机器人行走结构
双足行走机器人知识点总结

双足行走机器人知识点总结一、概述双足行走机器人是一种仿生机器人,模拟人类的行走方式,具有独特的工作原理和技术特点。
双足行走机器人的出现,不仅是人工智能和机器人技术的进步,也是对人类步行机理的深入研究和模拟。
双足行走机器人在军事、医疗、救援、娱乐等领域有着广泛的应用前景,具有较高的研究和开发价值。
本文将对双足行走机器人的相关知识点进行总结,包括其工作原理、技术特点、应用领域、研究进展等方面的内容。
二、工作原理双足行走机器人的工作原理主要包括下面几个方面:1. 仿生学原理双足行走机器人的设计初衷是模拟人类的行走方式,因此其工作原理主要受到仿生学的影响。
通过对人类步行过程和髋关节、膝关节等关节运动原理的研究,获得了双足行走机器人的灵感和设计方向。
2. 动力学原理双足行走机器人的行走是由电动机、液压系统或气动系统提供动力,通过控制步进和踢腿的方式,实现机器人步态的模拟。
通过对机械结构的精确设计和动力学方程的优化计算,提高了双足行走机器人的步行效率和稳定性。
3. 控制原理双足行走机器人的控制系统是其核心技术之一,包括硬件控制和软件控制两方面。
在硬件控制方面,采用传感器检测地面状态和机器人姿态,实现对机器人动作的精确控制;在软件控制方面,采用运动规划和动力学优化算法,实现机器人稳定行走和适应不同地形的能力。
4. 感知与决策双足行走机器人的感知与决策系统是其智能化的重要组成部分,包括视觉、声音、激光雷达等传感器,以及路径规划、障碍避障等决策算法。
通过对环境信息的感知和对行为的决策,实现双足行走机器人在复杂环境中的稳定行走和智能导航。
三、技术特点双足行走机器人具有以下技术特点:1. 多关节结构双足行走机器人与传统的轮式机器人相比,具有更加复杂的多关节结构,可以实现更加灵活的步态和更加复杂的动作。
通过对关节结构和驱动方式的优化设计,提高了机器人的运动性能和动态稳定性。
2. 动力系统双足行走机器人的动力系统包括电动机、液压系统或气动系统,可以实现不同的步态演示和负重运输。
机器人的组成结构(PPT52页)

• 机器人一环境交互系统 机器人一环境交互系统是实现机器人与外部环境中的设备相 互联系和协调的系统.机器人与外部设备集成为一个功能单 元,如加工制造单元、焊接单元、装配单元等
度,即重复度。
培训专用
工作空间(Working space):机器人手腕 参考点或末端操作器安装点(不包括末端 操作器)所能到达的所有空间区域,一般 不包括末端操作器本身所能到达的区域。
培训专用
工业机器人的机械结构
工业机器人的机械本体类似于具备上肢机能的机械手 ,由 手部、腕部、臂、机身(有的包括行走机构)组成。
培训专用
• 正弦波电动机(交流无刷伺 服电动机):顾名思义,它 是由正弦波电流驱动的。对 三相情况,电流相位差 120。,而且这三相电流是 随转子位置不同而不同的, 也就是说,转子的位置检测 需更精确,驱动电路也比梯 形波电动机的更复杂,但却 代表着无刷电动机最高水平, 因为它能保持恒定转矩输出
培训专用
加入速度反馈。一般直流电动机和位置反馈、速度反馈形成 一个整体,即通常所说的直流伺服电机。由于采用闭环伺 服控制,所以能实现平滑的控制和产生大的力矩
• 当今大部分机器人都采用直流伺服电机驱动机器人的各个关节, 但它们也有一些缺点,如转速不能太高
• 近年来,新发展起来的无刷直(交)流伺服电动机克服了 上述缺点,并保留了直流伺服电动机的优点,因此无刷电 动机逐渐取代了直流伺服电动机
培训专用
相关术语及性能指标
双足机器人走路原理

双足机器人走路原理
双足机器人是一种仿生机器人,可以模拟人类的行走方式。
它的行走原理基于人类行走的基本原理,即重心移动和步伐控制。
在双足机器人行走时,它需要保持平衡,这意味着它必须在每个时刻都能够控制自己的重心。
重心是指物体整体重力作用的中心点,双足机器人的重心位置直接影响着它的稳定性。
