答案为:5.10 、【答案】6;【解析】设袋中红球的个数为x,4 4+x =40100,∴400=160+40x,∴40x=240,x=6,经检验x=6是原方程的解,∴袋中红球的个数为6.故答案为:6.11 、【答案】 240;【解析】 设反比例函数为t =k v,则由图象过点(200,3)可知k =600, ∴当t =2.5时,v =6002.5=240(km/h),∴若列车要在2.5h 内到达,则速度至少需要提高到240km/h .故答案为:240.12 、【答案】 >;【解析】 由图可知,甲队员的射击成绩依次为:6,7,7,7,8,8,9,9,9,10,乙队员的射击成绩依次为:6,7,7,8,8,8,8,9,9,10,∴甲队员的平均成绩为:6+7+7+7+8+8+9+9+9+1010=8, 乙队员的平均成绩为:6+7+7+8+8+8+8+9+9+1010=8, ∴S 甲2=(6−8)2+(7−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)210=4+1+1+1+0+0+1+1+1+410=1.4,S 乙2=(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)210=4+1+1+0+0+0+0+1+1+410=1.2,∴S 甲2>S 乙2,∴答案为:>.13 、【答案】 5−π;【解析】 连接AC ,DO ,又∵正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,∴∠OAD=∠ODA=45°=∠ODC,∠PAD=∠PDA=90°−45°=45°,∴∠P=90°,即△PAD为等腰直角三角形,且∠CDE=90°−∠ODC=90°−45°=45°,∠DCE=90°,∴△DCE为等腰直角三角形,∵AB=2,∴AD=2,CD=2,S△DCE=12×DC×CE=12×2×2=2,S△ADC=12×AD×DC=12×2×2=2,AP=PD=√22AD=√2,∴S△APD=12×AP×DP=12×√2×√2=1,∴S四边形APEC=S△APD+S△ADC+S△DCE=1+2+2=5,OA=√22AD=√2,S扇形ADC=12×π×OA2=12×π×(√2)2=π,∴S阴=S四边形APEC−S扇形ADC=5−π,∴图中阴影部分的面积为:5−π.14 、【答案】2√10;【解析】在正方形ABCD中,∠ADC=90°,∴∠DAE+∠AED=90°,又∵DG ⊥AF ,∴∠DHE =90°,∴∠HDE +∠AED =90°, ∴∠DAE =∠HDE ,∴在△ADE 与△DCG 中,{∠DAE =∠CDGAD =DC∠ADE =∠DCG∴△ADE=∽△DCG(ASA)又∵S △DCGS △FCE =14,∴S △ADE S △FCE =14, 又∵AD//BF ,∴△ADE ∽△FCE ,相似比为1:2,∴DE CE =12,又∵DC =3,∴DE =1,∴CE =2, AE =√AD 2+DE 2=√32+12=√10,由相似可知:EF =2AE =2√10,且N 为EF 的中点,∴EN =12EF =√10, ∴(MN +MC)min =(MN +MA)min =NA =AE +EN =√10+√10 =2√10,∴MN +MC 的最小值为2√10.∴答案为:2√10.15 、【答案】 画图见解析.; 【解析】16 、【答案】 (1)x+1x−1; (2) −1⩽x <2;−1,0,1;【解析】 (1) 原式=x 2+2x+1x÷x2−1x⁡=(x+1)2x⋅x(x−1)(x+1)=x+1x−1.(2) 解不等式①得:x⩾−1,解不等式②得:x<2,∴不等式组的解集为−1⩽x<2,∴不等式组的整数解为−1,0,1.17 、【答案】游戏不公平,列表见解析.;【解析】共有12种等可能的结果,其中数字之积小于4的有5种结果,∴P(唱《大海啊,故乡》)=512,P(唱《红旗飘飘》)=712,∵P(唱《大海啊,故乡》)≠P(唱《红旗飘飘》),∴游戏不公平.18 、【答案】约为96米.;【解析】延长AE交CD于点M,过点A作AN⊥BC,交BC于点N,由题意得,∠AMC=∠NCM=∠ANC=90°,∴四边形AMCN为矩形,∴NC=AM,NA=CM,在Rt△EMD中,∠EMD=90°,∴sin⁡∠EDM=EMED ,cos⁡∠EDM=DMED,∴sin⁡37°=EM20,cos⁡37°=MD20,∴EM=20⋅sin⁡37°≈20×35=12(米),∴DM=20⋅cos⁡37°≈20×45=16(米),在Rt△BNA中,∠BNA=90°,∴tan⁡∠BAN=BNAN,∴tan⁡42.6°=BN74+16,∴BN=90⋅tan⁡42.6°≈90×910=81(米),∴BC=BN+AE+EM=81+3+12=96(米).答:大楼BC的高度约为96米.19 、【答案】 (1) 12;(2) 96;(3) 82.6;(4) 120人.;【解析】 (1) ∵4组频数为10,频率为20%,∴n=1020%=50,2组频率为24%,∴a=50×24%=12.(2) “90⩽x⩽100”这组数据中,其数据为:90;92;93;95;95;96;96;96;97;100.其中96出现的次数最多,∴这组数据的众数是96分.(3) b=50−8−12−10=20,∴这几名学生竞赛成绩的平均分为:8×65+12×75+20×88+10×9550=520+900+1760+95050=413050=82.6(分).(4) 由(1)可知,n=50,且在这50名学生中,成绩在96分以上(含96分)的有5人,故全校1200名学生中获奖的人数为:1200×550=120(人),答:估计全校1200名学生中获奖的学生人数是120人.20 、【答案】 (1) 甲:30元/瓶;乙:24元/瓶;(2) 甲:40瓶;乙:80瓶;560元;【解析】 (1) 设甲品牌洗衣液进价为x元/瓶,则乙品牌洗衣液进价为(x−6)元/瓶,由题意可得,1800x =45⋅1800x−6,解得x=30,经检验x=30是原方程的解.答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.