植物生理学信号转导.ppt共44页

合集下载

植物细胞信号转导PPT.

植物细胞信号转导PPT.

初级信号 户接触的时候,一方面是问,还有一方面就是听。可能有的人会说,听有什么难的?要知道听也有讲究。你会不会听,你自己没感觉
,客户知道。如果你在很好地听他讲,客户认为你很尊重他;如果客户在讲,你三心二意,客户会认为你不尊重他。我们的目的是让
客户尽快地购买,所以每一个环节你都要处理好,其中之一就是要会聆听。
① 把药材看成是同样大的团球状物质,自上而下地层叠为很多层,把浸出溶剂也看成无限多份,连续地加入浸渍过程,当溶剂通过每
一层药材颗粒就发生一次溶剂浸入药材、溶解溶质和溶质向外扩散的扩散平衡过程,然后溶剂再进入下一层药材,再扩散至平衡,这
样反复进行扩散平衡的渗漉浸出过程。
一、落实逐级消防安全责任制和岗位消防安全责任制,落实巡查检查制度。
糖、氨基酸 转播 光 ②辅助成分 本身没有特殊疗效,但能增强或缓和有效成分药效作用的物质。如洋地黄中的皂甙可帮助洋地黄甙溶解或促进其吸收。
(四)小卖部安全管理制度
浸取就是利用适当的溶剂和方式把药材中的有效成分分离出来,也称为浸提或浸出,所得到的液体称为浸出液。
1. 资格性响应文件和技术、服务性响应文件分别装订成册,并在封面注明供应商名称、响应文件编号、谈判项目、分包号(如有分包 )等。
(感应蛋白,HK)
应答调控蛋白 (RR)
三、受体激酶
胞外结构区 跨膜螺旋区 胞内蛋白激酶催化 区
第三节 细胞内信号转导形成网络
几个概念: 小提示20:标出简历中感兴趣的地方,面试时询问应聘者。
分析和帮助客户解决疑难问题
(3)上车后不要挤在车门边,往里边走,见空处站稳,并抓住扶手,头、手、身体不能 伸向窗外,否则容易发生伤害事故。
信号网络 第五部分 家庭安全用电
C运动量适度:运动量是指在运动的过程中,完成动作的数量、质量、时间、强度和密度等。

《植物细胞信号转导》PPT课件

《植物细胞信号转导》PPT课件

Ca2
+
ATP
ATP
液泡
Ca2+通道
内质网
Ca2 A+TP
Ca2

+
植物细胞中Ca2+的运输系 统
• Ca2+信号受体:CaM(Calmodulin,钙调素)和钙依赖 型蛋白激酶。当外界信号刺激引起胞内Ca2+上升时到阈 值(≥10-6mol·L-1)后Ca2+与CaM结合,引起CaM设想 改变,并活化,再与靶酶结合引起一系列生理反响。
《植物细胞信号转导》 PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
胞内分子反响 胞内信号转导 膜上信号转换
6.4.2 信号转导的分子途径
胞间信号传递
胞间信号
膜上 信号
胞内信号转导
蛋白质可 逆磷酸化
信号4.3.1种类:化学信号和物理信号
• 6.4.3.2化学信号(chemical signal):细胞 感受刺激后合成并传递到作用部位引起生 理反响的化学物质。如植物内源激素、植 物受伤害后蛋白酶抑制物、NO等。
双信号系统的作用
6.4.6蛋白质可逆磷酸化
• 植物体内许多功能蛋白转录后,需要共价 修饰才能发挥生理功能,蛋白质磷酸化就 是共价修饰的过程。蛋白质的磷酸化和去 磷酸化是分别由蛋白激酶(protein kinase, PK)和蛋白磷酸酶(protein phosphatase, PP)催化完成。
6.4.4膜上信号的转换
• 6.4.4.1受体与信号的感受:受体(receptor)是存 在于细胞外表或亚细胞组分中的天然分子,可特 异地识别并结合化学信号物质,即配体(ligand), 并在细胞内放大、传递信号,启动一系列生化反 响,最终导致特定的细胞反响。细胞受体具有特 异性、高亲和力和可逆性等特征。

