常微分方程组的定义和基本概念
常微分方程基本知识

一个不亲自检查桥梁每一个部分的坚固性就不过桥的旅行者,是不可能走远的;甚至在数学中,有些事情亦须冒险。
-----Horace Lamb------题记概述:数学家谋求用微积分解决越来越多的问题,他们很快发现不得不对付一类新的问题,他们做的比他们有意识去探求的还多。
比较简单的问题引导到可以用初等函数计算的积分,而某些比较困难的问题则引起不能如此表达的积分,如椭圆积分就是实例。
这两类问题属于微积分范围,然而没解决更为复杂的问题,就需要专门的技术,这样,微分方程这门学科就应时兴起了。
如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
下面就对常微分方程加以介绍常微分方程基本的概念方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
一个常微分方程(ODE)是未知函数的微分方程(亦称因变量)是一个唯一独立变量的作用。
以简单形式,未知函数是一个真正或复杂明度函数,但更加一般,它也许传染媒介被重视或矩阵被重视:这对应于考虑常微分方程系统为一个唯一作用。
常微分方程根据因变量的最高的衍生物的命令进一步被分类关于出现于等式的独立变量。
最重要的论点为应用是优先处理和第二级次的微分方程。
在古典文学也被区分在微分方程之间明确地解决关于最高的衍生物和微分方程以含蓄形式。
常微分方程的内容定义1 凡含有未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程.微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.定义式如下:F(x, y, y¢, ...., y(n)) = 0定义2 任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解.一般地说,n 阶微分方程的解含有 n个任意常数。
1 常微分方程的基本知识

dy (1) = 2x ; dx
2 3
(2) xdy − ydx = 0 ;
d 4x d 2x d x dx + 5 2 + 3 x = sin t ; (3) + tx + x = 0 ; (4) 4 dt dt dt 2 dt
一般要求解出最高阶导数: 一般要求解出最高阶导数:
dny dy dny = f x, y , , L , n n dx dx dx
2007年8月 南京航空航天大学 理学院 数学系 19
通过引入n-1个新的未知变量,可以把n阶微分方程 个新的未知变量,可以把 阶微分方程 通过引入 个新的未知变量 化为n个由一阶微分方程组成的微分方程组 个由一阶微分方程组成的微分方程组: 化为 个由一阶微分方程组成的微分方程组: dyn −1 d n y dy1 dy2 d 2 y y1 = y, y2 = , y3 = = 2 , L , yn = = n dx dx dx dx dx
u
u
2007年8月
南京航空航天大学 理学院 数学系
7
例3 R-L-C电路 电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后,电 路中电流强度I与时间t之间的关系.
2007年8月
南京航空航天大学 理学院 数学系
2007年8月
南京航空航天大学 理学院 数学系
高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。
方程的定义:含有未知数的的等式。
它表达了未知量所必须满足的某种条件。
根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。
引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。
例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。
一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。
二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。
类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。
其中F 是n +2个变量的函数。
这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。
例如()()n y f x =也是n 阶微分方程。
例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。
微分方程常系数与特解

微分方程常系数与特解微分方程是数学中一个重要的概念,它描述了函数之间的关系。
其中,常系数微分方程是一类特殊的微分方程,其系数在整个方程中都是常数。
本文将介绍常系数微分方程的基本概念和求解方法,并讨论特解的概念和求解方法。
一、常系数微分方程的概念常系数微分方程是指方程中的系数都是常数的微分方程。
一般形式可以表示为:\[a_ny^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(x)\]其中,$y^{(n)}$表示$y$对$x$的$n$阶导数,$a_n, a_{n-1}, \dots , a_1, a_0$都是常数,$f(x)$是已知函数。
二、常系数微分方程的求解对于常系数微分方程,我们可以通过特征方程的方法求解。
首先,我们假设$y=e^{rx}$是方程的一个解,其中$r$是常数。
将$y=e^{rx}$代入微分方程,得到:\[a_nr^n e^{rx} + a_{n-1}r^{n-1} e^{rx} + \dots + a_1 re^{rx} + a_0 e^{rx} = f(x)\]由于$e^{rx}$的指数和系数都是常数,所以可以整理得到:\[(a_nr^n + a_{n-1}r^{n-1} + \dots + a_1 r + a_0) e^{rx} = f(x)\]由于$e^{rx}$是一个非零函数,所以上述方程成立的前提是:\[a_nr^n + a_{n-1}r^{n-1} + \dots + a_1 r + a_0 = 0\]这个方程称为特征方程。
解特征方程可以得到一系列的根$r_1, r_2, \dots, r_n$。
接下来,我们可以将这些根代入$y=e^{rx}$,得到方程的一组基本解,即:\[y_1=e^{r_1 x}, y_2 = e^{r_2 x}, \dots , y_n = e^{r_n x}\]这些基本解是方程的通解的一部分。
常微分方程教案

常微分方程教案一、引言常微分方程是数学中的重要分支,广泛应用于物理学、工程学、经济学等领域。
本教案旨在介绍常微分方程的基本概念、解法以及应用,帮助学生掌握解常微分方程的方法,并了解其在实际问题中的应用。
二、基本概念1. 常微分方程的定义常微分方程是指只依赖于一个独立变量的函数的导数与该函数本身构成的方程。
常微分方程通常以形如 dy/dx = f(x,y) 的形式表示,其中 f(x,y) 是已知函数。
2. 常微分方程的阶数常微分方程的阶数是指方程中最高阶导数的阶数。
一阶方程仅涉及一阶导数,二阶方程涉及到一阶和二阶导数,依此类推。
3. 常微分方程的解常微分方程的解是指满足方程的函数或函数组。
解可以由解析法得到,也可以通过数值方法进行近似求解。
三、解常微分方程的方法1. 可分离变量法可分离变量法适用于能够将方程表示为 dy/dx = g(x)h(y) 的情况。
通过分离变量并积分得到解。
2. 齐次方程法齐次方程法适用于能够将方程表示为 dy/dx = f(y/x) 的情况。
通过变量代换和分离变量的方法求解。