(2) 设利润为y元,购进甲品牌洗衣液m瓶,则购进乙品牌洗衣液(120−m)瓶,由题意可得,30m+24(120−m)⩽3120,解得m⩽40.由题意可得,y=(36−30)m+(28−24)(120−m)=2m+480,∵k=2>0,∴y随m的增大而增大,∴当m=40时,y取最大值,y最大值=2×40+480=560.120−40=80(瓶)答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元.21 、【答案】 (1) 证明见解析.;(2) 四边形AEFG是矩形.;【解析】 (1) ∵四边形ABCD是平行四边形,∴AD//BC,∴∠DFE=∠CBE.又∵E为CD边的中点,∴DE=CE.∵∠FED=∠BEC,∠DFE=∠CBE,DE=CE,∴△BCE=∽△FDE(AAS).(2) ∵四边形ABCD是平行四边形,∴AD=BC.∵△FDE=∽△BCE,∴BC=FD,FE=EB,∴FD =AD .∵GD =DE ,∴四边形AEFG 是平行四边形.∵BF 平分∠ABC ,∴∠CBF =∠ABF .又∵∠AFB =∠FBC ,∴∠ABF =∠AFB ,∴AB =AF .又∵FE =EB ,∴AE ⊥FE ,∴∠AEF =90°,∴平行四边形AEFG 是矩形.22 、【答案】 (1) y 1=5x +30;(2) y 2=−5x 2+40x;(3) 70米;【解析】 (1) y 1=5x +30.(2) ∵x =6时,y 1=5×6+30=60,∵y 2的图象是过原点的抛物线,∴设y 2=ax 2+bx ,∴点(1,35),(6,60)在抛物线y 2=ax 2+bx 上,∴{a +b =3536a +6b =60,即{a +b =356a +b =10,解得{a =−5b =40,∴y2=−5x2+40x.答:y2与x的函数关系式为y2=−5x2+40x.(3) 设小钢球和无人机的高度差为y米,由−5x2+40x=0得x1=0或x2=8.①1<x⩽6时,y=y2−y1=−5x2+40x−5x−30=−5x2+35x−30=−5(x−72)2+1254,∵a=−5<0,∴抛物线开口向下,又∵1<x⩽6,∴当x=72时,y的最大值为1254.②6<x⩽8时,y=y1−y2=5x+30+5x2−40x =5x2−35x+30=5(x−72)2−1254∵a=5>0,∴抛物线开口向上,又∵对称轴是直线x=72,∴当x>72时,y随x的增大而增大,∵6<x⩽8∴当x=8时,y的最大值为70,∵1254<70,∴高度差的最大值为70米.答:高度差的最大值为70米.23 、【答案】 (1) (5,3,3),(5,3,4),(5,3,5);3;3个3;3×3;(2) 12;(3) 当n为奇数时,整数边三角形的个数为(n+1)2;4当n为偶数时,整数边三角形的个数为n(n+2)4;(4) 4160;(5) 295;【解析】 (1)(2)故答案为:12.(3) 当n为奇数时,整数边三角形的个数为(n+1)2;4.当n为偶数时,整数边三角形的个数为n(n+2)4(4) 最长边长为128的整数边三角形有128×(128+2)4=32×130=4160(个),故答案为:4160.(5) 最长边长为7的整数边三角形有(7+1)24=16(个), 最长边长为8的整数边三角形有8×(8+2)4=20(个), 最长边长为9的整数边三角形有(9+1)24=25(个), 25×9=225(个),当最长边为侧棱时,则有1+2+4+6+9+12+16+20=70(个), ∴225+70=295(个),故最长棱长为9的直三棱柱有295个.24 、【答案】 (1) 509;(2) S =625t 2+215t ;(3) 8011;(4) 存在;72;【解析】 (1) 由题意可得,BP =tcm ,DQ =tcm ,在矩形ABCD 中,∵CD=AB=8cm,BC=AD=6cm,∠CBA=∠BCD=∠BAD=90°,在Rt△BCD中,∠BCD=90°,BD=√BC2+CD2=√62+82=10(cm),∴BQ=(10−t)cm,∵PQ⊥BD,∴∠BQP=∠BAD=90°,又∵∠DBE=∠DBE,∴△BPQ∽△BDA,∴BP BD =BQBA,∴t 10=10−t8,∴t=509.答:t为509时,PQ⊥BD.(2) 过点P作PO⊥QM,交QM于点O,在等腰Rt△ADE中,AD=AE=6cm,∠EAD=90°,则BE=BA+AE=14cm.∵QM//BE,∴∠POH=∠PAH=∠OHA=90°,∴四边形OPAH是矩形,∴PO=AH.∵QM//EB,∴∠DQM=∠DBE,又∵∠QDM=∠QDM,∴△DQM∽△DBE,∴QMBE =DQBD,∴QM14=t10,∴QM=75t.∵QN//BC,∴∠DNQ=∠C=90°.又∵∠CDB=∠CDB,∴△NDQ∽△CDB,∴DQ DB =DNDC=NQBC,∴t 10=DN8=NQ6,∴DN=45t,QN=35t,∴S五边形DNQPM=S四边形DQPM+S△DNQ=12(PO+DH)⋅QM+12QN⋅ND=12(HA+DH)⋅QM+12QN⋅ND=12AD⋅QM+12QN⋅ND=12×6×75t+12×35t×45t=625t2+215t.答:S与t的函数关系式是S=625t2+215t.(3) 延长NQ交BP于点G,由(1),(2)可得DC//AB,∠DNQ=90°,PO⊥QM,∵∠DNQ=∠NGA=∠GAD=90°,∴四边形NGAD是矩形.∴BG=CN=8−45t,同理可证,四边形PGQO是矩形.∴QO=GP,当PQ=PM时,∵PO⊥QM,∴QO=12QM,∴QO=12×75t.又∵QO=GP=BP−BG=BP−CN=t−(8−45t)=95t−8,∴1 2×75t=95t−8,∴t=8011.答:当PQ=PM时,t=8011.(4) 由(2)得DN=45t,QM=75t,∵QN//BC,QM//BE,∴∠DNQ=∠NQH=∠NDH=90°,∴四边形NQHD为矩形,∴QH=DN=45t,且∠QHD=90°.∴∠QHA=∠DAE=90°,∵∠AWE=∠QWD,∴△HQW∽△AEW,同理可证△MHW∽△PAW,∴QHAE =HWWA,HMPA=HWWA,∴QHAE =HMPA,∴45t6=75t−45t8−t,∴t=72.答:在运动的过程中,存在时刻t=72,使得∠AWE=∠QWD.。

