2018年中考数学总复习第一部分基础知识复习第2章方程组与不等式组第2讲一元二次方程课件含答案
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.
河北省中考数学总复习 第一编 教材知识梳理篇 第2章 方程(组)与不等式(组)第2节 一元二次方程及

第二节一元二次方程及应用年份题号考查点考查内容分值总分201719 一元二次方程的解法综合题,在新定义的背景下用直接开平方法解一元二次方程37 26(2)一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况4201614一元二次方程根的判别式利用已知条件判断含字母系数的一元二次方程的根的情况2 2201512一元二次方程根的判别式考一元二次方程无实数根求参数的取值X围2 2201421 解一元二次方程(1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式;(2)用配方法解一元二次方程10 102013年未考查命题规律纵观某某近五年中考,2014、2015、2016、2017年考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.某某五年中考真题及模拟一元二次方程的解法1.(2014某某中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为: x 2+b a x =-c a,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a (b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017某某中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是(A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016某某二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是(B )A .-4或-1B .4或-1C .4或-2D .-4或2一元二次方程根的判别式及根与系数的关系4.(2015某某中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值X 围是(B )A .a<1B .a>1C .a ≤1D .a ≥15.(2016某某中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为06.(2016某某十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017某某二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6; (2)方程x 2-5x +6=0的两根为2或3; ①2*3=2×3-9=-3;②3*2=32-2×3=3.一元二次方程的应用8.(2016某某25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为(D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016某某十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017某某中考)某厂按用户的月需求量x(件)完成一种产品的生产,,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月)120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m. 解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝ ⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0, ∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13, ∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵Δ=(-13)2-4×1×47<0,∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50) =24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法 这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法: (1)当b =0,c ≠0时,x 2=-c a ,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根; (2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论. 6.一元二次方程应用问题常见的等量关系: (1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016某某十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22; (2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3; (3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,1=2,x 2=0.1.方程(x -3)(x +1)=0的解是(C )A .x =3B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016某某路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为(A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=13.用公式法解方程: (1)(某某中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(某某中考)x 2-1=2(x +1).解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(2017某某中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是(A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016某某丰润二模)方程x 2-x +3=0根的情况是(D )A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根5.(2016某某博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值X 围是(C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017某某中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为________万元;,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染(A)A.17人B.16人C.15人D.10人【解析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x+1)人,每人传染x个人,则传染x(x+1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x个人+第二轮传染的x(x+1)人,列方程:1+x+x(1+x)=256,解得x1=15,x2,所以x=-17不合题意,应舍去;取x=15,故选C.【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x元,则每件盈利(50-x)元,数量增多2x件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x2-35x+300=0.解得x1=15,x2=20.∵要尽快减少库存,∴x=15不合题意,舍去,只取x=20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017某某中考)如图,为美化校园环境,某校计划在一块长为60 m,宽为40 m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m.(1)用含a的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为(A )A (1+x)2=4B .(2.5+x%)2=4C (1+x)(1+2x)=4D (1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为(C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__word个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x棵树苗.120×60=7 200(元).∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.11 / 11。
(陕西专版)中考数学新突破复习第一部分教材同步复习第二章方程组与不等式组2.2一元二次方程课件

只含一个未知数;(3)未知数最高次数是2.
【注意】判断之前应先将方程化为一元二次方程的一般 形式.
方程 (a - 2)xa2 - 2 + x - 4 = 0 是一元二次方程,则 a = -2 ________.
期可多卖出 20件.已知商品的进价为每件 40元,在顾客得实 惠的前提下,商家还想获得6 080元的利润,应将销售单价定
位多少元?
【思路点拨】 本题考查一元二次方程的应用.降价 x 元,表示出售价和销售量,列出方程求解即可.
【解答】
设该商品降价 x 元,则售价为 (60 - x) 元,销
售量为 (300 + 20x) 件,根据题意得, (60 - x - 40)(300 + 20x) =6 080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即 定价为56元.
2 方程x2-4x=0有________ 个实数根.
►知识点四
一元二次方程根与系数的关系
若关于x的一元二次方程ax2+bx+c=0(a≠0)有两根分别
b c -a ,x x =________. 为x1,x2,则有x1+x2=________ a 1 2
►知识点五
一元二次方程的应用
1.常见题型 (1)增长(降低)率问题. (2)行程问题.
1),所以方程两边同时除以(x+1),得x=3(x+1),解得x= 3 - ,没有按正确的步骤来解方程. 2
【正解】
x(x+1)=3(x+1)2
x(x+1)-3(x+1)2=0 (x+1)[x-3(x+1)]=0 (x+1)(-2x-3)=0 3 x1=-1,x2=- . 2
2018年中考数学总复习第一编教材知识梳理篇第2章方程组与不等式组第1节一次方程组及应用精讲试题