3. 线性方程法线性方程法适用于能够将方程表示为 dy/dx + P(x)y = Q(x) 的情况。
通过使用积分因子和积分求解。
4. 恰当方程法恰当方程法适用于能够将方程表示为 M(x,y)dx + N(x,y)dy = 0的情况。
通过使用判别式和积分求解。
5. 变量替换法变量替换法适用于通过变量替换将高阶微分方程转化为一阶方程的情况。
通过适当选择替换变量,将高阶方程转化为一阶常微分方程。
四、常微分方程的应用1. 物理学中的应用常微分方程在物理学中有着广泛的应用。
例如,运动学中的运动方程、电路中的电流方程、振动系统中的运动方程等都可以用常微分方程进行建模和求解。
2. 工程学中的应用常微分方程在工程学中也有着重要的应用。
例如,电力系统中的电压和电流的变化、控制系统中的系统稳定性分析等都可以通过常微分方程进行建模和分析。
常微分方程——精选推荐

《数学模型》课 常微分方程补充 ( 2008 )( 摘自《常微分方程学习辅导与习题解答》朱思铭编 )一. 常微分方程基本概念 ( 摘自 四.§1.2 )二. 常微分方程线性奇点 ( 摘自 四.§6.1.3 )三. 极限环和平面图貌 ( 摘自 四.§6.1.4 )四*. 常微分方程内容提要五*. 常微分方程应用实例索引一. 常 微 分 方 程 基 本 概 念 ( §1.2 )微分方程 联系自变量、未知函数及其导数的关系式.实值微分方程 自变量、未知函数均为实值的微分方程.复值微分方程 未知函数取复值或自变量、未知函数均取复值的微分方程. 常微分方程 只有一个自变量的微分方程.偏微分方程 有两个或两个以上自变量的微分方程.一阶微分方程 微分方程中未知函数的导数最高为一阶.n 阶微分方程 微分方程中未知函数的导数最高为n 阶,一般形式为n n dy d y F x y 0dx dx ,,,, ⎛⎫= ⎪ ⎪⎝⎭(38)线性微分方程 n 阶微分方程(38)的左端为,,,n n dy d y y dx dx的一次有理整式称为线性微分方程.n 阶线性微分方程的一般形式为()()()()n n 11n 1n n n 1d y d y dy a x a x a x f x dx dx dx---++++= (39) 其中(),,(),()1n a x a x f x 为x 的函数.非线性微分方程 不是线性微分方程的微分方程.(显式)解 使微分方程(38)变为恒等式的函数()y x =ϕ称为方程的解. 隐式解 如微分方程(38)的解()y x =ϕ由关系式(,)x y 0Φ=决定,称(,)x y 0Φ=为微分方程(38)的隐式解.通解 n 阶微分方程(38)的含有n 个独立的任意常数,,,12n c c c 的解(,,,,)12n y x c c c ϕ=隐式通解(通积分) 由含有n 个独立的任意常数,,,12n c c c 的关系式(,,,,,)12n x y c c c 0Φ= 决定的n 阶微分方程(38)的解.定解条件 为确定微分方程的一个特定的解需附加的条件.定解问题 求微分方程满足定解条件的解的问题.初值条件 n 阶微分方程(38)的初值条件为当0x x =时,()(),,,n 11n 1000n 1dy d y y y y y dx dx---=== 或写为()()()()(),,,n 11n 1000000n 1dy x d y x y x y y y dx dx---=== 初值问题 当定解条件为初值条件时的定解问题.特解 满足定解问题的解.积分曲线 一阶微分方程(,)dy f x y dx= (47) 的解()y x ϕ=在Oxy 平面上表示为一条曲线,称为微分方程(47)的积分曲线.曲线上的点的斜率dy dx值为(,)f x y . 向量场 一阶微分方程(47)的右端函数(,)f x y 定义为在Oxy 平面某区域D 上过各点的小线段(线素)的斜率方向,称域D 为方程(47)所定义的向量场(方向场,线素场).通过向量场可以判断微分方程的解的走向.等倾斜线 向量场中方向相同的曲线(,)f x y k =称为等倾斜线或等斜线. 微分方程组 n 阶微分方程()()(,,',,)n n 1z g t z x z -=可通过变换(),',,n 112n y z y z y z -===化为一阶方程组(,,,),,,,i i 1n dy f t y y i 12n dt ==或写成向量形式(,)=dy f t y dt其中n y D R ∈⊂.驻定微分方程组 微分方程组右端不含自变量t 的方程组()dy f y dt= (50) 动力系统 对n 维空间某区域n D R ⊂的D 到D 的含参数t 的同胚映射(变换) ()t y Φ,如满足恒同性()0y y Φ=和可加性()(())121221t t t t t t y y y ΦΦΦΦΦ+==.则称映射()t y Φ为D 上的动力系统.微分方程所定义的动力系统 由驻定微分方程组过n y D R ∈⊂的解(,)t y ϕ可定义动力系统()(,)t y t y ϕΦ=称为微分方程所定义的动力系统.相空间 不含自变量,仅由未知函数组成的空间.轨线 微分方程的解在相空间中的轨迹,即积分曲线在相空间中的投影.驻定微分方程的解在相空间中的轨线互不相交.奇点(平衡解、驻定解) 驻定微分方程组(50)右端函数()f y 的满足()f y 0=的解y y *=称为方程组的平衡解或驻定解,是方程组在相空间中的奇点.垂直、平行等倾斜线 平面一阶驻定微分方程组(,)(,)dx f x y dt dy g x y dt⎧=⎪⎪⎨⎪=⎪⎩ 等价于一阶微分方程(,),((,))(,)dy f x y g x y 0dx g x y =≠ 或 (,),((,))(,)dx g x y f x y 0dy f x y =≠ 在相平面Oxy 上的等倾斜线(,)(,)f x y k g x y =中,k 0=即(,)f x y 0=时的曲线为垂直等倾斜线;k =∞即(,)g x y 0=时的曲线为平行等倾斜线.垂直、平行等倾斜线的交点为奇点.二. 常 微 分 方 程 线 性 奇 点 ( §6.1.3 )平面驻定微分方程组(,)(,)dx X x y dt dy Y x y dt⎧=⎪⎪⎨⎪=⎪⎩ (1) 其中,X Y 对,x y 有连续偏导数.方程组(1)的解(),()x x t y y t ==在欧几里得空间Otxy 表示为一曲线,称为积分曲线.,x y 平面Oxy 称为相平面,积分曲线在相平面上的投影称为轨线.满足(,),(,)X x y 0Y x y 0==的常数,x x y y **==为方程组(1)的解,称为驻定解(常数解),相平面Oxy 上的点(,)x y **称为方程组的奇点.通过线性变换可将方程组(1)的奇点移至Oxy 的原点上,再取其线性项则得方程组(1)的线性近似方程组dx ax by dt dy cx dy dt⎧=+⎪⎪⎨⎪=+⎪⎩ (2) 线性方程组(2)的特征方程为a b 0c d λλ-=- 即,(),2p q 0p a d q ad bc λλ++==-+=- (3)可以通过方程组的系数即特征方程的根表示相平面Oxy 上奇点(原点)附近的轨线图貌,即奇点的类型:(1) q 0≠ (a) q 0< 有两不同符号实根,奇点为鞍点(b1) ,,2q 0p 4q 0p 0>-<> 有两负实根,奇点为稳定结点(b2) ,,2q 0p 4q 0p 0>-<< 有两正实根,奇点为不稳定结点(c1) ,,2q 0p 4q 0p 0>-=> 有一重负实根,奇点为稳定退化或奇结点 (c2) ,,2q 0p 4q 0p 0>-=<有一重正实根,奇点为不稳定退化或奇结点 (d1) ,,2q 0p 4q 0p 0>->>有一对负实部共轭复根,奇点为稳定焦点 (d2) ,,2q 0p 4q 0p 0>-><有一对正实部共轭复根,奇点为不稳定焦点 (e) ,q 0p 0>= 有一对(零实部)共轭虚根,奇点为中心(2) q 0= (a1) p 0> 有单零根和负实根,过奇点有稳定奇线(a2) p 0< 有单零根和正实根,过奇点有不稳定奇线(b) p 0= 有重零根,过奇点有奇线, 奇线上下有不同走向平行轨线(c) a b c d 0==== 奇点充满全平面三. 