2019年山东青岛中考数学试题(解析版)

{来源}2019年山东青岛中考数学试卷 {适用范围:3. 九年级}{标题}2019年山东省青岛市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 小题,每小题 分,合计分.{题目}1.(2019年青岛)的相反数是( ) A .B .3CD{答案}D{解析}本题考查了相反数的定义,绝对值相等、符号不同的两个数互为相反数,由于因此本题选D . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年青岛)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.{答案}D{解析}本题考查了轴对称图形和中心对称图形的识别,轴对称图形是沿直线对折后直线两旁的部分能够重合的图形,中心对称图形是绕某点旋转180°后能与自身重合的图形,正确区分这两类图形是解题的关键. 选项A ,C ,D 中的图形都是轴对称图形,选项B ,D 中的图形都是中心对称图形,故选项B 中的图形既是轴对称图形也是中心对称图形,因此本题选B . {分值}3{章节:[1-23-2-2]中心对称图形} {考点:轴对称图形} {考点:中心对称图形} {类别:常考题} {难度:2-简单}{题目}3.(2019年青岛)2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4×104 kmB .3.84×105 kmC .0.384×106 kmD .3.84×106 km {答案}B{解析}本题考查了用科学记数法表示较大的数,将一个数表示为a ×10n 的形式时,注意1≤a <10. 384 000=384×103=3.84×102×103=3.84×105,因此本题选B . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}4.(2019年青岛)计算(-2m )2·(-m ·m 2+3m 3)的结果是( ) A .8m 5 B .-8m 5 C .8m 6 D .-4m 4+12m 5 {答案}A{解析}本题考查了整式的运算,掌握积的乘方、合并同类项、多项式乘多项式等运算法则是解题的关键,解题注意不要混淆幂的几个运算性质而出错.原式=4m 2·(-m 3+3m 3)=4m 2·2m 3=8m 5,因此本题选A . {分值}3{章节:[1-14-1]整式的乘法} {考点:积的乘方} {考点:整式加减}{考点:单项式乘以多项式} {考点:同底数幂的乘法} {类别:常考题} {难度:2-简单}{题目}5.(2019年青岛)如图,线段 AB 经过⊙O 的圆心, AC , BD 分别与⊙O 相切于点 C , D .若 AC =BD =4 ,∠A =45 °,则弧CD 的长度为( )A .πB .2πC .πD .4π{答案}B{解析}本题考查了圆的切线的性质、等腰直角三角形的判定和性质、弧长的计算,先根据“圆的切线垂直于经过切点的半径”可得到直角三角形,再根据“等角对等边”可得到等腰三角形,最后根据公式180n rl π=计算弧长.如图,连接OC ,OD.∵AC , BD 分别与⊙O 相切于点 C , D ,∴AC ⊥OC ,BD ⊥OD ,∴∠ACO =∠BDO =90°.∵∠A =45°,∴∠AOC =45°,∴∠A =∠AOC ,∴OC =AC =4.∵AC =BD ,OC =OD ,∴OD =BD ,∴∠DOB =∠B =45°,∴∠COD =180°-45°-45°=90°.∴»9042180180CD n r l πππ⨯===.因此本题选B .{分值}3{章节:[1-24-4]弧长和扇形面积} {考点:三角形内角和定理} {考点:等角对等边} {考点:切线的性质} {考点:弧长的计算} {类别:常考题}{难度:3-中等难度}{题目}6.(2019年青岛)如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 A'B',则点 B 的对应点 B'的坐标是()A.(-4 , 1)B.(-1, 2)C.(4,-1)D.(1,-2){答案}D{解析}本题考查了线段的平移、旋转及点的坐标,解题的关键是画出平移、旋转后的图形,从而正确写出点的坐标.如图,先将线段AB向右平移5个单位得到线段A1B1,再将线段A1B1绕原点按顺时针方向旋转 90°,得到线段 A′B′,可知点 B 的对应点 B′的坐标是(1,-2).因此本题选D.{分值}3{章节:[1-23-1]图形的旋转}{考点:平移作图}{考点:作图-旋转}{考点:点的坐标}{类别:常考题}{难度:3-中等难度}{题目}7.(2019年青岛)如图, BD 是△ABC 的角平分线, AE⊥BD ,垂足为 F .若∠ABC=35,∠C=50,则∠CDE 的度数为()A.35° B.40° C.45° D.50°{答案}C{解析}本题考查了三角形内角和定理、角平分线、垂直的性质、全等三角形的判定和性质、外角的性质,根据已知条件判定两对全等三角形是解题的关键.在△ABC中,∵∠ABC=35°,∠C=50°,∴∠BAC=180°-35°-50°=95°.∵BD是△ABC的平分线,∴∠ABD=∠DBC.∵AE⊥BD,∴∠AFB =∠EFB =90°.又∵BF =BF ,∴△ABF ≌△EBF ,∴AB =EB.∵BD =BD ,∴△ABD ≌△EBD ,∴∠DEB =∠BAC =95°.∵∠DEB 是△DEC 的外角,∴∠CDE =∠DEB -∠C =95°-50°=45°.,因此本题选C . {分值}3{章节:[1-12-2]三角形全等的判定} {考点:三角形的角平分线} {考点:三角形内角和定理} {考点:全等三角形的判定SAS} {考点:三角形的外角} {类别:常考题}{难度:3-中等难度}{题目}8.(2019年青岛)已知反比例函数 y =abx的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx +a 在同一平面直角坐标系中的图象可能是( )A. B. C. D. {答案}C{解析}本题考查了反比例函数和二次函数的图像.对于反比例函数y =kx,当k >0时,其图像的两个分支分为位于第一、三象限;当k <0时,其图像的两个分支分为位于第二、四象限.对于二次函数y =ax2+bx +c ,当a >0时,其图像的开口向上;当a <0时,其图像的开口向下.当a ,b 同号时,对称轴-2b a <0,其图像的对称轴在y 轴左侧;当a ,b 异号时,对称轴-2b a>0,其图像的对称轴在y 轴右侧.∵反比例函数 y =abx的图像位于第一、三象限,∴ab >0,即a,b 同号.对于二次函数y=ax 2-2x ,当x =0时,y =0,即它的图像经过原点,故不能是选项A 中的图像.当a >0,b >0时,二次函数y =ax 2-2x 的图像开口向上,对称轴x =212a a--=>0,即对称轴在y 轴右侧,一次函数y =bx +a 的图像经过第一、二、三象限,故不可能是选项B 中的图像,可能是选项C 中的图像;当a <0,b <0时,二次函数y =ax 2-2x 的图像开口向下,对称轴x =212a a--=<0,即对称轴在y 轴左侧,一次函数y =bx +a 的图像经过第二、三、四象限,故不可能是选项D 中的图像,因此本题选C . {分值}3{章节:[1-22-1-4]二次函数y =ax2+bx +c 的图象和性质} {考点:反比例函数的图象}{考点:二次函数y =ax2+bx +c 的性质} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}9.(2019年青岛)0= .{答案}1{解析}本题考查了二次根式的运算及零指数幂,根据二次根式的运算法则和零指数幂的性质计算即()1211-=-=,因此本题答案为+1. {分值}3{章节:[1-16-3]二次根式的加减} {考点:二次根式的混合运算} {考点:零次幂} {类别:常考题} {难度:2-简单}{题目}10.