高等植物生理学-植物信号转导

高等植物生理学-植物信号转导

植物细胞对水力学信号(压 力势的变化)很敏感。玉米叶片 木质部压力的微小变化就能迅速 影响叶片气孔的开度,即压力势 降低时气孔关闭,反之亦然。
(三) 胞间信号的传递
1.化学信号的传递
1)
2)
3)
气相中传递 易挥发性化学信号可通过植株体内的气腔 网络扩散而迅速传递,传递速度可达2mm·s-1 左右。乙 烯和茉莉酸甲酯均属此类信号。 韧皮部传递 植物体内许多化学信号物质,如IAA、茉 莉酸甲酯、寡聚半乳糖、水杨酸等都可通过韧皮部途径 传递。 木质部传递 化学信号可通过集流的方式在木质部内传 递。土壤干旱胁迫时,根系可迅速合成并输出ABA。合 成的ABA可通过木质部蒸腾流进入叶片,并影响叶片中 的ABA浓度,从而抑制叶片的生长和气孔的开放 共质体和质外体途径,而长距离传递则是通过维管束。
胞间信号分子
信号传导的分子途径
环境刺激
第一信使
胞间信号传递 细胞外 膜上信号转换 蛋白激酶 细胞膜 胞内信号转导
cAMP
胞间信号
受体
膜上信号转 换系统
离子通道
G蛋白
效应器
第二信使 DAG IP3 Ca2+ Ca2+调节蛋白 PKC CaM结合蛋白 PK Ca2+ CaM PKCa
细胞内 蛋白质 可逆磷 酸化
信号转导:
刺激→受体→信号整合与放大→基因表达或酶活化→反应
(一)受体与信号的感受(刺激与感受)
受体(receptor)是指在效应器官细胞质膜上或亚细胞组 分中能与信号物质特异性结合,并引发产生胞内次级信号的 特殊成分。能与受体结合的特殊信号物质称配体(Ligand)。 受体可以是蛋白质,也可以是一个酶系。 受体的功能: 识别、接收信
(A) 细胞内受体蛋白作用模型; (B) 几种胞内受体蛋白超家族成员

植物生理学:第7章 细胞信号转导

植物生理学:第7章  细胞信号转导
•Gilman和Rodbell因发现G蛋白获得1994年诺贝尔 医学生理学奖。
•G蛋白在高等植物中普遍存在,而且初步证明了G 蛋白在光、激素等因子对气孔运动、细胞跨膜离 子运输等细胞信号转导中有重要作用。
G蛋白一般分为两大类:
一类为大G蛋白,由三种不同亚基()构成的 三聚体G蛋白(heterotrimeric G-protein),其 亚基含有与GTP结合的活性位点,并具有GTP酶 活性。
细胞外
质膜
细胞内
G蛋白连
接受体





Ca2+/ CaM;IP3/DAG
蛋白可逆磷酸化
细胞 反应

二元组 分系统
信号输入 跨膜信号转换 胞内信号转导网络 信号输出
信号转导的模式
7.2.1 G蛋白与跨膜信号转导
•G 蛋 白 又 称 GTP 结 合 调 节 蛋 白 ( GTP binding regulatory protein)。
环核苷酸信号系统
钙信号系统
磷脂酰肌醇信号系统
7.3.1 Ca2+/CaM在信号转导中的作用
钙稳态:细胞质中Ca2+浓度小于或等于 0.1umol/l。
受激态:当细胞受到外界刺激时,细胞 质中Ca2+浓度会急剧增加
• 细胞壁是胞外钙库 • 液泡、内质网、 线粒体等是胞内钙库 • 钙库中Ca2+浓度比细胞质中的高2个数

结合以及具有
的活性而得名。
三磷酸鸟苷(GTP),GTP水解酶
质膜中的磷酸脂酶C水解PIP2( 磷脂酰肌
醇-4,5-二磷酸)而产生


两种信号分子。因此,该
系统又称双信号系统。其

植物细胞信号转导PPT课件

植物细胞信号转导PPT课件
此外,一些生长调节 物质如壳梭孢菌素、花生 四烯酸以及乙酰胆碱等也 都具有化学信号的功能。
.
9
(二) 物理信号(physical signal)
➢ 指细胞感受到刺激后产生的能够起传递信息作用的电信 号和水力学信号。
➢ 电信号传递是植物体内长距离传递信息的一种重要方式, 是植物体对外部刺激的最初反应。
激酶; PKC.依赖Ca2+与磷脂的蛋白激酶; PK
Ca2+·CaM. 依赖Ca2+·CaM的蛋白激酶从而使细
胞作出. 反应。
4
胞内分子反应 胞内信号转导 膜上信号转换
胞间信号传递
.
5
植物体内的胞间信号可分为两类,即化学信号和物理信号。
一、胞间信号
(一) 化学信号 (chemical signals )
➢ 植物的电波研究较多的为动作电波(action potential, AP), 也叫动作电位,它是指细胞和组织中发生的相对于空间 和时间的快速变化的一类生物电位。
➢ 植物中动作电波的传递仅用短暂的冲击(如机械震击、电 脉冲或局部温度的升降)就可以激发出来,而且受刺激的 植物没有伤害,不久便恢复原状。
➢ 一些敏感植物或组织(如含羞草的茎叶、攀缘植物的卷须 等),当受到外界刺激,发生运动反应(如小叶闭合下垂、 卷须弯曲等见录像)时伴有电波的传递。
.
10
受触及的含羞草小叶在 1至2 秒钟向下弯,这 是由于电波引发叶枕运 动细胞中大量的K+和 Ca+2转运,引起膨压改 变的结果
.
11
图17.14 Albizia pulvini 背侧和腹侧的运动细胞之间的离
植物细胞信号转导
.
1
第一节 植物体内的信号传导