极 限 环 和 平 面 图 貌 ( §6.1.4 )(1) 极限环 考虑平面驻定微分方程组(,)(,)dx X x y dt dy Y x y dt⎧=⎪⎪⎨⎪=⎪⎩ (1) 其中,X Y 在相平面的某区域G 内有一阶连续偏导数.方程组(1)在相平面上孤立的周期解(闭轨线),且附近的轨线均趋于(离开)该闭轨线时,称此闭轨线为稳定(不稳定)极限环,如附近的轨线一边趋于另一边离开该闭轨线时,则称此闭轨线为半稳定极限环.环域定理 如果G 内存在有界的环形闭域D ,在其内不含方程组(1)的奇点,而(1)的经过D 上的点的解(轨线)(),()x x t y y t ==当0t t ≥(或0t t ≤)时不离开域D .则或者解本身是周期解(闭轨线),或者解正向(或负向)趋于D 内的某一周期解(闭轨线).如果G内存在单连通区域D*,在其内函数X Yx y∂∂+∂∂不变号且在D*内的任何子域内不恒为零.则方程组(1)在域D*内不存在任何周期解(闭轨线),更不存在任何极限环.在相平面分析中除奇点和极限环两种特殊轨线外,还有一种从奇点到奇点的轨线,这类轨线称为分界线.如果一条分界线与一个奇点构成一个环,则称为同宿环(轨).如果一条分界线两端是不同奇点,则分界线称为异宿轨.当多条分界线与多个奇点构成一个环时则称此环为异宿环.(2) Lienerd 方程 ()()22d x dx f x g x 0dt dt++= (2) 记()(),()x 0dx F x f x dx y F x dt==+⎰,方程(2)可化为方程组 (),()dx dy y F x g x dt dt=-=- (3) 定理 假设 (a) (),()f x g x 对一切x 连续,()g x 满足局部利普希茨条件; (b) ()f x 为偶函数,(),()f 00g x <为奇函数,当x 0≠时()xg x 0>; (c) 当x →±∞时(),()F x F x →±∞有唯一正零点x a =,且当x a ≥时()F x 单调增加.则方程(2)有唯一周期解,即方程组(3)有一个稳定极限环.(3) 平面图貌 对平面驻定方程组(1),在相平面上曲线(,),(,)X x y 0Y x y 0==分别表示轨线的垂直等倾斜线和水平等倾斜线.可利用垂直等倾斜线和水平等倾斜线划分出相平面上的不同区域,每一区域内轨线的,x y 方向的右、左及上、下走向是一致的,有(+,+)、(+,-)、(-,+)、(-,-)四种走向,其中括号内第一个+表向上、-表向下,第二个+表向右、-表向左.应用等倾斜线方法可画出方程组(1)的平面轨线图貌.可以用等倾斜线方法分析两种群模型(1)(1)dx rx ax by dt dy sy cx dy dt⎧=--⎪⎪⎨⎪=--⎪⎩ (6.53)其中r a 、和s d 、均为正常数. 而00b 、c >>时为竞争系统, 00b ><、c 或00b 、c <>时为被捕食-捕食系统, 00b 、c <<时则为共生系统.(4) 对一般的两种群竞争系统(,)(,)dx M x y x dt dy N x y y dt⎧=⎪⎪⎨⎪=⎪⎩ (4) 其中x 与y 的相对增长率M 与N 都是非负变量x y 、的连续函数,有连续一阶偏导数,且一种群增长时另一种群的增长率下降,即00M N y x∂∂<<∂∂、而任一种群过多时两种群都不能增长,故存在常数0K >,当x K ≥或y K ≥时(,)0M x y ≤且(,)0N x y ≤.还设只有一种群时,它将按极限增长,即存在常数00a b ><、使得(,0)0;(,0)0;(0,)0;(0,)0.x a M x x a M x y b N y y b N y <>><<>><当时时当时时在上述条件下,可以通过分析相平面上等倾斜线曲线(,)0M x y =和(,)0N x y =的形状及它们之间的关系. 有定理 两种群竞争一般模型(4)的每一条轨线,当t ∞时都趋于有限个平衡点之一.四. 常 微 分 方 程 内 容 提 要第一章 绪论§1.1.1 常微分方程模型1. RLC 电路 包含电阻R 、电感L 、电容C 及电源的电路称RLC 为电路. 电流I 经过电阻R 、电感L 、电容C 的电压降分别为R I 、dI L dt 和QC, Q 为电量,E 、()e t 为电源电压,dQI dt=.应用基尔霍夫(Kirchhoff)第二定律(在闭合回路中,所有支路上的电压的代数和等于零)可列出RLC 为电路的微分方程:dI R E I dt L L+= 221()d I R dI I de t L dt LC L dt dt++= 初始条件为00()I t I =.2. 数学摆 数学摆是系于一根长度为l 的线上而质量为m 的质点M ,在重力的作用下,它在垂直于地面的平面上沿圆周运动. 摆与铅垂线所成的角为ϕ,M 沿圆周的切向速度为v ,d v l dtϕ=.摆的运动方程为22d gsin 0l dtϕϕ+= 微小振动(ϕ较小时,可用ϕ代替sin ϕ):22d g0l dtϕϕ+= 存在阻力时(阻力系数为μ):22d d g 0m dt l dtϕμϕϕ++= 有强迫力()F t 时:()22d d g 1F t m dt l ml dtϕμϕϕ++= 摆的初始状态:当0t =时00,d dtϕϕϕω== 0ϕ代表摆的初始位置,0ω代表摆的初始角速度.3. 人口模型 Malthus 模型:基本假设是:在人口自然增长的过程中,净相对增长率(单位时间内人口的净增长数与人口总数()N t 之比)是常数,记此常数为r (生命系数)dNrN dt= Logistic 模型:荷兰生物学家Verhulst 引入常数m N (环境最大容纳量)用来表示自然资源和环境条件所能容纳的最大人口数,并假设净相对增长率为m N r 1N ⎛⎫- ⎪⎝⎭,即净相对增长率随()N t 的增加而减少,当()m N t N →时,净增长率0→.m dN N r 1N dt N ⎛⎫=- ⎪⎝⎭ 初始条件为0t t =时()0N t N =4. 传染病模型 假设传染病传播其间其地区总人数n 不变.开始时病人数为0x ,在时刻t 的健康人数为()y t , 病人数为()x t ,k 为传染系数. SI 模型:易感染者(Susceptible),已感染者(Infective), 00(),()dxkx n x x x dt =-= SIS 模型:治愈率为μ时,其平均传染期为1μ,接触数为kσμ=,0()()()(),(0)dx t ky t x t x t x x dtμ=-=SIR 模型:病人治愈后不会再被感染,移出者(Removed). 治愈率l ,0000dxkxy lx x x dtdy kxy y y n x dt ⎧=-=⎪⎪⎨⎪=-==-⎪⎩,(),()5. 两生物种群生态模型 甲、乙两种群的数量分别记为,x y . Volterra 模型:分竞争、共生、捕食与被捕食等类型()()dxx a bx cy dtdyy d ex fy dt⎧=++⎪⎪⎨⎪=++⎪⎩一般两种群竞争系统:(,)M x y 与(,)N x y 为相对于x 与y 的增长率(,)(,)dxM x y x dtdy N x y y dt⎧=⎪⎪⎨⎪=⎪⎩ 6. Lorenz 方程()dxa y x dt dycx y xz dt dzxy bz dt⎧=-⎪⎪⎪=--⎨⎪⎪=-⎪⎩气象学家Lorenz 由大气对流现象模型简化,10,8/3,28a b c ===为参数. 被称为混沌(chaos)现象第一例.*7. 