第七章 带有线性约束的多元线性回归模型及其假设检验(金融计量-浙大 蒋岳祥)
[VIP专享]第五章 多元线性回归模型(金融计量-浙大 蒋岳祥)
![[VIP专享]第五章 多元线性回归模型(金融计量-浙大 蒋岳祥)](https://img.taocdn.com/s3/m/6241eb967cd184254b3535eb.png)
yi
n
j1
y X
其中
2
2
(2)
S(ˆ) y Xˆ 2 min y X 2
采用最小二乘法寻找未知参数 β 的估计量 ˆ ,它要求 β 的估计 ˆ 满足下面的条件
1、最小二乘向量系数
二、最小二乘回归
假定 5 X 是秩为 K 的 n×K 随机矩阵 这意味着 X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定:
y x11 xK K
构成多元线性回归模型的一组基本假设为
假定 1. y X
第五章 多元线性回归模型
2
X Xb X y
设 b 是解,则 b 满足正则方程组
0
X
2X
y
2 X
S( )
最小值的必要条件是
或
S( ) yy 2 X y X X
展开上式得
S( ) yy X y yX X X
的方法称为最小二乘法(OLS)。
m
ˆ
满足(2)式或(3)式的估计量 ˆL 称为 β 的最小二乘估计,这种求估计量
ˆ1
(3)
X ij i ) 2
j1
( yi
i1
min
1 , m
m
n
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
计量经济学讲义——线性回归模型的异方差问题1

Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)
多元线性回归

3、残差分析,作残差图:
rcoplot(r,rint) 从残差图可以看出,除第二个数据外,其余数据的残
差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点. (可以去掉该点重新回归)
4、预测及作图: z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')
Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')
(二)多元二次多项式回归 命令:rstool(x,y,’model’, alpha)
nm矩阵 n维列向量
显著性水平 (缺省时为0.05)
由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型):
linear(线性): y 0 1 x1 m xm
以第四种方法,即逐步回归分析法在筛选变量方面较 为理想.
“有进有出”的逐步回归分析
• 从一个自变量开始,视自变量Y作用的显著程度,从大 到地依次逐个引入回归方程。
• 当引入的自变量由于后面变量的引入而变得不显著时, 要将其剔除掉。
• 引入一个自变量或从回归方程中剔除一个自变量,为 逐步回归的一步。 • 对于每一步都要进行Y值检验,以确保每次引入新的显 著性变量前回归方程中只包含对Y作用显著的变量。
其中 x=(x1,x2,…,xn),y=(y1,y2,…,yn); p=(a1,a2,…,am+1)是多项式 y=a1xm+a2xm-1+…+amx+am+1 的系数;S 是一个矩阵,用来估计预测误差.
第二章 多元线性回归模型

ˆ ˆ ˆ) ( Y Y 2Y Xβ β X Xβ 0 ˆ β
ˆ X Y X Xβ 0
得到:
ˆ XY XXβ
ˆ β ( X X) 1 X Y
于是:
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 ( X ' X) X 1 1 X2 1 X1 1 1 X 2 n X n X i 1 X n
可以证明,随机误差项的方差的无偏估计量为
e e ˆ n k 1 n k 1
2
e i2
二、最大或然估计
对于多元线性回归模型: i N 0, 2 , i 1, 2, , n
易知:
Yi ~ N ( X i β , 2 ) 其中: Xi 1 Xi1 Xi1 Xik
j
一、普通最小二乘估计
对于随机抽取的n组观测值 Yi , X ij , i 1, 2,, n; j 0,1, 2,, k , 其中X i 0 1
k 1个未知参数,如果样本函数的参数估计值已经得到,则有:
Y i 0 1 X i1 2 X i 2 k X ik , i 1, 2,, n
五、多元线性回归模型的参数估计实例
地区城镇居民消费模型
• 被解释变量:该地区城镇居民人均消费Y
• 解释变量:
– 该地区城镇居民人均可支配收入X1 – 前一年该地区城镇居民人均消费X2
• 样本:2006年,31个地区
