历年全国初中数学竞赛试题及答案

合集下载

历年全国初中数学联赛试题总汇

历年全国初中数学联赛试题总汇

1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±.答( ) 4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,q pn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试11=S 3S =132=S120135xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是 (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于5 6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是 (A)22-(B)22(C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D ,E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A ,B 、C ,D ,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

历年初中数学竞赛试题精选(含解答)

历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()A. m(1+a%)(1-b%)元B. m?a%(1-b%)元C. m(1+a%)b%元D. m(1+a%b%)元解:选C。

设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。

由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。

解:出发1小时后,①、②、③号艇与④号艇的距离分别为各艇追上④号艇的时间为对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。

解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则由①②得,代入③得:∴,故n的最小整数值为23。

答:要在2小时内抽干满池水,至少需要水泵23台解:设第一层有客房间,则第二层有间,由题可得由①得:,即由②得:,即∴原不等式组的解集为∴整数的值为。

答:一层有客房10间。

解:设劳动竞赛前每人一天做个零件由题意解得∵是整数∴=16(16+37)÷16≈3.3故改进技术后的生产效率是劳动竞赛前的3.3倍。

初中数学竞赛专项训练(2)(方程应用)一、选择题:答:D。

解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:,化简得,解得不合题意舍去)。

应选D。

答:C。

解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为所以,生产第9档次产品获利润最大,每天获利864元。

答:C。

解:若这商品原来进价为每件a元,提价后的利润率为,则解这个方程组,得,即提价后的利润率为16%。

答:B。

解:设甲乙合作用天完成。

由题意:,解得。

故选B。

答:A。

解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。

全国初中数学竞赛试题

全国初中数学竞赛试题

全国初中数学竞赛试题[注意:以下是一篇根据给定题目,用试题的格式来写的文章]一、选择题1. 下列数中哪个是质数?A) 10B) 13C) 16D) 202. 解下列方程:4x + 7 = 35A) x = 7B) x = 8C) x = 9D) x = 103. 若a = 3,b = -2,则a + b的值是:A) 1B) 2C) 3D) 4二、填空题1. 两数之和是20,其中一个数比另一个数大6,求这两个数分别是多少?2. 一个圆的半径为4 cm,求其面积和周长各是多少?三、解答题1. 已知三角形ABC中,∠B=90°,AC = 5 cm,BC = 12 cm。

求∠C 的大小。

解:由正弦定理可得:sinC = AC/BCsinC = 5/12C ≈ 24.84°所以,∠C的大小约为24.84°。

2. 两种不同商品A和B的价格分别是x和y,设y = 2x,而买A商品需要支付12元,买B商品需要支付10元。

求x的值。

解:由已知条件可得:y = 2x10 = y + 2将y = 2x代入上式,得到:10 = 2x + 2解方程可得:2x = 8x = 4所以,x的值为4。

四、证明题已知数列1,2,3,4,5...,其中第n个数的值为n。

证明该数列是等差数列。

证明:设数列的通项公式为An = n,其中n为正整数。

首先,计算第n+1个数与第n个数的差:An+1 - An = (n+1) - n = 1由此可见,数列中任意相邻两项之间的差都为1,即存在一个公差为1的等差数列。

所以,数列1,2,3,4,5...是等差数列。

五、应用题小明去果园摘水果,他一共采摘了20个苹果和15个梨。

已知一个苹果的重量是150克,一个梨的重量是200克。

求小明这次采摘的水果的总重量。

解:已知苹果的重量是150克,梨的重量是200克,所以小明采摘的20个苹果的总重量为:20 × 150 = 3000 克小明采摘的15个梨的总重量为:15 × 200 = 3000 克所以,小明这次采摘的水果的总重量是3000克。