化学动力学模型 化学反应体系,内部包含三种化学成分,A B 和.,x A B 是反映物,x 为中间产物,,,A B x 分别代表A 类、B 类和x 类的分子数.Schlogt 单分子化学动力学模型:体系的状态仅由单个变量x 来表征323210dxk x k Ax k x k B dt=-+-+ 双分子化学动力学模型:有两个中间变量,1223dxk Ax k xy dtdyk xy k y dt⎧=-⎪⎪⎨⎪=-⎪⎩三分子化学动力学模型:开放的体系中进行着一系列化学反应,22(1)dxA B x x y dt dyBx x y dt⎧=-++⎪⎪⎨⎪=-⎪⎩*8. 力学系统中的常微分方程模型 有完整约束的力学系统,可以通过引进广义坐标12(,,)n ϕϕϕ 解除约束, 用一个拉格朗日函数1(,)i L q q 刻画系统, 归结为拉格朗日方程0i i d L Ldt qq ∂∂-=∂∂ .引进广义速度12(,,)n v v v =ν ,用广义动量Lp q∂=∂ 代表广义速度v ,再通过拉格朗日变换(,)(,)H q p q p L q q =- ,便得到等价于拉格朗日方程的哈密顿正则方程dq H dt pdp H dt q ∂⎧=⎪∂⎪⎨∂⎪=-⎪∂⎩或 dx Hdt y dy H dt x∂⎧=-⎪∂⎪⎨∂⎪=⎪∂⎩§1.2 常微分方程基本概念微分方程 联系自变量、未知函数及其导数的关系式. 实值微分方程 自变量、未知函数均为实值的微分方程.复值微分方程 未知函数取复值或自变量、未知函数均取复值的微分方程. 常微分方程 只有一个自变量的微分方程.偏微分方程 有两个或两个以上自变量的微分方程. 一阶微分方程 微分方程中未知函数的导数最高为一阶.n 阶微分方程 微分方程中未知函数的导数最高为n 阶,一般形式为n n dy d y F x y 0dx dx ,,,, ⎛⎫= ⎪ ⎪⎝⎭(38) 线性微分方程 n 阶微分方程(38)的左端为,,,n n dy d yy dx dx 的一次有理整式称为线性微分方程.n 阶线性微分方程的一般形式为()()()()n n 11n 1n n n 1d y d y dya x a x a x f x dx dx dx---++++= (39)其中(),,(),()1n a x a x f x 为x 的函数.非线性微分方程 不是线性微分方程的微分方程.(显式)解 使微分方程(38)变为恒等式的函数()y x =ϕ称为方程的解. 隐式解 如微分方程(38)的解()y x =ϕ由关系式(,)x y 0Φ=决定,称(,)x y 0Φ=为微分方程(38)的隐式解.通解 n 阶微分方程(38)的含有n 个独立的任意常数,,,12n c c c 的解(,,,,)12n y x c c c ϕ=隐式通解(通积分) 由含有n 个独立的任意常数,,,12n c c c 的关系式(,,,,,)12n x y c c c 0Φ= 决定的n 阶微分方程(38)的解.定解条件 为确定微分方程的一个特定的解需附加的条件. 定解问题 求微分方程满足定解条件的解的问题. 初值条件 n 阶微分方程(38)的初值条件为当0x x =时,()(),,,n 11n 1000n 1dy d y y y y y dx dx---=== 或写为()()()()(),,,n 11n 1000000n 1dy x d y x y x y y y dx dx ---=== 初值问题 当定解条件为初值条件时的定解问题. 特解 满足定解问题的解. 积分曲线 一阶微分方程(,)dyf x y dx= (47) 的解()y x ϕ=在Oxy 平面上表示为一条曲线,称为微分方程(47)的积分曲线.曲线上的点的斜率dydx值为(,)f x y . 向量场 一阶微分方程(47)的右端函数(,)f x y 定义为在Oxy 平面某区域D 上过各点的小线段(线素)的斜率方向,称域D 为方程(47)所定义的向量场(方向场,线素场).通过向量场可以判断微分方程的解的走向.等倾斜线 向量场中方向相同的曲线(,)f x y k =称为等倾斜线或等斜线. 微分方程组 n 阶微分方程()()(,,',,)n n 1z g t z x z -=可通过变换(),',,n 112n y z y z y z -===化为一阶方程组(,,,),,,,ii 1n dy f t y y i 12n dt==或写成向量形式(,)=dyf t y dt其中n y D R ∈⊂.驻定微分方程组 微分方程组右端不含自变量t 的方程组()dyf y dt = (50) 动力系统 对n 维空间某区域n D R ⊂的D 到D 的含参数t 的同胚映射(变换)()t y Φ,如满足恒同性()0y yΦ=和可加性()(())121221t t t t t t y y y ΦΦΦΦΦ+==.则称映射()t y Φ为D 上的动力系统.微分方程所定义的动力系统 由驻定微分方程组过n y D R ∈⊂的解(,)t y ϕ可定义动力系统()(,)t y t y ϕΦ=称为微分方程所定义的动力系统.相空间 不含自变量,仅由未知函数组成的空间.轨线 微分方程的解在相空间中的轨迹,即积分曲线在相空间中的投影.驻定微分方程的解在相空间中的轨线互不相交.奇点(平衡解、驻定解) 驻定微分方程组(50)右端函数()f y 的满足()f y 0=的解y y *=称为方程组的平衡解或驻定解,是方程组在相空间中的奇点.垂直、平行等倾斜线 平面一阶驻定微分方程组(,)(,)dxf x y dtdy g x y dt⎧=⎪⎪⎨⎪=⎪⎩ 等价于一阶微分方程(,),((,))(,)dy f x y g x y 0dx g x y =≠ 或 (,),((,))(,)dx g x y f x y 0dy f x y =≠ 在相平面Oxy 上的等倾斜线(,)(,)f x y k g x y =中,k 0=即(,)f x y 0=时的曲线为垂直等倾斜线;k =∞即(,)g x y 0=时的曲线为平行等倾斜线.垂直、平行等倾斜线的交点为奇点.雅可比矩阵 n 个变元,,,12n x x x 的m 个函数(,,,),,,,i i 12n y f x x x i 12m ==的雅可比矩阵定义为(,,,)(,,,)111n 12m 12n m m 1n y y xx D y y y D x x x y y x x ∂∂⎡⎤⎢⎥∂∂⎢⎥=⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦雅可比行列式 n 个变元的n 个函数的雅可比矩阵对应的行列式. 函数相关、函数无关 设函数(,,,)(,,,)i i 12n y f x x x i 12m == 及其一阶偏导数在某区域n D R ⊂上连续.如果D 内,,,12m f f f 中的一个函数能表成其余函数的函数,则称它们函数相关;如果它们在D 内任何点的邻域均不是函数相关,则称它们函数无关.如果雅可比矩阵在D 内任何点的秩均小于m ,则,,,12m f f f 函数相关;如其秩均等于m ,则,,,12m f f f 函数无关.当n m =时雅可比行列式不等于零为函数无关.