数据
地区 2006年消费 支出 Y
北 天 河 山 辽 吉 上 江 浙 安 福 江 山 河 京 津 北 西 宁 林 海 苏 江 徽 建 西 东 南 14825.4 10548.1 7343.5 7170.9 7666.6 7987.5 7352.6 6655.4 14761.8 9628.6 13348.5 7294.7 9807.7 6645.5 8468.4 6685.2
多元线性回归基础知识202007

多元线性回归检验案例
在前述圆钢碳含量和锰含量对屈服点的影响问题中,我们 建立了线性回归方程
现在我们检验线性关系是否显著
解
因为
y
1 25
25 i 1
yi
619 25
24.76
25
25
SST ( yi y)2 9.06 , SSR ( yi y)2 7.282708, SSE SST SSR 1.772292
(xi1, xi2 ,, xip ,Yi ),i 1,2,, n 是一个容量 n 为的样本,则我们可以得到一个有限样本模型
Y1 0 1x11 2 x12 p x1p 1 Y2 0 1x21 2 x22 p x2 p 2 Yn 0 1xn1 2 xn2 p xnp n
拒绝域为
T t (n p 1) 或 2
T 2 F (1, n p 1)
其中 ~ N p1 ( , 2 ( X ' X )1 ) , cij 为 ( X ' X )1 的第 i 行第 j 列元素, i, j 1,2,, p 。
如果检验结果不拒绝 Ho,即 i 0 ,应将 xi 从回归方程中剔除。
线性模型的有效性检验
检验目的1 回归模型是
与一元线回归类似,要检验变量间有没有这种线性联系,只要检验 p 个系数 1, 2 ,, p
不是线性的? 是不是全为零。如果 p 个系数全为零,则认为线性回归不显著;否则认为线性回归显著。
因此,多元线性模型的检验中我们假设
H0 : 1 0, 2 0,, p 0
其中 1, 2 ,, p 相互独立且与 同分布。
多元线性回归的数学模型
Y1 0 1x11 2 x12 p x1p 1 Y2 0 1x21 2 x22 p x2 p 2 Yn 0 1xn1 2 xn2 p xnp n
计量经济学 第5章 多元线性回归模型
有
Y X
(3-3)
多元线性总体回归模型的矩阵形式
多元线性总体回归函数可用矩阵形式表示为
E (Y/X) X
(3-4)
二、多元线性回归模型的基本假设
包括对解释变量的假设、对随机误差项的假设、对模型设定的假设 几个方面,主要如下: 1)解释变量是确定性变量,不是随机变量,解释变量之间不相关; 2)随机误差项具有0均值、同方差,且在不同样本点相互独立, 不存在序列相关性 3)解释变量与随机误差项不相关
(3-2)
记
Y1 Y Y 2 Yn
1 1 X 1 X 11 X 12 X 1n X 21 X 22 X 2n X k1 Xk2 X kn
0 1 k
1 2 n
ˆ X Y X Y
因为
可得多元线性回归模型的普通最小二乘估计为
ˆ ˆ X Y
所以
-1 ˆ (X X) X Y
(3-11)
ˆ X Y X X
(3-10)
对于只含有两个解释变量的多元线性回归模型
Yi 0 1 X1i 2 X 2i i
由式(3-8)可直接求得普通最小二乘估计量为
1.样本回归线通过样本均值点,即点(Y ,X ,X , 1 2 , X k ) 满足
。
ˆ ˆ X ˆX ˆ 样本回归函数 Y i 0 1 1i 2 2i
ˆ X。 k ki
2.被解释变量的估计的均值等于被解释变量的均值,即 3.残差和为零,即
ˆ 。 Y Y
e
i 1
n
i
售后服务支出X2 (万元)
12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 11 10 15 12
高级计量经济学 第二章 多元线性回归模型
本章内容
古典线性回归(Ordinary Linear Squares)
模型估计方法和统计检验
其他模型估计方法
最大似然法(Maximum Likelihood) 广义矩法(Generalized Method of Moments)
模型设定与设定误差 虚拟变量的使用 建立多元回归模型时应注意的问题
斜率(dY/dX)
β1 β1Y/X β1Y β1/X -β1/X2 -β1Y/X2 β1+2β2X β1+β2Z
弹性(dY/dX)(X/Y)
β1X/Y β1 β1X β1/Y
-β1/(XY) -β1/X
(β1+2β2X)X/Y (β1+β2Z)X/Y
5
假定2:矩阵X是满秩的
X是一个n K 矩阵,X的秩应该等于K; 该假定也被称做识别条件。只有当识别条件得到
用下标R和UR区分有约束和无约束的回归方程R2 ,q为约束条件的个数,相应的F统计值计算公式 为:
F q ,N k 1E ER U S S E R N S S U S K R q S R 1 U 2 R R U 2 R R 2R N qK
最大似未知的总体分布,样 本数据提供了有关概率分布参数的信息,估计方法建立在 样本来自哪个概率分布的可能性最大基础之上。
对估计系数的统计检验
利用前述的估计量方差矩阵可以得到每个 估计参数的标准差sj,估计参数与该标准差 的比值为相应的t统计值。
利用t统计表(或相应的软件)可以得到与 模型自由度相对应的显著性水平,据此可 以判断结果在统计意义上的可靠性。
对模型参数的联合检验
同样的方法可以用于检验有关多个估计参数之间 关系的联合假设。
ch07 模型选择:标准与检验
诊断设定误差: 7.7 诊断设定误差:设定误差的检验
诊断设定误差: 7.7 诊断设定误差:设定误差的检验
诊断设定误差: 7.7 诊断设定误差:设定误差的检验
诊断设定误差: 7.7 诊断设定误差:设定误差的检验
诊断设定误差: 7.7 诊断设定误差:设定误差的检验
1959-2006年美国进口商品支出 (Y)和个人可支配收入 年美国进口商品支出(Y) 例 : 表 3-7 中 1959-2006 年美国进口商品支出 (Y) 和个人可支配收入 (X)(10亿美元)的数据为例: (X)(10亿美元)的数据为例: 10亿美元 检验线性模型
模型选择:标准与检验 第7章 模型选择:标准与检验
Ch07. Model Selection: Criteria and Test
7.1 “好的”模型具有的性质 好的” 7.2 设定误差的类型 7.3 遗漏相关变量:“过低拟合”模型 遗漏相关变量: 过低拟合” 7.4 包括不相关变量:“过度拟合”模型 包括不相关变量: 过度拟合” 7.5 不正确的函数形式 7.6 度量误差 7.7 诊断设定误差:设定误差的检验 诊断设定误差: 7.8 小结
-----------------------------------------------------------------------------Coef. Std. Err. 95% Conf. Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+ -------------+---------------------------------------------------------------22. X | .3314047 .014919 22.21 0.000 .3013375 .3614718 25. 31. 19. year | -25.34978 2.984424 -8.49 0.000 -31.36449 -19.33507 81. 19. 121. 41. z1 | -81.79335 19.8201 -4.13 0.000 -121.7381 -41.84857 49707. 5867. 37881. 61533. _cons | 49707.46 5867.954 8.47 0.000 37881.37 61533.54 ------------------------------------------------------------------------------
计量经济学复习笔记(四):多元线性回归
计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。
我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。
但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。
另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。
1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。
从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。
⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。
Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 带有线性约束的多元线性回归模型及其假设检验在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。
带有线性约束的参数的假设检验,我们可以用两种方法来处理。
第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。
第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。