全国初中数学竞赛历年竞赛试题以及参考答案 (11).pdf

全国初中数学竞赛历年竞赛试题以及参考答案 (11).pdf

y、z 中至少有一 个大于 0.
5. 设关于 x 的方程 ax2+(a+2)x+9a=0,有两个不等的实数根 x1、x2,且 x1<1<x2,
那么 a 的取值范围是(
)。
A、 − 2 <a< 2 B、a> 2
7
5
5
C、a< − 2 D、 − 2 <a<0
7
11
答案:由题知:(x1-1)(x2-1)<0, 即 x1x2-(x1+x2)+1<0,代入韦达定理并整理得
学无 止 境
6.A1A2A3…A9 是一个正九边形,A1A2=a,A1A3=b,则 A1A5 等于【

A、 a 2 + b2
二、填空题
B、 a 2 + ab + b2
C、 1 (a + b)
2
D、a+b
7.设 x1、x2 是关于 x 的一元二次方程 x2+ax+a=2 的两个实数根,则(x1-2x2)(x2-2x1)

三、解答题
13.某项工程,如果由甲、乙两队承包,2 2 天完成,需付 180000 元;由乙、丙两队承包, 5
3 3 天完成,需付 150000 元;由甲、丙两队承包, 2 6 天完成,需付 160000 元。现在工
4
7
程由一个队单独承包,在保证一周完成的前提下,哪个队的承包费用最少?
14.如图,圆内接六边形 ABCDEF 满足 AB=CD=EF,且对角线 AD、BE、CF 交于一点 Q,设
-bc-ca 的值为(
)。
A、0
B、1
C、2
D、3
答案:原式= [(a-b)2+(b-c)2+(c-a)2]= [1+1+4]=3。

历年初中数学竞赛真题库含答案

历年初中数学竞赛真题库含答案

1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

历年初中数学竞赛试题精选(含解答)

历年初中数学竞赛试题精选(含解答)

初中数学竞赛专项训练(1)1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。

故选C方法二:代入法2、若2001119811198011⋯⋯++=S ,则S 的整数部分是____________________解:因1981、1982……2001均大于1980,所以9022198019801221==⨯>S ,又1980、1981……2000均小于2001,所以22219022*********221==⨯<S ,从而知S 的整数部分为90。