第二章 一阶微分方程的初等解法§2.1 变量分离方程与变量变换 (1) 变量分离方程 ()()dyf xg y dx= 解法:(),()()()dydyf x dx f x dx Cg y g y ==+⎰⎰(2) 齐次方程dy y g dx x ⎛⎫= ⎪⎝⎭解法:变量变换 ,ydy du u x u x dx dx ==+,方程化为变量分离方程()du g u udx x-=(3) 分式线性方程111222a x b y c dy dx a x b y c ++=++ 或 111222a x b y c dy f dx a x b y c ⎛⎫++= ⎪++⎝⎭解法:(ⅰ) 120c c == 情形: 1122ya b dy y x g y dx x a b x+⎛⎫== ⎪⎝⎭+ 属齐次方程. (ⅱ)1122a b k a b == 情形:令22u a x b y =+,方程化为221222()()()k a x b y c dy f u dx a x b y c ++==++ 22()dua b f u dx=+ 属变量分离方程. (ⅲ) 一般情形:先解联立代数方程11122200a x b y c a x b y c ++=⎧⎨++=⎩ 得解 x y αβ=⎧⎨=⎩ 再作代换 X x Y y αβ=-⎧⎨=-⎩ ,则将原方程化为齐次方程 dY Y g dX X ⎛⎫= ⎪⎝⎭§2.2 线性方程与常数变易法 (1) 一阶齐线性方程()dyP x y dx= 用变量分离方法得通解 ()P x dx y ce ⎰= (2) 常数变易法 对一阶非齐线性方程 ()()dyP x y Q x dx=+ 假设有形式解()()P x dxy c x e ⎰= 代入方程化简得 ()()()P x dxc x Q x e dx c -⎰=+⎰ 原方程的通解为()()()P x dxP x dx y e Q x e dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ (3) 伯努利方程()()n dyP x y Q x y dx=+ 变量变换 1n z y -= 化为线性方程求解(1)()(1)()dzn P x z n Q x dx=-+-§2.3 恰当方程与积分因子(1) 恰当方程 将一阶微分方程写成对称形式 (,)(,)0M x y dx N x y dy += 如方程右端恰可表为某函数(,)u x y 的全微分:(,)(,)(,)M x y dx N x y dy du x y +≡ 则称方程为恰当方程.恰当方程的通解为 (,)u x y c =.方程为恰当方程的充分必要条件为M Ny x∂∂=∂∂ ,此时有 (,)(,)(,)u M x y dx N x y M x y dx dy y ⎡⎤∂=+-⎢⎥∂⎣⎦⎰⎰⎰(2) 分项组合全微分方法 将恰当方程的各项分项组合成全微分形式 简单二元函数的全微分: 2(),y d x x d y xy d x x d y d x yd y y ⎛⎫-+== ⎪⎝⎭2,ln ydx xdyy ydx xdyx d d x xy y x ⎛⎫-+-⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 22221,ln2ydx xdy y ydx xdy x yd arctg d x x yx y x y ⎛⎫---⎛⎫== ⎪ ⎪++-⎝⎭⎝⎭(3) 积分因子 如存在连续可微函数(,)x y μ,使得Mdx Ndy du μμ+=则称(,)x y μ为方程0Mdx Ndy +=的积分因子.同一方程可以有不同的积分因子.μ为积分因子的充分必要条件:()()M N y x μμ∂∂=∂∂即M N N M x y y x μμμ⎛⎫∂∂∂∂-=- ⎪∂∂∂∂⎝⎭(4) 单变量积分因子()()x y μμ、 ()x μμ=形式的积分因子的充分必要条件:()M Ny xx Nψ∂∂-∂∂=,此时积分因子为()()x dx x e ψμ⎰=. 同样,()y μμ=形式的积分因子的充分必要条件: ()M Ny xx Mϕ∂∂-∂∂=-,此时积分因子为()()y dyy e ϕμ⎰=.§2.4 一阶隐方程与参数表示一阶隐微分方程形式为 (,,')0F x y y =.(1) (,')y f x y = 令'y p = 对(,')y f x y =取x 微分得f f dp p x p dx∂∂=+∂∂,视为,x p 的一阶微分方程解之,解为(,)p x c ϕ=时原解为(,(,))y f x x c ϕ=;解为(,)x p c ψ=时原解为 (,)((,),)x p c y f p c p ψψ=⎧⎨=⎩. (2) (,')x f y y = 令'y p = 对(,')x f y y =取y 微分得1f f dp p y p dy∂∂=+∂∂,视为,y p 的一阶微分方程解之,解为(,)p y c ϕ=时原解为(,(,))x f y y c ϕ=;解为(,)y p c ψ=时原解为 (,(,))(,)x f y p c y p c ψψ=⎧⎨=⎩. (3) (,')0F x y = 令'y p =,方程化为(,)0F x p =,代表(,)x p 平面上的一条曲线.如有参数解()()x t y t ϕψ=⎧⎨=⎩,则原方程的通解为 ()()'()x t y t t dt c ϕψϕ=⎧⎪⎨=+⎪⎩⎰. (4) (,')0F y y = 令'y p =,方程化为(,)0F y p =,代表(,)y p 平面上的一条曲线.如有参数解()()x t y t ϕψ=⎧⎨=⎩,则原方程的通解为 '()()()t x dt c t y t ϕψψ⎧=+⎪⎨⎪=⎩⎰.第三章 一阶微分方程的解的存在定理§3.1 解的存在唯一性定理与逐步逼近法(1) 微分方程00(,),,dy f x y R x x a y y b dx =-≤-≤: 称(,)f x y 在R 上关于y 满足利普希茨条件,如存在常数0L >满足121222(,)(,),(,)(,)f x y f x y L y y x y x y R -≤-∈、L 称为利普希茨常数.当(,)f x y 在R 上f y∂∂存在且连续,则(,)f x y 在R 上关于y 满足利普希茨条件. 存在唯一性定理1 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dy f x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中 (,)min ,,max (,)x y R b h a M f x y M ∈⎛⎫== ⎪⎝⎭(2) 隐方程 (,,')0F x y y =存在唯一性定理 2 如(,,')F x y y 在'000(,,)x y y 的某邻域中对(,,')x y y 连续且存在连续偏导数,同时''000000(,,)0,(,,)0'F x y y F x y y y ∂=≠∂.则方程(,,')0F x y y =存在唯一解'0000(),(),'()y x x y x y ϕϕϕ===.(3) 逐步迫近法 微分方程(,)dy f x y dx=等价于积分方程00(,)x x y y f x y dx =+⎰ 取00()x y ϕ=,定义001()(,()),1,2,x n n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程.通过逐步迫近法可证明解的存在唯一性.先证积分方程与微分方程等价(命题1);后用数学归纳法证定义的()n x ϕ存在且连续(命题2);再证()n x ϕ在区间一致收敛(命题3);于是()x ϕ是积分方程连续解(命题4);最后,用反证法证解唯一(命题5).(4) 近似计算 逐步迫近法中第n 次近似解()n x ϕ和真解()x ϕ有误差估计式1()()(1)!n n n ML x x h n ϕϕ+-≤+ 可以通过控制h 和n 使上不等式右端误差值足够小,而得到满足误差估计的近似解()n x ϕ.§3.2 解的延拓(1) 局部利普希茨条件 对域称函数(,)f x y 在某区域G 内每一点有以其为中心的完全被含于G 内的闭矩形R 存在,在R 上(,)f x y 关于y 满足利普希茨条件,则称(,)f x y 在G 内满足局部利普希茨条件.(2) 延拓定理 如(,)f x y 在某有界区域G 内连续且关于y 满足局部利普希茨条件,则方程(,)dy f x y dx=的通过G 内任何一点00(,)x y 的解()y x ϕ=可以延拓,直到点(,())x x ϕ任意接近区域G 的边界.(3) 饱和解 方程(,)dy f x y dx=的解()y x ϕ=的定义区间为x αβ<<,且当0x α→+或0x β→-时(,())x x ϕ趋于G 的边界,则称解()y x ϕ=为饱和解.