(2019年青岛)若关于 x 的一元二次方程2x 2-x +m =0有两个相等的实数根,则 m 的值为 .{答案}18{解析}本题考查了一元二次方程根的情况与根的判别式b 2-4ac 的关系,即当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根. ∵关于 x 的一元二次方程2x 2-x +m =0有两个相等的实数根,∴b 2-4ac =0,即(-1)2-4×2×m =0,解得m =18.因此答案为18. {分值}3{章节:[1-21-2-2]公式法} {考点:根的判别式} {类别:常考题} {难度:2-简单}{题目}11.(2019年青岛)射击比赛中,某队员 10 次射击成绩如图所示,则该队员的平均成绩是 环.{答案}8.5{解析}本题考查了条形统计图和算术平均数的计算,解题的关键是看懂统计图中的数据和正确计算.1=10x -×(6×1+7×1+8×2+9×4+10×2)=110×85=8.5,即该队员的平均成绩是8.5环,因此本题答案为8.5. {分值}3{章节:[1-20-1-1]平均数} {考点:条形统计图} {考点:算术平均数} {类别:常考题} {难度:2-简单}{题目}12.(2019年青岛)如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则 ∠BDF 的度数是 °.{答案}54{解析}本题考查了圆内接正多边形的性质、圆周角定理及其推论,即圆内接正n边形的中心角等于360 n ︒,同弧所对的圆周角等于圆心角的一半,直径所对的圆周角是直角.如图,连接AD.∵AF是⊙O 的直径,∴∠ADF=90°.∵五边形 ABCDE 是⊙O 的内接正五边形,∴∠AOB=360°÷5=72°,∴∠ADB=12×72°=36°.∴∠BDF=90°-36°=54°,因此本题答案为54.{分值}3{章节:[1-24-3]正多边形和圆}{考点:正多边形和圆}{考点:圆周角定理}{考点:直径所对的圆周角}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年青岛)如图,在正方形纸片 ABCD 中, E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD=4 cm,则 CF 的长为 cm .{答案}{解析}本题是一道折叠问题,考查了轴对称的性质、正方形的性质、勾股定理等知识,解题的关键根据折叠的性质得到相等的线段,进而根据勾股定理列方程求解.∵E是CD的中点,CD=AD=4,∴DE=CE=2.在Rt△ADE中,根据勾股定理,得AE由折叠的性质可得△AGF≌△ABF,∴AG=AB=4,GF=BF,∠AGF=∠B=90°.∴∠FGE=90°,GE=AE-AG= 4.设BF=x,则GF =x ,FC =4-x.在Rt △GEF 中,根据勾股定理,得EF 2=GE 2+GF 2=()224+x .在Rt △CEF 中,根据勾股定理,得EF 2=CE 2+FC 2=()222+4-x .∴()()22224+x =2+4-x ,解得x =. {分值}3{章节:[1-18-2-3] 正方形} {考点:勾股定理}{考点:正方形有关的综合题} {考点:折叠问题} {类别:常考题} {难度:4-较高难度}{题目}14.(2019年青岛)如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块.{答案}16{解析}本题考查了几何体的三视图,解题的关键是具有较好的空间想象能力.当至少剩下9个小立方块时新几何体与原正方体的表面积相等,故最多可以取走27-9=16个小立方块,因此本题答案为16. {分值}3{章节:[1-29-2]三视图} {考点:简单组合体的三视图} {类别:高度原创} {类别:易错题} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共 小题,合计分. {题目}15.(2019年青岛)已知: ∠α,直线 l 及 l 上两点 A , B . 求作: Rt △ABC ,使点 C 在直线 l 的上方,且∠ABC =90°, ∠BAC =∠α.{解析}本题考查了尺规作图,掌握用尺规作一个角等于已知角,过直线上一点作这条直线的垂线是解题的关键.如图,在直线l 上方作∠BAD =∠α,过点B 作直线EF ⊥l ,交BD 于点C ,则△ABC 即为所求. ……4分 {答案}解:{分值}4{章节:[1-13-1-2]垂直平分线} {难度:2-简单} {类别:常考题}{考点:与全等有关的作图问题} {考点:与垂直平分线有关的作图}{题目}16(1).(2019年青岛)化简:222m n m n n m m ⎛⎫-+÷- ⎪⎝⎭; {解析}本题考查了分式的混合运算,按照先计算括号内的加法,再计算除法进行运算.{答案}解: 原式=222m n m n mn m m m ⎛⎫-+÷- ⎪⎝⎭=222m n m n mn m m -+-÷=()2m n m n m m --÷ =()2m n mm m n -⋅-=1m n -. {分值}4{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算}{题目}16(2).(2019年青岛)解不等式组161,55318x x ⎧-≤⎪⎨⎪-<⎩ ,并写出它的正整数解.{解析}本题考查了不等组的解法和不等式组的整数解,解不等式组的步骤为:先解出不等式组中每个不等式的解集,然后在数轴上分别表示出两个解集,找出公共部分,得出不等式组的解集. {答案}解: 解不等式1-15x ≤65,得x ≥-1; 解不等式3x -1<8,得x <3;∴不等式组的解集为-1≤x <3. ∴不等式组的正整数解为x =1,2.{分值}4{章节:[1-9-3]一元一次不等式组} {难度:2-简单} {类别:常考题}{考点:解一元一次不等式组}{考点:一元一次不等式组的整数解}{题目}17.(2019年青岛)小明和小刚一起做游戏,游戏规则如下:将分别标有数字 1, 2, 3, 4 的 4 个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于 2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.{解析}本题考查了概率的求法,先列表或画树状图表示出所有可能的情形,进而求出小明胜和小刚胜的概率;再根据“如果两人获胜的概率相等,那么游戏对双方公平,否则不公平”作出判断..10种,∴P(小明获胜)=105=168,P (小明获胜)=63=168. ∵P (小明获胜)≠P (小明获胜),∴这个游戏对两人不公平.{分值}6{章节:[1-25-2]用列举法求概率} {难度:2-简单} {类别:常考题}{考点:绝对值的意义} {考点:两步事件放回} {考点:游戏的公平性}{题目}18.(2019年青岛)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h ) ,统计结果如下: 9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9, 7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9. 在对这些数据整理后,绘制了如下的统计图表:请根据以上信息,解答下列问题:(1) m=, n=, a=, b=;(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.{解析}本题是一道统计综合题,考察了频数分布表、扇形统计图、中位数及用样本估计总体.(1)根据统计结果可知,睡眠时间在7≤t<8范围的内有7人,故m=7,∴n=40-7-11-4=18,a=7 40×100%=17.5%,b=1840×100%=45%.