因此,双足机器人在行走时需要不断地调整重心位置。
步伐控制是双足机器人行走的另一个关键因素。
步伐是指双足机器人在行走中的步长和步频。
在行走过程中,双足机器人需要根据不同的速度和路线来调整步伐。
步伐控制通常由一个控制器来实现。
在双足机器人的行走中,还有一些其他因素也需要考虑,例如地形和外部环境。
为了让双足机器人能够适应不同的地形和环境,需要对其行走算法进行优化和调整。
总的来说,双足机器人的行走原理是基于人类行走的基本原理,并且需要考虑重心控制、步伐控制、地形和环境等因素。
这些因素共同作用,使得双足机器人能够实现高效的行走。
- 1 -。
双足机器人步行原理

双足机器人步行原理
双足机器人步行原理基于仿生学和机器人控制理论,旨在模拟人类的步行运动。
它主要基于以下原理和控制策略:
1. 动态平衡控制:双足机器人在行走过程中需要保持动态平衡,这意味着机器人需要时刻根据自身的姿态、行走速度和地面情况来调整步态和控制力矩,以保持机体的稳定。
2. 步态规划:双足机器人的步态规划决定了每一步腿的运动轨迹和步频。
一般来说,机器人上半身的重心会向前倾斜,然后交替迈步。
步态规划需要考虑腿部的受力、身体姿态、地面摩擦力等多个因素。
3. 步态控制:基于步态规划,机器人需要实现对每一步的力矩控制和低级关节控制。
这意味着机器人需要根据颈部、腰部、髋部、膝关节和脚踝关节的传感器反馈信息来调整关节的输出力和控制策略。
4. 感知与反馈:双足机器人需要运用各种传感器来感知自身的状态和周围环境,例如倾斜传感器、压力传感器、陀螺仪等。
这些传感器的数据能够提供给控制系统供其根据需要调整步行姿势和控制力矩。
5. 动力学控制:双足机器人需要考虑自身的动力学特性,以及地面反作用力的影响。
动力学控制通过综合各种传感器信息和动力学模型来计算机器人每一步所需的力矩,以提供足够的力量来维持步行。
综上所述,双足机器人步行的原理涉及动态平衡控制、步态规划、步态控制、感知与反馈以及动力学控制等多个方面。
通过精确的控制策略和高度集成的感知系统,机器人能够模拟人类的步行运动,并具备稳定的步行能力。
论述典型机器人构型

论述典型机器人构型机器人构型是指机器人的外形和结构设计,不同的机器人构型适用于不同的任务和环境。
以下将从人类视角出发,介绍几种典型的机器人构型。
首先是人形机器人。
人形机器人是模仿人类外貌和行为设计的机器人,可以在人类活动的环境中执行各种任务。
人形机器人通常具备类似于人类的头、躯干、四肢等部件,能够模仿人类的步态和动作。
这种机器人构型在服务机器人、助力机器人等领域有广泛的应用。
例如,某些人形机器人可以在医院中扮演陪护员的角色,给病人提供日常生活的帮助。
其次是轮式机器人。
轮式机器人是使用轮子作为运动装置的机器人,可以在平面上自由移动。
这种构型的机器人通常具有一个或多个轮子,可以通过控制轮子的转动来改变自身的位置和方向。
轮式机器人适用于需要大范围移动的任务,如巡逻、搬运等。
例如,某些轮式机器人可以在仓库中自动搬运货物,提高工作效率。
另外一种典型的机器人构型是足式机器人。
足式机器人使用类似于动物的腿部结构作为运动装置,可以在复杂的环境中行走、攀爬等。
足式机器人的腿部结构通常具有多个关节,可以灵活地调整姿态和步态。
这种机器人构型适用于需要在不规则地形中执行任务的场景,如救援、勘察等。
例如,某些足式机器人可以在山区进行救援行动,到达人类难以到达的地方。
还有一种常见的机器人构型是飞行器机器人。
飞行器机器人是通过飞行装置实现空中运动的机器人,可以在空中进行巡航、侦查等任务。
飞行器机器人通常具有旋翼或喷气等飞行装置,可以垂直起降和自由飞行。
这种机器人构型适用于需要快速到达目的地或在高空进行观测的应用,如无人机。
例如,某些飞行器机器人可以在灾区进行空中勘察,提供救援人员所需的信息。
机器人构型的选择应根据任务和环境的需求来确定。
人形机器人、轮式机器人、足式机器人和飞行器机器人是常见的典型机器人构型,它们各自适用于不同的场景和任务。