第一节 线性约束的检验 从线性回归模型开始,εβ+=X y (1)我们考虑具有如下形式的一组线性约束,JK JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ22112222212111212111这些可以用矩阵改写成一个方程q R =β (2)作为我们的假设条件0H 。
R 中每一行都是一个约束中的系数。
矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。
因此,J 一定要小于或等于K 。
R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。
给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。
d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。
由于b 是多元正态分布的,且d 是b 的一个线性函数,所以d 也是多元正态分布的,若原假设为真,d 的均值为0,方差为R X X R R b Var R q Rb Var d Var ''='=-=-12)(])[(][][σ (3)对H 0的检验我们可以将其基于沃尔德(Wald )准则:d d Var d J W 12])[()(-'==χ=)(])([)(112q Rb R X X R q Rb -'''---σ (4)在假设正确时将服从自由度为J 的2χ分布(为什么?)。
直觉上,d 越大,即最小二乘满足约束的错误越大,则2χ统计量越大,所以,一个大的2χ值将加重对假设的怀疑。
⎪⎭⎫⎝⎛'⎪⎭⎫ ⎝⎛='=-σεσεσσM ee s K n 222)( (5) 由于σ未知,(4)中的统计量是不可用的,用s 2替代σ2,我们可以导出一个F[J ,(n -K )]样本统计量,令)/(]/)[(/)(])([)(22112K n s K n Jq Rb R X X R q Rb F ---'''-=--σσ (6) 分子是(1/J )乘(4)中的W ,分母是1/(n -K )乘(5)中的幂等二次型。
所以,F 是两个除以其自由度的卡方变量的比率。
如果它们是独立的,则F 的分布是F[J ,(n -K )],我们前边发现b 是独立于s 2分布的,所以条件是满足的。
我们也可以直接推导。
利用(5)及M 是幂等的这一事实,我们可以把F 写为)/()]/([])/([/}/)({])([}/)({11K n M M Jb R R X X R b R F -'-'''-=--σεσεσβσβ (7)由于⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛''=--σεσεσβT X X X R b R 1)()(F 统计量是)/(σε的两个二次型的比率,由于M )/(σε和T )/(σε都服从正态分布且它们的协方差TM 为0,所以二次型的向量都是独立的。
F 的分子和分母都是独立随机向量的函数,因而它们也是独立的。
这就完成了证明。
消掉(6)中的两个σ2,剩下的是检验一个线性假设的F 统计量,)/(/)(])([)(11K n e e Jq Rb R X X R q Rb F -'-'''-=-- Jq Rb R X X R s q Rb )(])([)(112-'''-=-- (8)我们将检验统计量Jq Rb R X X s R q Rb K n J F )(}])([{)(],[112-'''-=---和F 分布表中的临界值相比较,一个大的F 值是反对假设的证据。
注意:将wald 统计量中的2σ用2s 去替代,相应的就将J 维的卡方分布转换为维度为(J,n-K )的F 分布。
第二节 参数带有约束的最小二乘估计 一、带有约束的最小二乘函数在许多问题中,要求其中的未知参数β满足某特定的线性约束条件:R β=q ,这里R 是J ×K 矩阵(J <K ),并假定它的秩为J 维向量,常常希望求β的估计βˆ,使得 2}:{2min ˆββββX Y X Y q R -=-= (9)满足条件(9)的称为β的具有线性约束R β=q 的最小二乘估计。
解βˆ的问题实际上是在约束条件 R β=q下求 ∑∑==⎪⎪⎭⎫ ⎝⎛-=-=ni mj j ij i x Y X Y f 1212ββ 的限制极值点问题。