当G 是无界区域时,方程(,)dy f x y dx=的解可能无界,αβ、亦可以是∞∞-、+. (4) 如(,)f x y 在整个x y 平面上定义、连续和有界,且存在关于y 的连续偏导数,则方程(,)dy f x y dx=的任一解均可延拓到区间x -∞<<+∞.§3.3 解对初值的连续性和可微性定理(1) 解对初值的对称性定理 设方程(,)dy f x y dx =的满足初值条件00()y x y =的解是唯一的,记为00(,,)y x x y ϕ=,则(,)x y 与00(,)x y 对称,即有00(,,)y x x y ϕ=.(2) 解对初值的连续依赖定理 如(,)f x y 在域G 内连续且关于y 满足局部利普希茨条件,0000(,),(,,)x y G y x x y ϕ∈=是方程(,)dy f x y dx=的满足初值条件00()y x y =的解,在区间a x b ≤≤上有定义(0a x b ≤≤),则对任0ε>,有(,,)a b δδε=,使得当2220000()()x x y y δ-+-≤时方程(,)dy f x y dx=的满足条件00()y x y =的解00(,,)y x x y ϕ=在区间a x b ≤≤上也有定义,且0000(,,)(,,),x x y x x y a x b ϕϕε-<≤≤解对初值的连续性定理 如(,)f x y 在域G 内连续且关于y 满足局部利普希茨条件,则方程(,)dy f x y dx=的解00(,,)y x x y ϕ=作为00,,x x y 的函数在它的存在范围内是连续的. (3) 解对初值的可微性定理 如(,)f x y 和f y ∂∂在域G 内连续,则方程(,)dy f x y dx =的解00(,,)y x x y ϕ=作为00,,x x y 的函数在它的存在范围内是连续可微的.(4) 含参数微分方程(,,)dy f x y dxλ=,用G λ表示域:(,),G x y G λαλβ∈<<: 如(,,)f x y λ在域G λ内连续且关于y 满足局部利普希茨条件,当其利普希茨常数L 与λ无关时称为G λ内一致地关于y 满足局部利普希茨条件.含参数方程的解对初值和参数的连续依赖定理 如(,,)f x y λ在域G λ内连续且在G λ内一致地关于y 满足局部利普希茨条件,000000(,,),(,,,)x y G y x x y λλϕλ∈=是方程(,,)dy f x y dxλ=的通过点000(,,)x y G λλ∈的解,在区间a x b ≤≤上有定义(0a x b ≤≤),则对任0ε>,有(,,,,)a b δδεαβ=,使得当2222000000()()()x x y y λλδ-+-+-≤时方程(,,)dy f x y dxλ=的通过点000(,,)x y Gλλ∈的解000(,,,)y x x y ϕλ=,在区间a x b ≤≤上也有定义,且 000000(,,,)(,,,),x x y x x y a x b ϕλϕλε-<≤≤含参数方程的解对初值的连续性定理 如(,,)f x y λ在域G λ内连续且在G λ内一致地关于y 满足局部利普希茨条件,则方程(,,)dy f x y dxλ=的解000(,,,)y x x y ϕλ=作为000,,,x x y λ的函数在它的存在范围内是连续的.§3.4* 奇解(1) 包络 对单参数曲线族(,,)0x y c Φ=其中c 是参数, Φ是x y c 、、的连续可微函数. 曲线族的包络曲线指它本身在曲线族中,但过包络曲线的每一点有曲线族中向一条曲线在该点与其相切.(2)c -判别曲线 曲线族0Φ=的包络存在于下两方程'(,,)0(,,)0c x y c x y c Φ=⎧⎪⎨Φ=⎪⎩ 消去c 而得的曲线中,称为c -判别曲线.c -判别曲线需通过实际检验才能确定是否是曲线族的包络.(2) 奇解 奇解是微分方程的解,但其解曲线上每一点处唯一性不成立. 奇解定理 一阶微分方程的通解的包络如存在,则它是奇解.反之亦然.(3) 隐微分方程,,0dy F x y dx ⎛⎫= ⎪⎝⎭的奇解,被包含在方程组 '(,,)0(,,)0pF x y p F x y p =⎧⎪⎨=⎪⎩ 消去p 而得的曲线 (称为p -判别曲线) 中.需通过实际检验才能确定是否是奇解.(4) 克莱罗方程 (),dy y xp f p p dx=+= (()f p 连续可微) 的通解是一直线族()y cx f c =+.此直线族的包络为方程的奇解.可用c -判别曲线求其包络(奇解).§3.5 数值解(1)求微分方程的初值问题00(,),()dy f x y y x y dx == (3.39)的解y y x =(),从初值条件00y x y ()=出发,按照一定的步长h ,依某种方法逐步计算微分方程解y x ()的值n n y y x ()=,这里0h x x n h =+⋅.这样求出的解称为数值解.用一种方法,其局部截断误差为步长h 的1()p O h +时称此方法有p 阶精度.(2) 欧拉公式(1阶精度): 10(,),n n n n n y y h f x y x x n h +=+⋅=+⋅ 改进的欧拉方法(2阶精度): 11112(,),((,)(,))n n n n n n n n n n h y y h f x y y y f x y f x y ++++=+⋅=++ (3) r 段(阶)龙格-库塔方法:11rn n i i i y y h k λ+==+∑112(,),,,j j n j n js s s k f x d h y h k j r β-==++=∑二阶龙格-库塔公式(2阶精度):2r =, 1221222111,,22d d d λλβ=-== 四阶龙格-库塔公式(4阶精度):4r =112341213243(22)6(,)(,)22(,)22(,)i i i i i i i i i i h y y k k k k k f x y h h k f x y k h h k f x y k k f x h y hk +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩(4) 相容性:当0h →时平均斜率趋近真正斜率.局部截断误差为p 阶时相容称为p 阶相容.收敛性:当0h →时计算公式收敛于精确解.整体误差()n n n e y x y =-(在整个区间0[,]n x x ).p 阶收敛:如存在正数M ,其整体误差p n e Mh ≤.定理 不计舍入误差时,p 阶相容的方法一定是p 阶收敛的.(5) 刚性问题:微分方程组的初值问题中方程组的解的各分量值存在数量级的差别.微分方程组线性近似部分其特征值实部的绝对值中最大与最小之比称为刚性比.刚性比很大的刚性问题其数值方法与常规数值方法有所不同.第四章 高阶微分方程§4.1 线性微分方程的一般理论(1) 基本概念 n 阶非次齐线性微分方程(非齐线性方程)1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt---++++= (1) 当非齐次线性方程(1)中函数()0f t ≡时称为n 阶齐次线性微分方程(齐线性方程)1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt---++++= (2) 伏朗斯基行列式(函数()(1,,)i x t i k = 在区间a t b ≤≤可微1k -次)12'''1212(1)(1)(1)12()()()()()()()[(),(),,()]()()()k k k k k k k x t x t x t x t x t x t W t W x t x t x t x t x t x t ---==线性相关:对定义在区间a t b ≤≤上的函数()(1,,)i x t i k = ,如存在不全为零的常数(1,,)i c i k = ,使得在整个区间a t b ≤≤上恒成立1122()()()0k k c x t c x t c x t +++≡ ,不是线性相关的函数()(1,,)i x t i k = 称为在所给区间上线性无关. 