通过合理选择和设计机器人构型,可以提高机器人的适应性和效率,使其在各种任务中发挥更大的作用。
柔性制造系统中机器人行走系统的结构设计

收 稿 日期 : 2 0 1 3 — 0 5 — 1 3
作者简介 : 杨 天时 ( 1 9 8 7 一) , 男, 硕士研 究生; 张伯俊 ( 1 9 5 6 一) , 男, 教授 , 博士 , 硕士生导师, 研 究方 向为车辆动力学
中 图 分类 号 : T P 2 4 2 文献 标 识 码 : A 文章 编 号 : 2 0 9 5 —0 9 2 6( 2 0 1 3 ) 0 3— 0 0 2 6 —0 3
De s i g n o f r o bo t wa l k i n g s y s t e m i n le f x i bl e ma nu f a c t u r i ng s y s t e m
Y A N G T i a n - s h i , Z H A N G B o - j u n
( S c h o o l o f Me c h a n i c a l E n g i n e e r i n g , T i a n j i n U n i v e r s i t y o f T e c h n o l o g y a n dE d u c a t i o n , T i a n j i n 3 0 0 2 2 2 , C h i n a )
第2 3卷
第 3期
天
津
职
业
技
术
师
范
大
3
S e p. 2 01 3
2 01 3年 9月
J O URNAL 0F T I ANJ I N UNI VERS r r Y OF T EC HN0L OGY AND ED UCA TI ON
a n a l ys i s
机 器人 行 走 系 统是 柔 性 制 造 系 统 中物 流 运 输 系 统 的 关键 组 成 部 分 ,将 搬 运 机 器 人 放 置 在行 走 系 统 中, 能 够实 现 物料 在加 工 机 床之 间 以及 存储 站 与 机床 之 间 的 运输 、 搬运 、 存 放 等 工作 , 将分散 的、 相 互 独立 的加 工 及 物料 装卸 、 存 储 等设 备 联 系成 一体 。本文
长行程机器人地轨的结构分析
■设备管理与改造!Shebei Guanli yu Gaizao长行程机器人地轨的结构分析王志挺(广州明珞汽车装备有限公司,广东广州510530)摘要#在介绍长行程机器人地轨工作原理的基础上,对其结构组成进行了详细分析。
此类地轨适用于机床工件上下料、焊接、装 配、喷涂、检验、铸造、锻压、热处理、金属切削加工、搬运、码垛等工作,能够满足工厂自动化生产线的 。
关键词'机器人;地轨 机 机;长行程0引言机器人地轨又称机器人行走、机器人外、第七轴,其 作用主要是带动工业机器人,使其能在 线上进行动,机器人的作 ,提高机器人的使用 。
机器人,机器人装在动的基上轨装置进行线运动的行走 装置。
用线轨 加作在机器人作 动工件/工,用于搬运、焊、弧焊等机器人作。
它能 生产线上的生产 化,有了线导轨,进行长 的动,作 。
另加的工作,用机器人的 进行 ,此 加外的。
地轨 的结构件焊接构成 加工,直线导轨 化 处理,标配的A P E X行 配厂、机,动 可成在基 上。
1工作原理是 结构的线 动机器人的 ,件 机器人 。
机器人 装在动的B A S E上,机器人 柜 给动提供能及控制信号,动 驱动装、交流 机及机 装在轨底上的沿线轨方向驱动。
动 的运动范围由可编程的软件限位开关限制及机械止挡限位加以保护。
2结构组成机器人地轨主要由5部分组成:机器人、地轨底座、驱动装置、动力滑台、长行程拖链(图1)。
2.1地轨底座2.1.1地轨底座的组成2.1.1.1支撑底板支撑 M20化学锚栓固定在地面上,底座通过支撑座上的支撑螺杆 调节螺杆调线轨的高度及 ,调试完成后,底 支撑座用配焊块焊接固定,防止底座晃动。