这个问题的一个拉格朗日解可写作)(2)()(*q R X y X y S -'+-'-=βλββ解b *和λ将满足必要条件02)(2**='+-'-=∂∂λβR Xb y X S 0)(2**=-=∂∂q Rb S λ展开可以得到分块矩阵方程⎥⎦⎤⎢⎣⎡'=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡''q y X b R R X X λ*0 或Wd *=v假定括号中的分块矩阵是非奇异的,约束最小二乘估计量d *=W -1v⎥⎦⎤⎢⎣⎡=λ*bwhere⎪⎪⎭⎫⎝⎛--=--------------11111111111111)')'(()'()')'(()')'((')'()'()')'((')'()'(R X X R X X R R X X R R X X R R X X X X R R X X R R X X X X W的解。
此外,若X ′X 是非奇异的,则用分块逆公式可以得到b *和λ的显示解)(])([)()')'((')'()')'((')'(')'()')'((')'()(')'()')'((')'(')'()')'((')'(')'()')'((')'(')'(11111111111111111111111111*q Rb R X X R R X X b q R X X R R X X Rb R X X R R X X y X X X q R X X R R X X e Xb X X X R R X X R R X X y X X X q R X X R R X X y X X X R R X X R R X X y X X X b -''''-=+-=++-=+-=--------------------------和)(])([11q Rb R X X R -''=--λ格林和西克斯(1991)表明b *的协方差矩阵简单地就是2σ乘以W -1的左上块,在X ′X 是非奇异的通常情况下,再一次可以得到一个显性公式1111212*)(])([)()(][-----'''''-'=X X R R X X R R X X X X b Var σσ,这样,-=][][*b Var b Var (一个非负定矩阵),Var[b *]的方差比Var[b]小的一个解释是约束条件提供了更多的信息价值。
二、对约束的检验的另一个方法令**Xb y e -=,我们来计算新的离差平方和**e e '。
)()(***b b X e b b X Xb y e --=---=则新的离差平方和是e e b b X X b b e e e e '≥-''-+'=')()(****22~'k n ee -χσ2)(2**~'J k n e e --χσ因为新的模型中参数的个数为k-J 个,J 个榆树条件是原模型中的J 个参数可以被其他k-J 个表示。
(此表达式中的中间项含有X ′e ,它是0)。
这说明我们可以将一个约束检验基于拟合的损失。
这个损失是,)(])([)(11**q Rb R X X R q Rb e e e e -'''-='-'-- 这出现在前边推导的F 统计量的分子上,我们得到统计量的另一个可选形式。
可选形式是)/(/)(],[**K n e e J e e e e K n J F -''-'=-最后,以SST=2)(y y -∑除F 的分子和分母,我们得到第三种形式,)/()1(/)(],[22*2K n R JR R K n J F ---=- 由于两个模型的拟合之差直接体现在检验统计量中,这个形式具有一些直观吸引力。
[实例]对数变换生产函数所有科布—道格拉斯模型的一般化是如下的对数变换模型,εββββββ++++++=2ln ln 2ln 2ln ln ln ln 62524321KL K L K L Y (10)无约束回归的结果在表1中给出。
表1 无约束回归的结果回归标准误差 0.17994 残差平方和 0.67993 R 平方 0.95486 调整R 平方0.94411变量 系数 标准误差 t 值 常数项 0. 2.911 0.324 LnL 3.61363 1.548 2.334 LnK-1.89311 1.016 -1.863 L 2ln 21 -0.96406 0.7074 -1.363 K 2ln 21 0.08529 0.2926 0.291 lnL ×lnK 0.31239 0.4389 0.71 系数估计量的估计协方差矩阵常数项 lnL lnK Ln2L/2 Ln2K/2lnL ×lnK常数项 8.472 LnL -2.388 2.397 LnK-0.3313 -1.231 1.033 L 2ln 21 -0.08760 -0.6658 0.5231 0.5004 K 2ln 21 0.2332 0.03477 0.02637 0.1467 0.08562 lnL ×lnK 0.36350.1831-0.2255-0.2880-0.1160 0.1927考虑了约束条件0654===βββ的模型就可以得到科布一道格拉斯模型:εβββ+++=K L Y ln ln ln 321 (11)这是一个条件约束下的无条件的多元线性回归模型。