模态分析报告

模态分析报告
模态分析报告

模态分析实验报告

一 实验原理

模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识别),从而大大地简化了系统地数学运算。通过实验测得实际响应来寻示相应的模型或调整预想的模型参数,使其成实际结构的最佳描述。

工程实际中的振动系统都是连续弹性体,其质量与刚度具有分布的性质,只有掌握无限多个点在每瞬间时的运动情况,才能全面描述系统的振动。因此,理论上它们都属于无限多自由度的系统,需要用连续模型才能加以描述。但实际上不可能这样做,通常采用简化的方法,归结为有限个自由度的模型来进行分析,即将系统抽象为由一些集中质量块和弹性元件组成的模型。如果简化的系统模型中有n 个集中质量,一般它便是一个n 自由度的系统,需要n 个独立坐标来描述它们的运动,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:

()...

M x C x Kx f t ++= (1)

式中()f t 为N 维激振向量;x ,.x ,..

x 分别为N 维位移、速度和加速度响应向量;M 、K 、C 分别为结构的质量、刚度和阻尼矩阵,通常为实对称N 阶矩阵。

设系统的初始状态为零,对方程式(1)两边进行傅里叶变换可得:

()()()2

K M j C X F ωωωω-+= (2)

式中的矩阵

()()2Z K M j C ωωω=-+ (3)

反映了系统动态特性,称为系统动态矩阵或广义阻抗矩阵。其逆矩阵

()()()1

1

2

H Z K M j C ωωωω--==-+????

(4)

称为广义导纳矩阵,也就是传递函数矩阵。因此式(2)可以转化为

()()()X H F ωωω= (5)

()H ω矩阵中第i 行第j 列的元素为

()()

()

i ij j X H F ωωω=

(6)

利用实际对称矩阵的加权正交性,有

T r

M m ?

???ΦΦ=?

????

?

T r

K k ?

?

??ΦΦ=?

?????

其中矩阵 []12n Φ=ΦΦΦ称为振型矩阵,假设阻尼矩阵C 也满足振型正

交性关系

T r

C c ?

?

??ΦΦ=?

????

?

代入式(3)得

()1T

r

Z z ω--??

??=ΦΦ?????

?

(7) 式中()2r r r r z k m j c ωω=-+

因此()()1

T r

H Z z ωω-?

?

??==ΦΦ?????????

?

()()2

2

1

2N

ri rj

ij r r r r

r

H m j ωωω

ξωω=ΦΦ=??-+??

(8)

上式中,r

r r

k m ω=

,2r r

r r

c m ξω=

。r m ,r

k 分别为第r 阶模态质量和模态刚度(又称

为广义质量和广义刚度)。r ω,r ξ,r Φ分别为第r 阶模态频率、模态阻尼比和模态振型。

不难发现,N 自由度系统的频率响应,等于N 个单自由度系统频率响应的线形叠加。为了确定全部模态参数, r ω,r ξ,r Φ,实际上只需测量频率响应矩阵的一列(对应一点激振,各点测量的()H ω)或一行(对应依次各点激振,一点测量的()T

H ω)就够了。实验模态分析或模态参数识别的任务就是由一定频段内的实测频率响应函数数据,确定系统的模态参数——模态频率r ω,模态阻尼比r ξ和振型r Φ。

二模态分析方法与测试过程

为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i和j两点之间的传递函数表示在j点作用单位力时,在i点所引起的响应。要得到i和j点之间的传递导纳,只要在j点加一个力信号激振,而在i点测量其引起的响应,就可得到计算传递函数曲线上的一个点。如果力信号是连续变化的,分别测得其相应的响应,就可以得到传递函数曲线。然后建立结构模型,采用适当的方法进行模态拟合,得到各阶模态参数和相应的模态振型,形象地描述出系统的振动形态。