(2)因为共有40个数据,所以中位数等于第20个数据和第21个数据的平均数.由统计表可知第20个数据和第21个数据都在第3组内,故中位数落在第3组.(3)利用样本去估计总体中睡眠时间符合要求的人数所占百分比.{答案}解:(1)7 18 17.5% 45%;(2)3;(3)在抽取的这40名学生中平均每天的睡眠时间应不少于 9 h的学生人数所占百分比为45%+10%=55%,由此估计该校学生中睡眠时间符合要求的人数约为800×55%=440(人).{分值}6{章节:[1-20-1-2]中位数和众数}{难度:2-简单}{类别:常考题}{考点:扇形统计图}{考点:频数(率)分布表}{考点:用样本估计总体}{考点:频数与频率}{考点:中位数}{题目}19.(2019年青岛)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道 AB ,栈道 AB 与景区道路CD 平行.在 C 处测得栈道一端 A 位于北偏西 42°方向,在 D 处测得栈道另一端 B 位于北偏西 32°方向.已知 CD=120 m , BD=80 m ,求木栈道 AB 的长度(结果保留整数).(参考数据:sin32°≈1732,cos32°≈1720,tan32°≈58,sin42°≈2740,cos42°≈34,tan42°≈9 10){解析}本题考查了解直角三角形的实际应用,做辅助线构造直角三角形是解题的关键.如图,过点C作CE⊥AB于E,过点D作DF⊥AB,交AB的延长线于点F,则四边形CDFE是矩形.在Rt△BDF中求出BF和DF的长,进而得到EB的长;在Rt△Rt△ACE中求出AE的长,进而根据AB=AE+EB求解. {答案}解:如图,过点C作CE⊥AB于E,过点D作DF⊥AB,交AB的延长线于点F,∴CE∥DF.∵AB ∥CD,∴四边形CDFE是矩形,∴EF=CD=120,CE=DF.在Rt△BDF中,∵∠BDF=32°,BD=80,∴BF=80·sin32°=80×1732=42.5,DF=80·cos32°=80×1720=68.∴EB=EF-BF=120-42.5=77.5.在Rt△ACE中,∵CE=DF=68,∠ACE=42°,∴AE=68·tan42°=68×910=61.2.∴AB=AE+EB=61.2+77.5≈139. 答:木栈道 AB 的长度约为139m.{分值}6{章节:[1-28-1-2]解直角三角形}{难度:3-中等难度}{类别:常考题}{考点:矩形的性质}{考点:解直角三角形-方位角}{题目}20.(2019年青岛)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?{解析}本题考查了列方程解决实际问题和列不等式解决实际问题,找出问题中的等量关系和不等关系是解题的关键.(1)根据“乙加工600个零件的时间-甲加工600个零件的时间=5”列分式方程求解,不要遗漏检验;(2)根据“甲的加工费+乙的加工费≤7800”列不等式求解.{答案}解:解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据题意,得60060051.5x x-=,解这个方程,得x=40.经检验,x=40是原分式方程的根.1.5x=1.5×40=60.答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x天,根据题意,得150x+30006012040x-⨯≤7800,解这个不等式,得x≥40.答:甲至少加工了40天.{分值}8{章节:[1-15-3]分式方程}{难度:3-中等难度}{类别:常考题}{考点:分式方程的应用(工程问题)}{考点:一元一次不等式的应用}{题目}21.(2019年青岛)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为OB , OD 的中点,延长 AE 至 G ,使 EG=AE ,连接 CG .(1)求证:△ABE≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.{解析}本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,掌握以上图形的性质和判定方法是解题的关键.(1)根据平行四边形的性质可得到AB=CD,∠ABE=∠CDF,根据中点的定义可得到BE=DF,进而根据SAS证得△ABE≌△CDF.(2)由△ABE≌△CDF 可得到AE=CF=EG, AG∥CF,从而得到四边形EGCF是平行四边形.假设平行四边形 EGCF 是矩形,从而可得AE⊥BO,又有BE=EO,则AB=AO=12AC,即当AC=2AB时,四边形EGCF是矩形.{答案}解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OB=OD.∴∠ABE=∠CDF.∵点 E , F 分别为 OB , OD 的中点,∴BE=DF. ∴△ABE≌△CDF.(2)当AC=2AB时,四边形EGCF是矩形.∵△ABE≌△CDF,∴AE=CF,∠BAE=∠DCF.∵EG=AE,∴EG=CF.∵AB∥CD,∴∠BAC=∠DCA,∴∠GAC=∠FCA,∴AG∥CF,∴四边形EGCF是平行四边形.∵AC=2AB,AC=2AO,∴AB=AO.∵点E是BO的中点,∴AE⊥BO,∴∠GEF=90°,∴□EGCF是矩形.{分值}10{章节:[1-18-2-1]矩形}{难度:4-较高难度}{类别:发现探究}{考点:平行四边形边的性质}{考点:全等三角形的判定SAS}{考点:一组对边平行且相等的四边形是平行四边形}{考点:矩形的判定}{题目}22.(2019年青岛)某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?{解析}本题是一道综合考查一次函数和二次函数的实际应用题,理解各个数量之间的关系是解题的关键.(1)利用待定系数法求y与x之间的函数关系式;(2)由题意,得30≤x≤50,根据“每天获得的利润=每件利润×每天销售量”求出w与x的函数关系,结合x的取值范围求w的最大值;(3)由题意,得w≥800.由w=800时x的值得到w≥800时x的取值范围,再结合y与x之间的函数关系式确定y的最小值.{答案}解:(1)设y与x之间的函数关系式为y=kx+b,将(30,100)(45,70)代入上式,得30100,4570,k bk b+=⎧⎨+=⎩,解得2,160,kb=-⎧⎨=⎩∴y与x之间的函数关系式为y=-2x+160.(2)根据题意,得w=y(x-30)=(-2x+160)(x-30)=-2x2+220x-4800=-2(x-55)2+1250.∴当x≤55时,w随x的增大而增大.∵30≤x≤50,∴当x=50时,y最大值=1200.答:销售单价定为50元/件时,才能使销售该商品每天获得的利润 w(元)最大,最大利润是1200元.(3)将w=800代入w=-2(x-55)2+1250,得x1=40,x2=70.∴当40≤x≤70时,w≥800.对于y=-2x+160, y随x的增大而减小,故当x=70时,y最小值=20.答:若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为20件. {分值}10{章节:[1-22-3]实际问题与二次函数}{难度:4-较高难度}{类别:常考题}{考点:一次函数的图象}{考点:商品利润问题}{考点:待定系数法求一次函数的解析式}{题目}23.(2019年青岛)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张a⨯b 的方格纸(a⨯ b的方格纸指边长分别为a,b 的矩形,被分成a⨯b个边长为 1 的小正方形,其中a≥2 , b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 ⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于 2⨯2的方格纸,要用图①盖住其中的三个小正方形,显然有 4 种不同的放置方法.