2.1.1.2超程开关在机器人 软限位失的情况下,动力滑台触发超程开关后发出信号,机停止。
2.1.1.3--机械限位在软限位失效的情况下,通过机械硬限位阻止动力滑台冲出滑轨底。
2.1.1.4原点校正块又称“机械原”,设机器人动的位原点作为气原,当气原丢失时,机械原找回校正气原点(注意:当原设校正完成后,原校正必须从其装支上拆下,装在支 装面上,防止动 撞击支座变 致原位偏)。
四足步行机器人步态规划及稳定性分析
四足步行机器人步态规划及稳定性分析四足步行机器人是一种模仿动物步态的机器人,具有四个腿部,通过模拟动物行走方式实现机器人的移动。
步态规划是指确定机器人在行走过程中每个时刻各腿的位置和运动轨迹的过程。
稳定性分析是指机器人在行走过程中保持稳定的能力。
四足步行机器人的步态规划可以分为静态和动态两种方式。
静态步态规划是指机器人每一步的位置和姿态都是固定的,适用于行走速度较慢的情况。
动态步态规划是指机器人在行走过程中通过改变腿部的位置和姿态来保持平衡,适用于行走速度较快的情况。
在静态步态规划中,可以使用逆向动力学方法来确定机器人每个时刻各腿的位置和姿态。
首先,需要确定机器人的质心轨迹,然后根据机器人的动力学模型计算每个时刻各腿的位置和姿态,确保机器人的质心保持平衡。
在动态步态规划中,可以使用运动规划和控制方法来确定机器人每个时刻各腿的位置和姿态。
首先,需要确定机器人的期望轨迹,然后使用运动规划方法来生成机器人的轨迹。
接下来,使用控制方法来调整机器人的腿部位置和姿态,确保机器人的质心保持平衡。
稳定性分析是确保机器人在行走过程中保持平衡的重要部分。
稳定性分析可以通过线性和非线性控制方法来实现。
线性控制方法是指根据机器人的线性模型进行控制,通过调整机器人的控制参数来保持平衡。
非线性控制方法是指根据机器人的非线性模型进行控制,通过调整机器人的非线性参数来保持平衡。
稳定性分析还可以通过模拟和实验方法来进行。
模拟方法是通过建立机器人的动力学模型,使用数值计算方法来模拟机器人在行走过程中的稳定性。
实验方法是通过实际建造机器人,并进行实验来验证机器人在行走过程中的稳定性。
总之,四足步行机器人的步态规划和稳定性分析是实现机器人行走的关键。
通过合适的步态规划方法和稳定性分析方法,可以实现机器人的平衡行走,进而实现各种应用,如救援、探险等。
(完整word版)工业机器人结构设计
1绪论1.1工业机器人概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域.机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力。
从某种意义上说它也是机器进化过程的产物,它是工业以及非工业领域的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。
机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为“工业机械手”。
工业机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产,尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,由它代替人进行正常的工作,意义更为重大.因此,工业机械手在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的应用.工业机械手的结构形式开始比较简单专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的应用。
1.2工业机器人的组成和分类1。
扫地机器人设计—开题报告—毕业设计—河北科技大学
毕业设计开题报告题目:扫地机器人行走结构设计学生姓名:学号:专业:机械设计制造及自动化指导教师:年月日1 文献综述1.1 研究背景及目的近年来,随着计算机技术和人工智能科学的飞速发展,智能机器人技术逐渐成为现代机器人研究领域的热点。