第二章 方程(组)与不等式(组)第一节 一次方程(组)及应用一次方程(组)的应用1.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( D )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×22.模拟)小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△,2x -3y =5时,解得⎩⎪⎨⎪⎧x =4y =则△和代表的数分别是( B )A .△=1,=5B .△=5,=1C .△=-1,=3D .△=3,=-13.)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中,正确的是( A )A .2(x -1)+x =49B .2(x +1)+x =49C .x -1+2x =49D .x +1+2x =494.⎩⎪⎨⎪⎧x =3,y =-2是关于⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则(a +b)(a -b)的值为__-8__. 5.已知n 边形的内角和θ=(n -2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n +x)边形,发现内角和增加了360°,用列方程的方法确定x. 解:(1)甲对,乙不对.∵θ=360°,∴(n -2)×180°=360°.解得n =4.∵θ=630°,∴(n -2)×180°=630°,解得n =112.∵n 为整数,∴θ不能取630°;(2)依题意,得(n -2)×180°+360°=(n +x -2)×180°.解得x =2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤;(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷; (3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程;(4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A .⎩⎪⎨⎪⎧a =1,b =2B .⎩⎪⎨⎪⎧a =0,b =2C .⎩⎪⎨⎪⎧a =2,b =1D .⎩⎪⎨⎪⎧a =1,b =1 4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③ 由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y.由题意,得3x =2y ,则x =2y 3.那么4x +3y3x +2y =4×23y +3y 2y +2y=17∶12.【答案】C6.某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】某景点的门票价格如下表:(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80. 答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a)棵. 则a ≥3(100-a),∴a≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a)]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小.即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.。
2018年中考数学总复习第一部分基础知识复习第2章方程组与不等式组第4讲一元一次不等式组课件

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
2018年中考数学总复习第一编教材知识梳理篇第2章方程组与不等式组第1节一次方程组及应用精讲试题

第二章方程(组)与不等式(组) 第一节一次方程(组)及应用及应用在河北五年中考真题及模拟)一次方程(组)的应用1.(2015河北中考)利用加减消元法解方程组⎩⎪⎨⎪⎧2x+5y=-10,①5x-3y=6,②下列做法正确的是( D) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.(2017张家口中考模拟)小明在解关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=△,2x-3y=5时,解得⎩⎪⎨⎪⎧x=4y=则△和代表的数分别是( B)A.△=1,=5 B.△=5,=1C.△=-1,=3 D.△=3,=-13.(2016石家庄二模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是( A)A.2(x-1)+x=49 B.2(x+1)+x=49C.x-1+2x=49 D.x+1+2x=494.(2017原创)已知⎩⎪⎨⎪⎧x=3,y=-2是关于⎩⎪⎨⎪⎧ax+by=3,bx+ay=-7的解,则(a+b)(a-b)的值为__-8__.5.(2016河北中考)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n +x)边形,发现内角和增加了360°,用列方程的方法确定x. 解:(1)甲对,乙不对.∵θ=360°,∴(n -2)×180°=360°.解得n =4.∵θ=630°,∴(n -2)×180°=630°,解得n =112.∵n 为整数,∴θ不能取630°;(2)依题意,得(n -2)×180°+360°=(n +x -2)×180°.解得x =2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)5.次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤6.; (1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)(2017成都中考)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.(2017济南中考)如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A .⎩⎪⎨⎪⎧a =1,b =2B .⎩⎪⎨⎪⎧a =0,b =2C .⎩⎪⎨⎪⎧a =2,b =1D .⎩⎪⎨⎪⎧a =1,b =1 4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③ 由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】(2017资阳中考)电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】(2017金华中考)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y.由题意,得3x =2y ,则x =2y 3.那么4x +3y3x +2y =4×23y +3y2y +2y=17∶12.【答案】C6.(2017新疆中考)某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】(2017徐州中考)某景点的门票价格如下表:某校七年级50人且少于100人.如果两班都以班为单位单独购票,则一共支付 1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80. 答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a)棵. 则a≥3(100-a),∴a≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a)]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小.即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.。