三实验与数据处理

梁长(x向)0.68m,宽(y向)0.05m,高(z向)0.008m。分成8个单元,共有9个节点。在1到9点敲击,2点测量响应;响应类型为加速度。

图1 模态几何结构和节点分布图

模态频率、阻尼和振型

四 Matlab 数值计算

计算频响函数

首先从实验中提取出时域激励信号(F-t )和响应信号(x-t ),已知采样频率fs=1000Hz ,采样量N=1024,采样时间间隔t=0.001s ,则由采样分辨率公式

N f f s /=? (4-1)

计算得f ?=0.977,对时域信号进行快速傅里叶变换,由频响函数的定义式

)(/)()(f F f X f H = (4-2)

或估计式

∑∑=*=*

==m k m k ff fx f F f F f X f F G G f H 1

1

1)()(/)()(/)( (4-3)

即可计算出频响函数。

在第二点测量响应,通过下面程序得到各点敲击后的传递函数幅频曲线: clear clc n=1024 fs=1020.24/n; tch1=load('n1.txt'); tch2=load('n2.txt'); fch1=fft(tch1,n); fch2=fft(tch2,n);

afch1=abs(fch1);

afch2=abs(fch2);

tr=afch1./afch2;

tr=tr(1:n/2);

f=[0:fs:fs*(n/2-1)];

plot(f,tr)

在2点测量响应,各点敲击后的传递函数幅频曲线如下:

图3.1 传函H21的幅频曲线

图3 传函H22的幅频曲线

0200400

600

80010001200

12345678

4

传函幅频

frequency (HZ)

a c c e l e r a t i o n (m /s s 2)

图4 传函H23的幅频曲线

200400

600

80010001200

frequency (HZ)

a c c e l e r a t i o n (m /s s 2)

图5 传函H24的幅频曲线

0200400

600

80010001200

0.5

11.522.533.544

传函幅频

frequency (HZ)

a c c e l e r a t i o n (m /s s 2)

图6 传函H25的幅频曲线

0200400

600

80010001200

0.5

1

1.5

2

2.5

3

3.5

frequency (HZ)

a c c e l e r a t i o n (m /s s 2)

图7 传函H26的幅频曲线

0200400

600

80010001200

0.5

1

1.5

2

2.5

3

3.5

4

传函幅频

frequency (HZ)

a c c e l e r a t i o n (m /s s 2)

图8 传函H27的幅频曲线

200

400

600

800

1000

1200

0500100015002000250030003500

40004500

5000传函幅频

frequency (HZ)

a c c e l e r a t i o n (m /s s 2)

图9 传函H28的幅频曲线

0200400

600

80010001200

0.511.522.533.54

4

传函幅频

frequency (HZ)

a c c e l e r a t i o n (m /s s 2

)

图10 传函H29的幅频曲线

取前三阶模态,将九个峰值对应的横坐标平均后得到各阶的振动频率f1=41.328Hz, f2=164.241 Hz ,f3=353.162 Hz,取峰值得到振型,其中纵坐标的正负与对应的相位的正负一致。

五 理论值

简支梁长(x 向)0.68m ,宽(y 向)0.05m ,高(z 向)0.008m 。

欧拉梁(不考虑剪切)

4

2

2ml EI

i Ei πω=

其中,i 指的是模态的阶数,E=2.06e+011Pa ;k '=5/6;G=0.79e+011Pa ,单位长度质量m=3.12kg/m^3,截面惯性矩I=2.13e-009m^4,长l=0.68m,厚h=0.008m ,计算得

六 有限元计算

采用有限元分析软件计算简支梁的模态参数,用

shell63单元进行模

拟,将几何模型划分网格,得出简支梁模型如下图

X

Y Z

AUG 31 2014

图11 单元划分模型

模态计算结果

MN MX

X

Y Z

AUG 31 2014

图12 一阶振型

MN MX

X

Y Z

AUG 31 2014

图13 二阶振型

MN MX

X

Y Z

AUG 31 2014

图14 三阶振型

有限元分析程序如下: finish /clear /prep7

et,1,shell63 et,2,21 r,1,0.008

mp,ex,1,2.06e11 mp,dens,1,7850 mp,prxy,1,0.3 blc4,,,0.68,0.05 lesize,3,,,16 lesize,1,,,16 lesize,2,,,4 lesize,4,,,4 aatt,1,1,1 amesh,all finish

