张量分析习题

合集下载

张量习题参考答案

张量习题参考答案

张量习题参考答案张量习题参考答案张量作为数学和物理学中的重要概念,经常出现在各种习题中。

在学习张量的过程中,我们常常会遇到一些难以理解或者复杂的习题。

本文将为大家提供一些张量习题的参考答案,帮助大家更好地理解和掌握这一概念。

1. 张量的定义和性质习题:请定义张量,并列举一些张量的性质。

参考答案:张量是向量和矩阵的推广,是具有多个分量的多维数组。

它在数学和物理学中有着广泛的应用。

张量的性质包括:线性性、分量的变换规律、坐标系无关性、张量的积、张量的收缩等。

2. 张量的坐标变换习题:已知张量T在坐标系A下的分量为T^i_j,在坐标系B下的分量为T^k_l,求坐标变换关系。

参考答案:根据张量的变换规律,我们有T^k_l = ∂x^k/∂x^i * ∂x^j/∂x^l *T^i_j,其中∂x^k/∂x^i和∂x^j/∂x^l分别为坐标系A和坐标系B之间的转换矩阵。

通过求解这个方程组,我们可以得到坐标变换关系。

3. 张量的积习题:已知两个张量A和B,分别为A^i_j和B^k_l,请计算张量的积C=A*B。

参考答案:张量的积是通过分量的乘法和求和得到的。

对于C^i_l = A^i_j *B^j_l,我们可以通过对A和B的分量进行乘法运算,并对j进行求和,得到C的分量。

4. 张量的收缩习题:已知一个二阶张量T的分量为T^i_j,请计算张量的收缩。

参考答案:张量的收缩是通过对张量的分量进行乘法和求和得到的。

对于T^i_i,我们可以对i进行求和,得到收缩的结果。

5. 张量的应用习题:请列举一些张量在物理学中的应用。

参考答案:张量在物理学中有着广泛的应用。

例如,在相对论中,能动张量描述了物质和能量的分布;在电磁学中,麦克斯韦张量描述了电磁场的性质;在流体力学中,应力张量描述了流体的运动和变形等。

总结:本文提供了一些张量习题的参考答案,希望能够帮助大家更好地理解和掌握张量的概念和性质。

通过解答这些习题,我们可以加深对张量的理解,并将其应用于实际问题中。

张量分析

张量分析

g = g gj
i ij
式中 gij 是对偶基矢量在 gj 方向的分量,共有9个,称为相伴度量张量, 或共轭度量张量
B) 相伴(共轭)度量张量
gi ⋅ g j = gik gk ⋅ g j = gikδkj = gij
g = g ⋅gj
ij i
gi ⋅ g j = δ ij ⇒ gik gk ⋅ g j = δ ij
gik gkj = δ ij ⇒
类似
gi = gij g j
gi = gij g j gi = gij g j
协变基矢量和逆变基矢量之间可以通过度量张量和相伴度量张量变换, 提升或下降指标。
C) 矢量的逆变分量和协变分量
任何一个矢量V可以用它沿基矢量方向的分量表示:
V = v gi = vi g
可知:若坐标系由xi 变换为yi ,则基矢量gi按上述变换法则变换。基矢 量gi也称为协变基矢量。
三、基本度量张量
对于任何坐标系,首先必须知道在该坐标系中如何度量长度。 在曲线坐标系中,线元矢量dr长度的平方为下式。
ds2 = dr ⋅ dr =gi dxi ⋅ g j dx j = gi ⋅ g j dxi dx j
i j k a = aij = eijka1a2 a3
aeilm = e a a a
i ijk l
j k m n
E) 克罗内克符号与置换符号的关系
1 δ1 δi j = δ12 3 δ1 1 δ2 2 δ2 3 δ2 1 1 0 0 δ3 2 δ3 = 0 1 0 =1 3 δ3 0 0 1
δli δl j δlk
y j = y j (x1, x2 , x3 )
逆变换为:
( j =1 2,3) ,