随着长期的发展,服务型机器人开辟了机器人应用的新领域,机器人技术越来越接近成熟,服务型机器人也受到了世界各国研究人员的重视。
扫地机器人又称懒人扫地机,集机械学、电子技术、传感器技术、计算机技术、控制技术、机器人技术、人工智能等诸多学科为一体,它是把移动机器人相关技术和吸尘器技术结合起来,通过微电脑系统控制,按照人们的意愿完成清扫房间的部分或全部工作的一种移动机器人,它可以代替传统繁重的人工清洁工作,也可以清扫人们不能达到的部分。
随着科学技术的发展与社会的进步,扫地机器人将融入人们的生活,像汽车一样即将称为人们生活必须品,所以扫地机器人的开发和研究不仅有科研上的挑战,在国内又有广阔的市场前景。
本次毕业设计准备设计一部能够满足大部分家庭需求而且方便的自动扫地机器人。
它可以代替家庭人工清扫,比国内普通的吸尘器小巧轻便,清洁效率高,更加省时省力,可以帮助人们减轻生活压力,让科技更好的服务于人们。
1.2 国内外研究现状1.2.1 国外研究现状世界上最先出现的扫地机器人是由瑞典的家电巨头伊莱克斯1996年制造的“三叶虫”扫地机器人[1],“三叶虫”扫地机器人虽然功能上没有那么齐全,但是有现在智能扫地机器人的很多元素。
它采用无电线装置,利用超音波声呐系统来控制扫地机器人在地面上的运行方向,会自动避开室内的各种障碍物,因此不会碰撞到地板上或地毯上的任何物品。
采用三种设定模式,可以根据不同的清洁要求,设定清扫速度。
图1 “三叶虫”扫地机器人随后,机器人巨头Irobot 公司设计制造自动扫地机器人Roomba,不断的升级优化,Roomba成为扫地机器人领域的代表产品。
该公司最新推出的扫地机器人Roomba980采用Adapt2.0视觉实时定位建模技术,在清扫房间的同时能够绘制房间内的地图,并且精准避开障碍物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人行走结构的类型及特点
一、移动机器人行走机构概述
机器人行走机构按照其运动轨迹可分为固定式轨迹和无固定式轨迹两种。
固定式轨迹主要用于工业机器人,它是对人类手臂动作和功能的模拟和扩展;无固定轨迹就是指具有移动功能的移动机器人,它是对人类行走功能的模拟和扩展。
移动机器人的行走结构形式主要有:车轮式移动结构;履带式移动结构;步行式移动结构。
此外,还有步进式移动结构、蠕动式移动结构、混合式移动结构和蛇行式移动结构等,适合于各种特别的场合。
从移动机器人所处环境看,可以分为结构环境和非结构环境两类。
结构环境:移动环境是在轨道上(一维)和铺好的道路(二维)。
在这种场合,就能利用车轮移动结构。
非结构环境:陆上二维、三维环境;海上、海中环境;空中宇宙环境等原有的自然环境。
陆上建筑物的阶梯、电梯、间隙沟等。
在这样的非结构环境领域,可参考自然界动物的移动机构,也可以利用人们开发履带,驱动器。
例如:2足、4足、6足及多足等步行结构。
行走结构的设计对于移动机器人的工作效率有着至关重要的作用,选择适当、精巧的行走结构往往可以大大提高机器人的动作效率。
这就需要我们熟悉和了解不同机器人行走结构的类型及特点。
二、三种常见的行走结构
1)车轮式移动结构
两车轮:像自行车只有两个车轮的结构。
两车轮的速度、倾斜等物理量精度不高,因此进行机器人化,所需便宜、简单、可靠性高的传感器难以获得。
此外,两轮车制动时以及低速运行时也极不稳定。
三轮车:三轮移动结构是车轮式机器人的基本移动结构,其结构是后轮用两轮独立驱动,前轮用小脚轮构成组合。
这种结构的特点是结构组成简单,而且旋转半径可以从0到无限大,任意设定。
但是他的旋转中心是在连接两驱动轴的连线上,所以旋转半径即使是0,旋转中心也与车体的中心不一致。
四轮车:四轮车的驱动结构和
运动基本上和三轮车相同。
和
汽车一样,适合于高速行走,
稳定性也好。