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导
胞外的信号经过跨 膜转换进入细胞后, 通常产生第二信使 并通过相应的胞内 信使系统将信号级 联放大,引起细胞 最终的生理反应。
目前植物中普遍接受的胞内第二信使系统主要有:钙 信使系统和肌醇磷脂信使系统。
对于动物中研究较为透彻的环核苷酸信使系统是否同 样存在于植物以及其在植物中存在的普遍性,尽管目前尚 有争议,但已有一部分报道在拟南芥等植物中存在并参与 了植物气孔运动、光诱导叶绿体花色素的合成等信号转导 过程。
细胞表面受体 细胞内受系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
一、Ca2+/CaM在信号转导中的作用
钙信使系统是植物细胞中重要的也是研究最多的胞内信使系统。
胞内钙梯度的存在是Ca2+信号产生的基础。正常情况下 植物细胞质中游离的静息态Ca2+水平为10-7 ~10-6 mol/L左右, 而液泡的游离钙离子水平在10-3mol/L左右,内质网中钙离子 浓度在10-6mol/L,细胞壁中的钙离子浓度也高达10-5-103mol/L。因而细胞壁等质外体作为胞外钙库,内质网、线粒 体和液泡作为胞内钙库。静止状态下这些梯度的分布是相对 稳定的,当受到刺激时,钙离子跨膜运转调节细胞内的钙稳 态(calcium homeostasis),从而产生钙信号。
Ca2+ ‧ CaM的下游靶酶包括质膜上的Ca2+-ATP酶、Ca2+通 道、NAD激酶、多种蛋白激酶等。这些酶被激活后,参与 蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激 素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发 育。

植物生理学007 植物体内的细胞信号转导

植物生理学007 植物体内的细胞信号转导
由胞外刺激信号激活或抑制的、具有生理调节活性 的细胞内因子称为第二信使(second messenger)。
到目前,发现在植物细胞中的第二信使系统主要有:
1、环核苷酸信号系统 2、钙信号系统 3、磷脂酰肌醇信号系统。
6.3.1.环核苷酸信号系统
环核苷酸主要是指cAMP和cGMP:
cAMP作为重要的第二信使物质在动物细胞中早已定论。植物 细胞中的cAMP是否普遍存在以及是否也具有象动物细胞类似的 第二信使作用,尚无定论。目前已在某些植物中测到cAMP的存 在,但其浓度远低于动物细胞中的有效生理浓度。另一方面, 有报道证明外加cAMP可以引起植物细胞的生理反应,如细胞质 膜离子通道(e.g NSCCs)的开关等。说明cAMP作为植物细胞的第 二信使是可能的。
CaM的三维结构(A)和Ca2+·CaM复合体结合到靶 酶上(B)
Ca2+•CaM复合物的形成使CaM与许多靶酶的 亲和力大大提高,导致靶酶的活性全酶浓度增 加,这就是所谓的调幅机制(amplitude modulation)。而调敏机制(sensitive modulation)是指在细胞内Ca2+浓度保持不变 的情况下,通过调节CaM或靶酶对Ca2+的敏感程 度,增加活性全酶。现已发现许多Ca2+•CaM复 合体的靶酶,如质膜上的Ca2+-ATP酶、Ca2+通道、 NAD激酶和多种蛋白激酶等。这些靶酶被活化 后参与细胞分裂、生长和分化等过程,最终调 节细胞的生长发育。
磷脂酰肌醇(phosphatidylinositol, PI)主要分 布在细胞质膜内侧,其总量仅占膜磷脂的很少一部分。 现已确定的磷脂酰肌醇主要有三种:磷脂酰肌醇 (phosphatidylinositol , PI),磷脂酰肌醇-4,5二磷酸 (phosphatidylinositol-4,5-bisphosphate , PIP2 ) 和 磷 脂 酰 肌 醇 -4- 磷 酸 ( phosphatidylinositol-4-phosphate , PIP ) , PIP和PIP2是由PI和PIP分别在PI激酶和PIP激酶催化下 磷酸化而形成的,其基本结构及其相应磷脂酶 (phospholipase)作用位点如(图5.9)。图中箭头 所示位置为相应磷脂酶作用位点,这些磷脂酶分别称 为 磷 脂 酶 A1 , A2 , C 和 D 。 其 中 质 膜 中 的 磷 脂 酶 C (phospholipase C , PLC)最为重要,它催化PIP2水 解形成肌醇三磷酸(inositol-1,4,5-triphosphate , IP3)和二酯酰甘油(diacylglycerol , DG)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档