探究二:把图①放置在 3⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在 3⨯2的方格纸中,共可以找到 2 个位置不同的 2 2 ⨯方格,依据探究一的结论可知,把图①放置在 3⨯2 的方格纸中,使它恰好盖住其中的三个小正方形,共有 2 ⨯ 4=8种不同的放置方法.探究三:把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a ⨯ 2 的方格纸中,共可以找到_________个位置不同的 2⨯2方格,依据探究一的结论可知,把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.探究四:把图①放置在a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a⨯ 3 的方格纸中,共可以找到_________个位置不同的 2⨯ 2方格,依据探究一的结论可知,把图①放置在 a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a ⨯ b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为 a,b ,c (a≥2 , b≥2 , c≥2 ,且 a,b,c 是正整数)的长方体,被分成了 a ⨯b ⨯c个棱长为 1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.{解析}本题是一道规律探究题,理解探究一、二是正确解答后面问题的前提.探究三:如图⑤,在 a×2 的方格纸中,共可以找到(a-1)个位置不同的 2×2方格;依据探究一的结论可知图①在每个2×2的方格中有4种不同的放置方法,所以把图①放置在 a×2 的方格纸中,共有(a-1)×4种不同的放置方法.探究四:在 a×3 的方格纸中,共可以找到(a-1)×(3-1)个位置不同的 2×2方格;依据探究一的结论可知图①在每个2×2的方格中有4种不同的放置方法,所以把图①放置在 a×3的方格纸中,共有(a-1)×(3-1)×4种不同的放置方法.问题解决:在 a×b的方格纸中,共可以找到(a-1)×(b-1)个位置不同的 2×2方格;依据探究一的结论可知图①在每个2×2的方格中有4种不同的放置方法,所以把图①放置在 a×b的方格纸中,共有(a-1)×(b-1)×4种不同的放置方法.问题拓展:在 a×b×c的几何体中,共可以找到(a-1)×(b-1)×(c-1)个位置不同的2×2×2的正方体;而图⑦在每个2×2×2的正方体中有8种不同的放置方法,所以把图⑦放置在 a×b×c的几何体中,共有(a-1)×(b-1)×(c-1)×8种不同的放置方法.{答案}解:探究三:a-1 4a-4;探究四:2(a-1),8a-8;问题解决:4(a-1)(b-1);问题拓展:8(a-1)(b-1)(c-1).{分值}10{章节:[1-29-2]三视图}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{类别:发现探究}{考点:规律-图形变化类}{题目}24.(2019年青岛)已知:如图,在四边形 ABCD 中, AB∥CD,∠ACB=90°, AB=10cm, BC=8cm, OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点 P作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG.设运动时间为 t ( s )(0<t<5),解答下列问题:(1)当 t 为何值时,点 E 在∠BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE, OQ,在运动过程中,是否存在某一时刻t ,使 OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.{解析}本题是一道与动点有关的压轴题,综合考查了相似三角形的判定和性质、直角三角形的性质、角平分线的性质、二次函数等知识,难度较大.(1)当点E在∠BAC的平分线上时,有PE=EC.故将PE和EC用含t的代数式表示出来即可列方程求出t的值.(2)四边形PEGO是一般四边形,故不能直接求其面积,根据S四边形PEGO= S△ABC+ S△OCD―S△AOP―S△BPE―S梯形GDCE求解即可.(3)利用(2)中所求二次函数关系式求解.(4)假设存在某一时刻t,使得OE⊥OQ.此时有△OCE∽△△OQG,进而根据相似三角形对应边成比例列出关于t的方程求解.{答案}解:(1)由题意,得BP=DQ=t.在△ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC 6.∵PE ⊥AB ,∴∠BPE =90°,∴∠BPE =∠ACB.又∵∠PBE =∠ABC ,∴△EBP ∽△ABC. ∴BP PE BE BC AC AB ==,即8610t PE BE ==, ∴PE =34t ,BE =54t .∴EC =8-54t . 当点E 在∠BAC 的平分线上时,PE =EC. ∴34t =8-54t ,解得t =4.(2)如图,过点P 作PH ⊥AC 于H ,∴∠AHP =∠ACB =90°.∴PH ∥BC ,∴△APH ∽△ABC. ∴AP PH AB BC =,即10108t PH -= ∴PH =485t - . ∵OD 垂直平分AC ,AC =6,∴OA =OC =3,∠AOD =∠COD =90°.∴S △AOP =12×AO ×PH =12×3×(485t -)=1265t -. ∵AB ∥CD ,∴∠ACD =∠BAC.又∵∠COD =∠ACB ,∴△COD ∽△ACB. ∴OC CD OD AC AB BC ==,即36108CD OD ==,∴CD =5,OD =4. ∵QF ∥AC ,∴△DGQ ∽△DOC ,∴GD DQ GQ OD CD OC ==,即453GD t GQ ==,∴GD =45t ,GQ =35t . ∴S 梯形GDCE =12(GD +EC )×OC =12(45t +8-54t )×3=12-2740t . 又∵S △ABC =12×BC ×AC =12×8×6=24,S △OCD =12×OC ×OD =12×3×4=6, S △BPE =12×BP ×PE =12×t ×34t =238t , ∴S 四边形PEGO = S △ABC + S △OCD ―S △AOP ―S △BPE ―S 梯形GDCE=24+6-(1265t -)-238t -(12-2740t ) =2315688t t -++(0<t <5).(3)对于S 四边形PEGO =2315688t t -++, ∵38-<0,∴当t =-155882223b a -==⎛⎫⨯- ⎪⎝⎭时,S 四边形PEGO 最大. (4)假设存在某一时刻t ,使得O E⊥OQ. 此时∠EOQ =∠DOC =90°,∴∠EOC =∠DOQ. ∵∠OCE =∠OGQ =90°,∴△OCE ∽△△OQG, ∴EC OC OG QG =,即583443455t t t -=-, 即t 2-13.2 t +32=0,解得t 1=3.2,t 2=10(舍去). 即当t =3.2时,O E⊥OQ.{分值}12{章节:[1-27-1-2]相似三角形的性质} {难度:5-高难度}{类别:发现探究}{考点:几何图形最大面积问题}{考点:角平分线的性质}{考点:勾股定理}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质}。