张量分析——初学者必看精选全文

张量分析——初学者必看精选全文

§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3

【张量分析ppt课件】张量分析课件第四章 张量函数和张量分析

【张量分析ppt课件】张量分析课件第四章 张量函数和张量分析
| x x0 |
时,对应的函数都有:
| f ( x) f ( x0 ) |
则称f (x)在x0点连续。该定义是通过两个绝对值 | x - x0 |、 | f (x) – f (x0) | 确定了f (x) 在 x0 点的连续性。由实函数理论 | x - x0 |和| f (x) – f (x0) |按距离的概念分别代表了实数x和x0 的距离及给定的x和x0的函数值f (x)和f (x0)的距离。正是距 离概念的引入使得一元实函数的连续性可以推广到张量函 数的连续性定义。 设张量函数为 F (A) 。若对任意给定的正数ε ,总存在着 一个正数δ 。使得当所有的自变量张量 A 满足:
是各向同性张量函数。
例4 : 对任意二阶张量A。试证明: i) F ( A) A3 I1 ( A) A2 I 2 ( A) A I 3 ( A) I 是各向同性张量函数。 ii) A3 I1 ( A) A2 I 2 ( A) A I 3 ( A) I 0 该式也称为Cayley-Hamilton定理。
A A 0 0
A Ai1ir ii1 iir A0 ( A0 ) i1ir ii1 iir
表示:
Ai1
ir
( A0 )i1
ir
(i1,
ir 1, 2,3)
在V 中的坐标系{o; i1, i2, i3}下,张量函数 F ( A )可表示为:
F ( A) Fi1is ( A)ii1 iis
2.r=1,s=0时: Φ记为u;F记为f。则: (4.1-8b) F (u)称为一阶张量自变量的零阶张量值函数。或称f (u)是 矢量自变量的标量值函数。 3.r=1,s=1时: Φ记为u,F记为f,则: f : u f ( u) (4.1-8c) F (u)称为一阶张量自变量的一阶张量值函数。或称f (u)是 矢量自变量的矢量值函数。 4.r=2,s=0时: Φ记为A;F记为F。则: F : A F ( A) (4.1-8d) F (A)称为二阶张量自变量的零阶张量值函数。或称F (A)是 二阶张量自变量的标量值函数。 5.r=2,s=2时: Φ记为A;F记为F。则: F : A F ( A) (4.1-8e) F(A)称为二阶张量自变量的二阶张量值函数。

《连续体力学》习题及解答2分析

《连续体力学》习题及解答2分析

2 二阶张量及其若干运算法则(一) 概念、理论和公式提要2-1 张量的乘法① 张量的外乘(并乘) 张量的外乘用⊗表示,其外积为张量,其阶数等于外乘诸张量阶数之和。

② 张量的内乘(点乘) 张量的点乘用“·”表示(有时也可省去“·”),其内积为张量,其阶数为内乘诸张量阶数之和减去2倍内乘的次数。

③ 张量的双点乘记作“∶”(两次点乘),例如B A∶;其积为张量,其阶数为诸张量阶数之和减2倍点乘次数。

设)(CT )(CT )(CT p n m 为,为,为C B A ,则)42(CT ⨯-++=p n m 为,∶∶D D C B A (2-1-1) 取)2(CT 244为,则,,D ===p n m ,其分量为rp mnrp ijmn ij C B A D = (2-1-2)其中A 分量的后两个指标与B 分量的前两个指标,B 分量的后两个指标与C 分量的前两个指标依次相同。

④ 二阶张量ij ij T T =T T T T ∶,定义为的范数记为为正方根,且有时才取等号只当,o T T =≥0 (2-1-3) 的绝对值为标量,ααααT T = (2-1-4) R T R T +≤+ (2-1-5) R T R T ⋅≤∶ (2-1-6) a T a T ≤⋅ (2-1-7)R a a 的模,为矢量亦为二阶张量。

⑤ 设C B A B A 次缩拼为张量外积的和,则和分是是和s t r )(CT )(CT ,记为C B A =⊗s C)2(s t r -+为C 阶张量,其分量关系为mn k k k k k k ij mn ij s s B A C 2121= (2-1-8)反之,如果已知C B 和为张量,其分量与带指标的量 ij A 满足上式,则 ij A 为张量A 的分量,称为商法则或张量识别定理。

A 的阶数等于s 2的阶数加C ,减去B 的阶数。

特别地当B ,t s =的分量的全部指标都是哑标时,则A 的阶数等于B 和C 的阶数之和。

第六章狭义相对论

第六章狭义相对论

′ = αλν αµσTνσ 二阶张量: Tλµ
对称张量: Tµν = Tνµ ,有10个独立分量(四维) 例如三维空间中对称张量:电四极矩张量Qij;转动惯量 张量I;材料力学中的应力张量 ;Maxwell应力张量;电 磁场动量流密度张量Tij等等。
Tµν = −Tνµ 只有6个独立分量,因为 Tµ µ=0 反对称张量:
三阶张量有43=64个分量:Tµνλ
三阶全反对称张量:Tµνλ ,若对每两个脚标都是反对称的 称之为三阶全反对称张量。即有二个及二个以上脚标相同 时矩阵元为零,共40个0元素,24个非零元素。 24个非零元素中只有4个独立元素T234,T314,T412 和 T123. 它们可用一个4维矢量表示。
A′ µ = α µν A ν
同意味着求和。
约定脚标希腊字母从1取到4,英文字母从1取到3,脚标相 这种约定求和的脚标如上式中ν称为“哑标”,对不参加求和 的脚标,如上式中的μ称为“自由脚标”。 等式两边的自由脚标必须对应。 由于哑标只表示对该脚标从1到4求和的一个约定,所以哑 脚标的字母可以更换,如上式中 A′ µ = α µν A ν = α任意一个二阶张量总可以分解为一个二阶对称张量和一个 二阶反对称张量之和”。 证明:设Tµ σ 为任意一个二阶张量,
Tµ σ = Tµ σ + Tσµ 2 + Tµ σ − Tσµ 2 = Sµ σ + Aµ σ
式中 S µ σ = S σµ 是对称张量,
A µ σ = − A σ µ 是反对称张量,证毕。
三维空间中反对称张量是两矢量叉乘出来的,又叫赝矢 r r r r r r r r r r r υ = ω× r,L = r × F , J = r × p 量。例如 B = ∇ × A , r r r r B, ω, L, J 构成三维空间的二阶反对称张量,因只有三个独 立分量故可用一矢量表示,叫赝矢量。 在坐标变换时不能当矢量处理,否则会出错。 在四维空间二阶反对称张量有六个独立分量,比空间维数 多2,不能用4-矢量表示。 坐标变换时必须还物理量的本来面目。 顺便指出:在正交变换下,对称张量保持为对称;反对称张量 保持为反对称。