一般情况下,车轮式行走结构
最适合平地行走,不能跨越高
度,不能爬楼梯。
但现今也出
现特殊的轮式结构。
全方位移动车:在平面上移动的物
体可以实现前后、左右和自转3 个
自由度的运动.但如汽车等,可以前进、拐弯而不能横向移动就不是. 若具有完全的3 个自由
度,则称为全方位移动机器人,它非常适合工作在空间狭窄有限、对机器人的机动性要求高的场合中.国外很多研究机构开展了全方位移动机器人的
上下台阶车轮式结构:将普通的车轮进行适当的改装后,能够实现在阶梯上移动。
不平地移动的多车节车轮式机构:
2)履带式移动结构
履带式结构称为无限轨道方式,其最大特点是将园环状的无限轨道履带卷绕在多个车轮上,使车轮不直接与路面接触。
利用履带可以缓冲路面状态,因此可以在各种路面条件下行走。
与车轮式移动结构相比,有如下特点:
a)支承面积大,接地比压小。
适合松软或泥泞场地作业,下陷度小,滚动阻力小,
通过性能好;
b)越野机动性能好,爬坡、越沟等性能均优于车轮式移动结构
c)履带支承面上有履齿,不易打滑,牵引性能好,有利于发挥较大的牵引力
d)结构复杂,重量大,运动惯性大,减震性能差,零件易损害
这里介绍一种较特殊的履带结构
形状可变履带结构:它是指履带的构形可以根据需要进行变化的结构。
这种结构一
般由两条形状可变的履带组成,分别由两个主电机驱动。
当两个履带速度相同时,
实现前进或后退移动,当速度不同时,整个机器实现转向移动。
3)步行式移动机构
步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路
面的要求很低,不仅能在平地上,而且能在凹凸不平的地上步行,能跨越沟
壑,上下台阶,用于工程探险勘测或军事侦察等人类无法完成的或危险的工
作;也可开发成娱乐机器人玩具或家用服务机器人,具有广泛的适应性。
主
要设计难点是机器人跨步时自动转移重心而保持平衡的问题。
控制特点:使
机器人的重心经常在接地的脚掌上,一边不断取得准静态平衡,一边稳定的
步行。
结构特点:为了能变换方向和上下台阶,一定要具备多自由度。
的,具有很高的实用性。
四足机器人步行时,一只脚抬起,三只脚支撑自重,这时有必要移动身体,让重心落在三只脚接地点组成的三角形内。
三、其他行走结构
爬壁机器人:近年来,由于工业生产对特殊功能机器人的
需求越来越大,爬壁机器人的研究备受关注。
有的可以吸附在各种大型构造物如油罐、球形煤气罐、船
舶等的壁面,代替人进行检查或修理等作业。
这种爬壁机
器人靠磁性车轮对壁面产生吸附力,其主要特征是:行走
稳定速度快,最大速度可达9m/min,适用各种形状的壁
面,且不损坏壁面的油漆。
我国的哈尔滨工业大学已经成功研制出单吸盘真空
吸附车轮行走式爬壁机器人和永磁铁吸附履带爬壁机器
人。
其中磁吸附履带式爬壁机器人采用的是双履带永磁吸
附结构,在履带一周上安装有数十个永磁吸附块,其中的
一部分紧紧地吸附在壁面上,并形成一定的吸附力,通过履带(由链条和永磁块组成)使机器人贴附在壁面上。
机器人在壁面上的移动靠履带来完成,移动时,履带的旋转使最后的吸附块在脱离壁面的同时又使上面的一个吸附块吸附于壁面,这样周而复始,就实现了机器人在壁面上的爬行。
管道内外移动:如图,可以看出移动主要是靠
两个轮子,但每个车轮两边还有一对撑架,用来帮助
车轮在管道外移动时站立而不倒,并可以增加车轮与
管道壁之间的摩擦,从而获得较大的移动力。
这种结
构可用于检修核管道和煤气主干道等一些容易引发
危害的大型管道。
四、结论
机器人的行走结构就是机器人的脚,选择一双好脚就能事半功倍,因此在选择机器人的行走结构时,我们一定要充分的考虑各个方面,不断的调试,最后才能到达理想的效果。
参考资料:
[1] 丁学恭.机器人控制研究.杭州:浙江大学出版社,2006.9
[2] 周新伦,关绮玲.机器人.上海:复旦大学出版社,1994
[3] 周兰.机器人机身及行走机构.ppt文件
[4] 付文瀚.上下楼机器人设计。