2022年山东省青岛市中考数学试题及答案解析

2022年山东省青岛市中考数学试卷1.我国古代数学家祖冲之推算出π的近似值为355,它与π的误差小于0.0000003.将1130.0000003用科学记数法可以表示为( )A. 3×10−7B. 0.3×10−6C. 3×10−6D. 3×1072.北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.3.计算(√27−√12)×√1的结果是( )3B. 1C. √5D. 3A. √334.如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是( )A.B.C.D.5.如图,正六边形ABCDEF内接于⊙O,点M在AB⏜上,则∠CME的度数为( )A. 30°B. 36°C. 45°D. 60°6.如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A′B′C′,则点A的对应点A′的坐标是( )A. (2,0)B. (−2,−3)C. (−1,−3)D. (−3,−1)7.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A. √62B. √6C. 2√2D. 2√38.已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=−1,且经过点(−3,0),则下列结论正确的是( )A. b>0B. c<0C. a+b+c>0D. 3a+c=09.−1的绝对值是______。

210.小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为______分.11.为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为______.12.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是______°.13.如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径作EF⏜,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为______.14.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有:______.(填写序号)①BD=8②点E到AC的距离为3③EM=10 3④EM//AC15.已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.16.(1)计算:a−1a2−4a+4÷(1+1a−2);(2)解不等式组:{2x≥3(x−1), 2−x2<1.17.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.18.已知二次函数y=x2+mx+m2−3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2−3的图象与x轴交点的个数,并说明理由.19.如图,AB为东西走向的滨海大边,小宇沿滨海大道参加“低碳生活⋅绿色出行”健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C处,观光船到滨海大道的距离CB为200米.当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西40°的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)20.孔子曾说:“知之者不如好之者,好之者不如乐之者”兴趣是最好的老师.阅读、书法、绘画、手工、烹饪、运动、音乐…各种兴趣爱好是打开创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长,对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表时长t(单人数累计人数组别位:ℎ)第一组1≤t<2正正正正正正30第二组2≤t<3正正正正正正正正正正正正60第三组3≤t<4正正正正正正正正正正正正正正70第四组4≤t<5正正正正正正正正40根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第______组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为______,对应的扇形圆心角的度数为______°;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2ℎ,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?21.【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A′B′C′中,AD,A′D′分别是BC和B′C′边上的高线,且AD=A′D′、则△ABC和△A′B′C′是等高三角形.【性质探究】如图①,用S△ABC,S△A′B′C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC⋅AD,S△A′B′C′=12B′C′⋅A′D′,∵AD=A′D′∴S△ABC:S△A′B′C′=BC:B′C′.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=______;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=______,S△CDE=______;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=______.22.如图,一次函数y=kx+b的图象与x轴正半轴相交于点C,与反比例函数y=−2的x 图象在第二象限相交于点A(−1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.23.如图,在四边形ABCD中,AB//CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知______(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)24.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25.如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动、速度为1cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1cm/s.PQ交AC于点F,连接CP,EQ,设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ//CD?若存在,求出t的值;若不存在,请说明理由.答案解析1.【答案】A【解析】解:用科学记数法可以表示0.0000003得:3×10−7;故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】C【解析】解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;故选:C.根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【答案】B【解析】解:(√27−√12)×√13=√27×13−√12×13=√9−√4=3−2=1,故选:B.先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.本题考了二次根式的混合运算,能正确运用二次根式的运算法则进行计算是解此题的关键.4.【答案】C【解析】解:图②“堑堵”从上面看,是一个矩形,故选:C.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.【答案】D【解析】解:连接OC,OD,OE,∵多边形ABCDEF是正六边形,∴∠COD=∠DOE=60°,∴∠COE=2∠COD=120°,∴∠CME=1∠COE=60°,2故选:D.由正六边形的性质得出∠COE=120°,由圆周角定理求出∠CME=60°.本题考查了正六边形的性质、圆周角定理;熟练掌握正六边形的性质,由圆周角定理求出∠COM=120°是解决问题的关键.6.【答案】C【解析】解:由图中可知,点A(3,−2),将△ABC先向右平移3个单位,得坐标为:(6,−2),再绕原点O旋转180°,得到△A′B′C′,则点A的对应点A′的坐标是(−1,−3).故选:C.利用平移的性质得出对应点位置,再利用关于原点对称点的性质直接得出答案.此题主要考查了旋转变换以及平移变换,根据题意得出对应点位置是解题关键.7.【答案】B【解析】解;∵四边形ABCD为正方形,AB=2,∴AC=2√2,∵O为正方形ABCD对角线AC的中点,△ACE为等边三角形,∴AC=AE=2√2,AO=√2,∴OE=√2×√3=√6.故选:B.首先利用正方形的性质可以求出AC,然后利用等边三角形的性质可求出OE.本题主要考查了正方形的性质,同时也利用了等边三角形的性质,有一定的综合性.8.【答案】D【解析】解:选项A:∵抛物线开口向下,∴a<0.∵对称轴为直线x=−1,=−1.∴−b2a∴b=2a.∴b<0.故选项A错误;选项B:设抛物线与x轴的另一个交点为(x,0),(x−3),则抛物线的对称轴可表示为x=12(x−3),解得x=1,∴−1=12∴抛物线与x轴的两个交点为(1,0)和(−3,0).又∵抛物线开口向下,∴抛物线与y轴交于正半轴.∴c>0.故选项B错误.选项C:∵抛物线过点(1,0).∴a+b+c=0.故选项C错误;选项D:∵b=2a,且a+b+c=0,∴3a+c=0.故选项D正确.故选:D.根据抛物线的开口方向及对称轴位置判断选项A;根据对称轴x=−1及过点(−3,0)求出抛物线与x轴的另一个交点,据此来判断选项B;当x=1时,二次函数的值y=a+b+c,据此判断选项C;根据对称轴得出a,b之间的关系,并代入y=a+b+c中,据此判断选项D.本题考查了二次函数的图象与性质,掌握二次函数图像的位置与有关系数的关系是解题的关键.9.【答案】12【解析】解:|−12|=12,故本题的答案是:12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:2017山东青岛中考《数学》试题-中考 总结:话题作文与学期梳理