3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。

解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案1.选择题解答1.答案为(B)。

因为根据题意,M>P,所以M与P的大小关系为M>P。

2.答案为(C)。

因为只有图(C)正确地表示了题意,包括沿原路返回的一段路程和消耗的时间。

3.答案为(A)。

根据题意可得甲-乙=5.4.答案为(B)。

在线段AB上,横、纵坐标都是整数的点的坐标是x=-1+4N,y=-25+5N,其中N是整数。

因为-1+4N>0,-25+5N<=0,所以N=1,2,3,4,5,共有5个点。

5.答案为(B)。

根据题意可得∠ABC=2∠ACB,因此∠BAC=2∠ACB,即∠B=2∠A。

6.答案为(D)。

题目中未给出S和S1的具体数值,因此无法确定它们的大小关系。

首先,文章中存在一些格式错误和重复的段落,需要删除和修改。

修改后的文章如下:一、选择题1、已知,那么x的值为______。

答:1.∵,即。

x=1.2、已知函数,且在区间[0,1]上单调递增,则f(0)与f(1)的大小关系为______。

答:f(0)<f(1)。

因为f(x)单调递增,所以f(0)<f(1)。

3、已知数列的通项公式为,若a1=1,则a4的值为______。

答:16.因为a1=1,所以a4=16.4、已知函数f(x)=x^2+bx+c在区间[0,1]上单调递减,则b 与c的大小关系为______。

答:b1/4.因为f(x)在[0,1]上单调递减,所以b1/4.5、已知数列的前n项和为Sn=n^2+2n,则该数列的通项公式为______。

答:an=n+1.因为Sn=n(n+2),所以an=Sn-Sn-1=n+1.6、已知S=1+2+3+。

+100,S1=1+3+5+。

+99,则S与S1的大小关系为______。

答:S>S1.因为S=1+2+3+。

+100>1+3+5+。

+99=S1.二、填空题7、已知。

那么x的值为________。

答:1.∵,即。

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 2B. √2C. 0.33333...D. 1/3答案:B2. 一个等腰三角形的两边长分别为5和8,那么第三边的长度可能是:A. 3B. 5C. 8D. 10答案:C3. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或1答案:D4. 计算下列表达式的结果:(2x - 3)(2x + 3) =A. 4x^2 - 9B. 4x^2 + 6x - 9C. 4x^2 + 9D. 6x^2 - 9答案:A5. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为6,宽为4的矩形D. 底为5,高为3的三角形答案:B6. 一个两位数,十位数字比个位数字大3,这个两位数可能是:A. 23B. 34C. 45D. 56答案:B7. 一个数列,前三项为1,2,4,第四项为:A. 6B. 7C. 8D. 无法确定答案:C8. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是:A. 24B. 36C. 48D. 52答案:A9. 一个圆的半径扩大到原来的2倍,那么它的面积扩大到原来的:A. 2倍B. 4倍C. 8倍D. 16倍答案:C10. 一个等差数列的首项为1,公差为2,那么它的第10项是:A. 19B. 20C. 21D. 22答案:A二、填空题(每题4分,共20分)11. 一个等边三角形的边长为6,那么它的高是________。

12. 一个数的立方根等于它本身,那么这个数是________。

答案:0或1或-113. 一个长方体的表面积为54,长、宽、高的比例为3:2:1,那么它的体积是________。

答案:2414. 一个二次函数y=ax^2+bx+c的顶点坐标为(1, -4),且过点(2, -9),那么a的值是________。

答案:215. 一个数列的前三项为2,4,8,那么这个数列的通项公式是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年全国初中数学竞赛试题及答案 1998年全国初中数学竞赛试卷 一、选择题:(每小题6分,共30分) 1、已知a、b、c都是实数,并且cba,那么下列式子中正确的是( )

(A)bcab(B)cbba(C)cbba(D)cbca

2、如果方程0012ppxx的两根之差是1,那么p的值为( ) (A)2(B)4(C)3(D)5 3、在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于( ) (A)12(B)14(C)16(D)18

4、已知0abc,并且pbacacbcba,那么直线ppxy一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四

5、如果不等式组0809bxax的整数解仅为1,2,3,那么适合这个不等式组的整数a、b的有序数对(a、b)共有( ) (A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分) 6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=___________。

7、已知直线32xy与抛物线2xy相交于A、B两点,O为坐标原点,那么△OAB的面积等于___________。 8、已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm。

9、已知方程015132832222aaxaaxa(其中a是非负整数),至少有一个整数根,那么a=___________。 10、B船在A船的西偏北450处,两船相距210km,若A船向西航行,B船同时向南航行,且B船的速度为A船速度的2倍,那么A、B两船的最近距离是___________km。 历年全国初中数学竞赛试题及答案 三、解答题:(每小题20分,共60分) 11、如图,在等腰三角形ABC中,AB=1,∠A=900,点E为腰AC中点,点F在底边BC上,且FE⊥BE,求△CEF的面积。

12、设抛物线452122axaxy的图象与x轴只有一个交点,(1)求a的值;(2)求618323aa的值。 13、A市、B市和C市有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台。已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元。 (1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值。 (2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值。

解 答 1.根据不等式性质,选B.. 2.由△=p2-4>0及p>2,设x1,x2为方程两根,那么有x1+x2=-p,x1x2=1.又由 (x1-x2)2=(x1+x2)2-4x1x2,

ABC

EF 历年全国初中数学竞赛试题及答案 3.如图3-271,连ED,则

又因为DE是△ABC两边中点连线,所以 故选C. 4.由条件得

三式相加得2(a+b+c)=p(a+b+c),所以有p=2或a+b+c=0. 当p=2时,y=2x+2,则直线通过第一、二、三象限.

y=-x-1,则直线通过第二、三、四象限.