基本解组(基解组) n 阶齐次线性方程(2)的一组n 个线性无关解.(2) 齐次线性方程基本性质:(a) 存在唯一性 设()(1,,)i a t i k = 区间a t b ≤≤上连续,则对任0[,]t a b ∈及任意初值(1)(1)000,,,n x x x - ,方程(1) 存在唯一解()x t ϕ=定义于区间a t b ≤≤上,且满足初始条件1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== . 注意 00()()k k k k t t d t d t dt dt ϕϕ==. (b) 叠加原理 对方程(2)的k 个解12(),(),,()k x t x t x t 的线性组合1122()()()k k c x t c x t c x t +++也是方程(2)的解.其中12,,,k c c c 为任意常数.(c) 定理 若函数12(),(),,()n x t x t x t 在区间a t b ≤≤上线性相关或无关,则在区间a t b ≤≤上它们的伏朗斯基行列式()0W t ≡或恒不为零.(d) 齐次线性方程(2)的基本解组的伏朗斯基行列式恒不为零.(e) 通解结构 设12(),(),,()n x t x t x t 是齐次线性方程(2)的一个基本解组.则齐次线性方程(2)的通解可表为1122()()()n n x c x t c x t c x t =+++ (3)其中12,,,k c c c 为任意常数.通解包括了齐次线性方程(2)的所有解.(3)非齐次线性方程基本性质:(a) 存在唯一性 设()(1,,)i a t i k = 和()f t 区间a t b ≤≤上连续,则对任0[,]t a b ∈及任意初值(1)(1)000,,,n x x x - ,方程(1) 存在唯一解()x t ϕ=定义于区间a t b ≤≤上,且满足初始条件1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== . (b) 如(),()x t x t 分别为n 阶线性方程(1),(2)的解,则()()x t x t +也是方程(1)的解.如12(),()x t x t 均为方程(1)的解,则12()()x t x t -是方程(2)的解.(c) 通解结构 设12(),(),,()n x t x t x t 是齐次线性方程(2)的一个基本解组.()x t 是方程(1)的某一解(特解).则非齐次线性方程(1)的通解可表为1122()()()()n n x c x t c x t c x t x t =++++其中12,,,k c c c 为任意常数.反之,对方程(1)的所有解,必存在常数12,,,k c c c ,表为上述形式.(d) 常数变易法 当已知方程(2)的一个基本解组12(),(),,()n x t x t x t 时,可用常数变易法求得方程(1)的解11()()()n ni i i i i i x x t x t t dt γϕ===+∑∑⎰其中()i t ϕ为由n 次微分通解式(3)得到的n 个方程。
1 常微分方程的基本知识
常微分方程的基本知识 线性微分方程组理论 高阶线性微分方程
2007年8月 南京航空航天大学 理学院 数学系 1
一. 什么是微分方程?
方 程: 含有未知量的等式. 未知量是数. 代数方程 超越方程: 函数方程: 微分方程:
含有自变量,未知函数及其导数的等式。
未知量是函数.
2007年8月
南京航空航天大学 理学院 数学系
dy dny 则称y (x) 为方程 F(x, y, , , n ) 0 dx dx 在I上的一个(显式)解.
微分方程的解: 代入微分方程能使方程成为恒等式的函数.
2007年8月 南京航空航天大学 理学院 数学系 13
例: 验证y sinx, y cosx都是微分方程
y y 0在(,)上的一个解.
2
微分方程:
联系着自变量,未知函数及其导数的关系式.
为了定量地研究一些实际问题的变化规律,往往是 要对所研究的问题进行适当的简化和假设,建立数学 模型,当问题涉及变量的变化率时,该模型就是微分方 程。
2007年8月
南京航空航天大学 理学院 数学系
3
例 1 一 曲 线 通 过 点 (1,2), 且 在 该 曲 线 上 任 一 点
2007年8月
南京航空航天大学 理学院 数学系
20
定解条件
为了从通解中得到合乎要求的特解,必须根据实 际问题给微分方程附加一定的条件,称为定解条件. 求满足定解条件的求解问题称为定解问题. 常见的定解条件是初始条件,相应的定解问题称 为初值问题。
过定点且在定点的切线 y f ( x, y, y) 二阶: ( x x y01) 的斜率为定值的积分曲线. y x x0 y0 , y 0
常微分第一章
dt L
论
初值条件为 I t0 I0.
§1 常微分方程模型
(2) RLC电路
第
设R、L、C是常数, 电源电压e(t)是时间t的函
一 数. 当开关合上后有关系式
章
e(t) L d I RI Q ,
dt
C
绪 上式两边求导
论
d2 I dt2
R L
dI dt
I LC
d e(t) . dt
一般的两种群竞争系统模型
第 一 章
d x d t
M
(x,
y)x,
d
y
d t
N (x,
y) y,
绪 这里M(x, y), N(x, y)为相对于x与y的增长率.
论
§1 常微分方程模型
例6 Lorenz方程
第 一 章
d x
d
t
a( y
x),
绪
d y
d
t
xz
论
dy x
dx y
y 1 x2 y 1 x2 x2 y2 1
§2 概念及历史
含有n个独立的任意常数c1, c2 , , cn的解
第
y x, c1, c2, , cn
一
章 称为n阶方程(1.38)的通解.
注 解对常数的独立性是指: 及其直到n 1阶
d
y
d t
y(c
dx).
§1 常微分方程模型
竞争模型
第
假设种群甲和乙的数量分别为x, y, 则种群相
一 章
互竞争同一资源时的生长情况的模型为
常微分方程(王高雄)第三版
当定解条件是初始条件时,相应的定解问题称为初值问题. .
注1:n阶微分方程的初始条件有时也可写为
注2y : (求 x 0 ) n阶 y 微 0 ,d 分d (x 方 0 y ) : Fx 程(xy ,0 (1 y),, ddyx,,d (,n d dd1 ) nxn y ny ( )1 x x 0 ) 0, 满y 0 ( 足 n 1 )条件
例1:下列关系式都是微分方程
(1) dy 2x; dx
(2x)d y yd0 x;
(3) dd22txtxddxt3x0;
(4) d4x5d2x3xsitn; d4t d2t
(5) z z z ; x y
(6) 2u2uxyuz0. x2 y2
.
1.常微分方程 如果在一个微分方程中,自变量的个数只有一个,
如果微分方程的隐式解中含有任意常数,且所 含的相互独立的任意常数的个数与微分方程的 阶数相同,则称这样的解为该 方程的隐式通解.
.
定义6 在通解中给任意常数以确定的值而得到的解 称为方程的特解.
例如 ysixn,y co x都 s 是 y"方 y0 的 程特 . 可在 y通 c1sixn 解 c2co x中 s 分别 c11,c20,得到 : ysinx, c10,c21,得到 : ycox.s
dx 所规定的方向场.
在方向场中,方向相同的点的几何轨迹称为等斜线.
方 d程 yf(x ,y)的等 ,f(x 斜 ,y) k,线 其 k 为 为 中 .参 dx
.
方向场画法:适当画出若干条等斜线,再在每条等斜线上适当 选取若干个点画出对应的向量,这样即可画出这个方向场.
常微分方程PPT
− kv( 负号 表示 阻力与运动方向相反 k 为常数) 另外, , 为常数) 另外, .