张量分析 陈国荣 徐芝纶

张量分析 陈国荣 徐芝纶
为了使张量在每个具体坐标系里能取得具有相同的物理量纲的分量在正交曲线坐标系取切于坐标曲线的无量纲单位矢量作为基矢量即cossinsincoscossinsinsincoscoscoscossinsincossinsin由此得到曲线坐标系的hamilton算子比较式a712与式a715得到bca并考虑到得到在正交曲线坐标系关于指标j和k是反称的因为共有6个为011332232333113132233232221121211331311122121只有212张量的梯度为了方便以后仍然把物理基记为16四圆柱坐标系张量的导数公式221212rzzzrrzr
8
gi j ,k k ( gi g j ) k gi g j k g j gi
g j k ,i i ( g j gk ) i g j gk i gk g j
(a) (b) (c)
gk i, j j ( gk gi ) j gk gi j gi gk
2
g i j 称为度量张量
r r ds dr.dr . dxi dxj gij dxi dxj xi x j
2
例1
求圆柱坐标系的自然基 gi 和度量张量g i j
空间任意点的向径为
r r cos e1 r sin e 2 ze 3 r g1 cos e1 sin e 2 r r g2 r sin e1 r cos e 2 r g3 e3 z
(b)+(c)-(a),并考虑到
k gi g j i gk g j
得到
1 i g j g k ( g j k ,i g k i , j g i j ,k ) 2
9
1 1 1 i j k [ ( g j k ,i g k i , j g i j ,k ) g j j ( )g jk ] xi g j j gii g j j g k k 2

习题答案—第二章

习题答案—第二章

第二章 正交曲线坐标系下的张量分析与场论1、用不同于书上的方法求柱坐标系和球坐标系的拉梅系数及两坐标间的转换关系ij β。

解:①柱坐标系k z j i r++=ϕρϕρs i n c o s ,2222222dz H d H d H ds z ++=ϕρϕρ ()()k dz j d d i d d r d+++-=ϕϕρρϕϕϕρρϕcos sin sin cos()()222222222222222222222222222222c o s s i n s i n c o s c o s s i n 2c o s s i n s i n c o s s i n 2c o s c o s s i n s i n c o s dz d d dz d d d d dz d d d d d d d d dz d d d d r d r d ds ++=++++=+++++-=+++-=⋅=ϕρρϕϕρϕϕρρϕρϕϕρϕϕρϕϕρρϕϕϕρϕρϕϕρρϕϕϕρρϕϕϕρρϕ故:1=ρH ,ρϕ=H ,1=z H ②球坐标系k R j R i R r θφθφθc o s s i n s i n c o s s i n ++=,2222222φθφθd H d H dR H ds R ++=()()()kd R dR j d R d R dR id R d R dR r dθθθφφθθφθφθφφθθφθφθsin cos cos sin sin cos sin sin sin sin cos cos cos sin -++++-+= ()()()2222222222s i n s i n c o s c o s s i n s i n c o s s i n s i ns i n s i n c o s c o s c o s s i n φθθθθθφφθθφθφθφφθθφθφθd R d R dR d R dR d R d R dR d R d R dR r d r d ds ++=-++++-+=⋅=故:1=R H ,R H =θ,θφsin R H = ③两坐标间的转换关系ij βφr re e θe φPθru re e zu ze r(1)圆柱坐标系 (2)球坐标系由球坐标系与直角坐标系的坐标变换矩阵为:sin cos sin sin cos cos cos cos sin sin sin cos 0r e i e j e k θφθφθφθθφθφθφφ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪⎢⎥=-⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥-⎣⎦⎩⎭⎩⎭注意,圆柱坐标系中的θ和球坐标系的φ相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档