综合上述两种情况,直线一定通过第二、三象限.故选B.,

的可以区间,如图3-272. 历年全国初中数学竞赛试题及答案

+1,3×8+2,3×8+3,……3×8+8,共8个,9×8=72(个).故选C. 6.如图3-273,过A作AG⊥BD于G.因为等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,所以PE+PF=AG.因为AD=12,AB=5,所以BD=13,所

7.如图3-274,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9).作AA1,BB1分别垂直于x轴,垂足为A1,B1,所以 历年全国初中数学竞赛试题及答案 8.如图3-275,当圆环为3个时,链长为 当圆环为50个时,链长为 9.因为a≠0,解得 故a可取1,3或5. 历年全国初中数学竞赛试题及答案 10.如图3-276,设经过t小时后,A船、B船分别航行到A1,

A1C=|10-x|,B1C=|10-2x|, 所以

11.解法1如图3-277,过C作CD⊥CE与EF的延长线交于D.因为 ∠ABE+∠AEB=90°, ∠CED+∠AEB=90°, 所以 ∠ABE=∠CED. 于是Rt△ABE∽Rt△CED,所以

又∠ECF=∠DCF=45°,所以CF是∠DCE的平分线,点F到CE和CD的距离相等,所以 历年全国初中数学竞赛试题及答案 所以

解法2 如图3-278,作FH⊥CE于H,设FH=h.因为 ∠ABE+∠AEB=90°, ∠FEH+∠AEB=90°, 所以 ∠ABE=∠FEH, 于是Rt△EHF∽Rt△BAE.因为

所以 历年全国初中数学竞赛试题及答案 12.(1)因为抛物线与x轴只有一个交点,所以一元二次方程

有两个相等的实根,于是

(2)由(1)知,a2=a+1,反复利用此式可得 a4=(a+1)2=a2+2a+1=3a+2, a8=(3a+2)2=9a2+12a+4=21a+13, a16=(21a+13)2=441a2+546a+169 =987a+610, a18=(987a+610)(a+1)=987a2+1597a+610 =2584a+1597. 又 历年全国初中数学竞赛试题及答案 因为a2-a-1=0,所以64a2-64a-65=-1,即

(8a+5)(8a-13)=-1.

所以 a18+323a-6=2584a+1597+323(-8a+13)=5796. 13.(1)由题设知,A市、B市、C市发往D市的机器台数分别为x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是

W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10) =-800x+17200.

W=-800x+17200(5≤x≤9,x是整数). 由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.

(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别为10-x,10-y,x+y-10.于是

W=200x+800(10-x)+300y+700(10-y)+400(18-x-y)+500(x+y-10) =-500x-300y+17200. 历年全国初中数学竞赛试题及答案 W=-500x-300y+17200, 且

W=-200x-300(x+y)+17200 ≥-200×10-300×18+17200=9800. 当x=10,y=8时,W=9800,所以W的最小值为9800.又 W=-200x-300(x+y)+17200 ≤-200×0-300×10+17200=14200, 当x=0,y=10时,W=14200,所以W的最大值为14200.

1999年全国初中数学竞赛试卷

历年全国初中数学竞赛试题及答案 一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A,B, C,D的四个结论,其中只有一个是正确的.请将正确答案的代号填在题后的括号里)

1.一个凸n边形的内角和小于1999°,那么n的最大值是( ). A.11 B.12 C.13 D.14

2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费( ). A.60元 B.66元 C.75元 D.78元

3.已知,那么代数式的值为( ).

A. B.- C.- D.

4.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是( ). A.30 B.36 C.72 D.125

5.如果抛物线与x轴的交点为A,B,项点为C,那么三角形ABC的面积的最小值是( ). A.1 B.2 C.3 D.4

6.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为( ). A.2 B.3 C.4 D.5

二、填空题(本题共6小题,每小题5分,满分30分)

7.已知,那么x2 + y2的值为 .

8.如图1,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是 (0<x<10).

相关文档
最新文档