受重力P = mg作用 故由牛顿 作用, 伞在下降过程中还 , 第二定律 dv v 初始条件: 于是, 初始条件: |t=0 = 0于是, 得m = mg − kv且有 所给问题归 dt 结为求解初值问题 dv m = mg − kv, dt v |t=0 = 0,
(2)
两边积分得 ln y = ln x + lnC
所以,齐次方程( 所以,齐次方程(2) 的通解为
,即 ,即
y = Cx
ln y = lnCx
(3)
C 将通解中的任意常数C 换成待定函数 (x) ,即令 y = C(x)x 为方程(1)的通解,将其代入方程(1)得 为方程( 的通解,将其代入方程(1) (1)得 xC '(x) = ln x.于是
所以
1 ′(x) = ln x, C x ln x 1 C(x) = ∫ dx = ∫ ln xdln x = (ln x)2 + C, x 2
求 (3), 原 程 通 为 将所 的C(x)的 入 (3),得 方 的 解 代 式
x y = (ln x)2 + Cx. 2
二、可降阶的高阶微分方程
1. y(n) = f (x)型的微分方程
所以, 是所给微分方程的解. 所以,函数y = C1ex +C2e2x 是所给微分方程的解.又因 , 个 中 两 独 的 意 数, 为 这 解 有 个 立 任 常 , 方 的 数 数 与 程 阶 相 所以它是所给微分方程的通解. 同,所以它是所给微分方程的通解 .
始 件 由初 条 y(0) = 0, 们 C1 +C2 = 0 , 初始 件 我 得 由 条
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程组的定义和基本概念常微分方程组,简称ODE系统,是指形如以下形式的方程集合:
$$\begin{cases}
\dfrac{dx_1(t)}{dt} = F_1(x_1(t),x_2(t),\cdots,x_n(t),t) \\
\dfrac{dx_2(t)}{dt} = F_2(x_1(t),x_2(t),\cdots,x_n(t),t) \\
\vdots \\
\dfrac{dx_n(t)}{dt} = F_n(x_1(t),x_2(t),\cdots,x_n(t),t)
\end{cases}$$
其中 $\dfrac{dx_i(t)}{dt}$ 表示 $x_i(t)$ 对时间的导数,
$F_i$ 是关于 $x_1,\cdots,x_n,t$ 的函数。
这种形式通常称为矢量形式,也可以写成分量形式:
$$\begin{cases}
\dfrac{dx_1(t)}{dt} = f_1(x_1(t),x_2(t),\cdots,x_n(t),t) \\
\dfrac{dx_2(t)}{dt} = f_2(x_1(t),x_2(t),\cdots,x_n(t),t) \\
\vdots \\
\dfrac{dx_n(t)}{dt} = f_n(x_1(t),x_2(t),\cdots,x_n(t),t)
\end{cases}$$
其中 $f_i$ 分别表示 $F_i$ 在 $x_i$ 上的投影。
ODE系统的解是 $x_1(t),x_2(t),\cdots,x_n(t)$ 在给定初值
$x_1(t_0),x_2(t_0),\cdots,x_n(t_0)$ 的条件下对于 $t \geq t_0$ 的函数。
常微分方程组是数学中的一个重要分支,它在物理、工程、生物、经济等众多领域都有应用。
本文将简单介绍常微分方程组的一些基本概念,包括常微分方程组分类、初值问题、线性常微分方程组、稳定性和相图等。
一、常微分方程组分类
在常微分方程组中,根据函数 $F_i$ 的性质和数量关系,可以将其分成不同的类型,包括:
1.自治ODE系统
如果 $F_i$ 不显含时间 $t$,即
$$\begin{cases}
\dfrac{dx_1}{dt} = F_1(x_1,x_2,\cdots,x_n) \\
\dfrac{dx_2}{dt} = F_2(x_1,x_2,\cdots,x_n) \\
\vdots \\
\dfrac{dx_n}{dt} = F_n(x_1,x_2,\cdots,x_n)
\end{cases}$$
则称其为自治ODE系统。
2.具有时滞的ODE系统
如果 $F_i$ 和 $x_i(t)$ 有时滞关系,即
$F_i(x_1(t),x_2(t),\cdots,x_n(t),t)$ 中出现 $x_i(t-\tau)$ 的形式,则称其为具有时滞的ODE系统。
3.混合ODE系统
混合ODE系统是指同时存在自治ODE系统和具有时滞的ODE 系统的情况。
二、初值问题
常微分方程组的初值问题是指给出各变量在某一时刻 $t_0$ 的初值 $x_1(t_0),x_2(t_0),\cdots,x_n(t_0)$,求解在 $t \geq t_0$ 时刻下变量的取值 $x_1(t),x_2(t),\cdots,x_n(t)$ 的问题。
解初值问题需要满足以下条件:
1.存在性
即保证存在每个变量的解 $x_1(t),x_2(t),\cdots,x_n(t)$ 在 $t \geq t_0$ 时刻有定义。
2.唯一性
即保证 $t \geq t_0$ 时刻内每个变量的解是唯一的。
3.连续依赖性
即保证初值 $x_1(t_0),x_2(t_0),\cdots,x_n(t_0)$ 的微小变化会导致解的微小变化,这个性质被称为“初值的连续依赖性”。
三、线性常微分方程组
线性ODE系统是指它可以写成以下形式:
$$\dfrac{d\boldsymbol{X}}{dt} =
\boldsymbol{A}(t)\boldsymbol{X}(t) + \boldsymbol{F}(t)$$
其中 $\boldsymbol{X}(t) = [x_1(t),x_2(t),\cdots,x_n(t)]^T$,$\boldsymbol{A}(t)$ 是 $n \times n$ 的常数矩阵,
$\boldsymbol{F}(t)$ 是 $n \times 1$ 的向量函数。
如果 $\boldsymbol{F}(t) = \boldsymbol{0}$,则此时
$\boldsymbol{X}(t)$ 是齐次线性ODE系统的解,对应的
$\boldsymbol{A}(t)$ 被称为系统矩阵;否则
$\boldsymbol{X}(t)$ 是非齐次线性ODE系统的解。
对于齐次线性ODE系统,由于矩阵 $\boldsymbol{A}(t)$ 是常数矩阵,因此可以求得相应的常系数线性ODE系统解析解;而对于非齐次线性
ODE系统,需要使用变量分离法、叠加原理和常数变易法等方法
求解。
四、稳定性和相图
在常微分方程组中,同一个ODE系统可能存在不同的解,而
它们的解的稳定性成为ODE系统的重要性质之一。
ODE系统的一个解是稳定的,是指在给定某种条件下,任何与该解非常接近的
初始解都会收敛到该解;反之,它就是不稳定的。
通过绘制ODE系统的相图,可以更清晰地了解其解的稳定性。
相图是在变量空间中绘制的一组轨迹,它反映了ODE系统解的各
个可能变化情况。
为了绘制相图,需要将ODE系统中的连续时间
转化为离散时间,然后对某个时间步长进行数值模拟,绘制出每
个方向的变化轨迹。
总之,常微分方程组是一个极为重要的数学分支,其理论和应
用价值都极高。
在实际工作和学习中,我们需要逐步加深对于
ODE系统的分类、初值问题、线性ODE系统、稳定性和相图等基本概念的理解,才能更好地应用常微分方程组解决实际问题。