课程特色: 以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员 想扎实写作基础,稳固提高作文水平的初中生

赠送

《中学语文知识地图—中学必考文学常识一本通》 第十五章:学期课程融汇与升华 课程特色: 以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型

,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员 现代文阅读答题技巧掌握不够全面,想稳固提高的初中生

赠送 《中学语文知识地图—中学文言文必考140字》 课程特色: 全面地检测与分析学生考试丢分的问题,

让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员 想夯实语文基础知识,成绩稳步提高的初中生

赠送 《学生优秀作品及点评指导(2.0版)》 第八章:以小见大与虚实相应 课程特色: 对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员 作文写作水平寻求短期突破的初中生

赠送

《中学考场作文训练营》(图书) 第八章:以小见大与虚实相应 课程特色: 对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员 作文写作水平寻求短期突破的初中生

赠送

《中学考场作文训练营》(图书) 第二节:说明文专题 课程特色: 针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员 阅读能力迅速提升的5—7级学生

赠送

《语文阅读得高分策略与技巧》(小学版) 第二节:说明文专题 课程特色: 针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员 阅读能力迅速提升的5—7级学生

赠送

《语文阅读得高分策略与技巧》(小学版) 第八讲:文章中材料的搭配。 课程特色: 孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。

适合学员 写作不知如何下手而又急需快速突破的3—6级学生

赠送

《原创作文·专题突破》 第八讲:文章中材料的搭配。 课程特色: 孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。

适合学员 写作不知如何下手而又急需快速突破的3—6级学生

赠送

《原创作文·专题突破》 课程特色: 本班是黄老师整个课程的精华。阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。

适合学员 写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生

赠送

《语文阅读得高分策略与技巧》(初中卷)

课程特色: 本班是黄老师整个课程的精华。阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。

适合学员 写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生

赠送

《语文阅读得高分策略与技巧》(初中卷) 第二讲:秦汉必考文学常识梳理 第三讲:魏晋南北朝必考文学常识梳理 第四讲:宋代文学常识梳理(上) 第五讲:宋代文学常识梳理(下) 第六讲:明清文学常识梳理

课程特色: 帮助同学了解每位作者的其人其文;使原本空洞的文学常识,变得鲜活起来。本课程将逐篇梳理重点作家作品,每节课都安排诗歌讲解分析。

适合学员 希望全面掌握文学常识的中学生

赠送 课程目标: ·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先

·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法 ·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群

适合人群: ·初一年级同步学生 ·学习人教版的学生 ·程度较好,希望进一步提升、冲刺满分的学生 ·中上等水平学生,冲刺竞赛的学生 课程目标: ·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先;

·掌握正确的初中数学学习方法:提高学习能力,用最短的 时间学习更多的知识和方法; ·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。适合人群。

适合人群: ·初一年级同步学生 ·学习北师版的学生 ·程度较好,希望进一步提升、冲刺满分的学生 ·希望能够2.5年学完中考相关知识,在期中期末考试、中考确保基础、中等题不失分的同时尽可能在难题多拿分的同学。

·提高学习能力,用最短的时间学习更多的知识和方法 ·培养良好的学习习惯:提倡多思考、多总结、在开心中学 习,在学习中收获 适合人群: ·初一年级同步学生 ·预习过基础知识的学生 ·程度较好,希望进一步提升、冲刺满分的学生 ·适合中上等水平学生,冲刺竞赛的学生。 课程目标: ·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法。

·培养良好的学习习惯:提倡多思考、多总结、在开心中学 习,在学习中收获。 适合人群: ·初一年级同步学生 ·本课程适用学习人教版数学教材的学生 ·程度较好,并且希望进一步提升、冲刺满分的学生 课程目标: ·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。

·紧跟学校进度,注重提升学生水平和能力。 ·开阔思路,逐步提升学生信心,应对竞赛类题目。 适合人群: ·初二年级同步学生 ·本课程适用学习人教版数学教材的学生 ·程度较好,并且希望进一步提升、冲刺满分的学生 课程目标: ·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。

·紧跟学校进度,注重提升学生水平和能力。 ·开阔思路,逐步提升学生信心,应对竞赛类题目。 适合人群: ·初二年级同步学生 ·本课程适用学习北师版版数学教材的学生 ·程度较好,并且希望进一步提升、冲刺满分的学生 课程目标: ·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。

·紧跟学校进度,注重提升学生水平和能力。 ·开阔思路,逐步提升学生信心,应对竞赛类题目。 适合人群: ·初二年级同步学生 ·本课程适用学习人教版数学教材的学生 ·程度较好,并且希望进一步提升、冲刺满分的学生 课程目标: ·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。

·紧跟学校进度,注重提升学生水平和能力。 ·开阔思路,逐步提升学生信心,应对竞赛类题目。 适合人群: ·初二年级同步学生 ·本课程适用学习北师数学教材的学生 ·程度较好,并且希望进一步提升、冲刺满分的学生 课程目标: ·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。

·紧跟学校进度,注重提升学生知识水平和解题能力。 ·开阔思路,逐步提升学生信心,应对竞赛类题目。 适合人群: ·初三年级同步学生 ·预习过基础知识的学生 ·适合中上等水平学生,冲刺竞赛的学生 ·程度较好,希望进一步提升、冲刺满分的学生 课程目标: ·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。

·紧跟学校进度,注重提升学生知识水平和解题能力。 ·开阔思路,逐步提升学生信心,应对竞赛类题目。 适合人群: ·初三年级同步学生 ·预习过基础知识的学生 ·适合中上等水平学生,冲刺竞赛的学生

相关文档
最新文档