/solu

nsel,s,loc,x,0 d,all,ux,,,,,uy,uz nsel,s,loc,x,0.68 d,all,uy,,,,,uz antype,modal modopt,lanb,10 mxpand,10 solve

七结果比较与误差分析

通过上表的分析可以得知:

本实验中力锤的敲击是一个重要环节。力锤的敲击需要实验者掌握好力度的大小和时间间隔,以确保出现合适的脉冲信号。力锤敲击的好坏直接影响到实验的后处理。实验的输出数据通过加速度传感器输出,在测点的选择上要尽量避开节点位置,以免某阶模态参数求不出来。

通过几种不同的方法对简支梁进行模态参数研究,求出连续体振动的前三阶固有频率及固有振型,研究表明,不管是实验测量还是有限元分析值,与理论值的误差都保持在10%以内,在阻尼可以忽略的情况下,以上几种方法各有优缺点,在一定条件下都能较精确的反映连续体的振动情况,综合运用这些方法对工程结构进行振动分析可取得良好效果。

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

基于模态分析法的结构动载荷识别研究

文章编号:1000-1506(2000)04-0011-04 基于模态分析法的结构动载荷识别研究 文祥荣,智 浩,缪龙秀 (北方交通大学机械与电气工程学院,北京100044) 摘 要:分析了基于模态分析法的动载荷识别时域方法,应用薄板实例进行了验证,结果表明该方法具有较高精度,并对该方法在转向架结构应用中的一些问题进行了探讨. 关键词:动载荷识别;时域分析;模态分析 中图分类号:U453 文献标识码:A R esearch on Structural Dynamic Load Identif ication B ased on Modal Analysis Method WEN Xiang 2rong ,ZHI Hao ,M IAO Long 2xiu (College of Mechanical and Electrical Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :A dynamic load identification method in time domain based on modal analysis is analyzed.The method is verified with a flat thin plate and the results show its high accuracy.Some problem in the application of this method to identify dynamic load of bogie of rolling stock are also presented in this paper. K ey w ords :dynamic load identification ;time domain analysis ;modal analysis 动态载荷识别是根据已知系统的动态特性和实测的动力响应反算结构所受的动态激励.动载荷的确定是一个较难的问题,但又是结构动态设计的关键之一.动载荷的识别在结构动力响应计算、结构动态设计及故障分析中是十分重要的,为结构的动态计算、设计及分析提供可靠的依据.载荷识别方法主要分为时域和频域两大类.频域法发展较早,理论与计算方法较为成熟,应用也较广泛,在直升飞机动态力、汽车装配梁激振力、掘进机受载、海洋平台冰载、机床切削力、发动机活塞力等方面得到了应用[1].采用频域法虽然可确定动态力谱的均值与方差,但对于识别动态力确切的时间历程还有一定困难,特别是可能会出现奇异值和不稳定现象.时域法的最大特点是可以不经动态力谱而直接在时域内求解载荷时间历程,便于工程应用[2,3]. 将动载荷识别技术应用于铁路机车车辆结构受载状况的确定在国内外均未见报道.通过对机车车辆结构,尤其是转向架结构在运用条件下的动载荷识别,有助于制定转向架疲劳设计载荷谱,为转向架的动态设计与疲劳设计提供可靠的依据.我国的高速客车转向架正处于研制开发阶段,缺乏实践运用经验,各铁路工厂亦迫切需要这些载荷数据,以便完善转向架结构的 收稿日期:2000203201作者简介:文祥荣(1971— ),男,江西南康人,博士生.em ail :wen -xiangrong @https://www.360docs.net/doc/e412470825.html, 2000年8月第24卷第4期 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Aug.2000 Vol.24No.4

基于Hypermesh的车架结构模态分析(1)

计算机工程应用技术本栏目责任编辑:贾薇薇 基于Hypermesh的车架结构模态分析 卢立富1,岳玲1,黄雪涛2 (1.泰安东岳重工有限公司技术中心,山东泰安271000;2.中国五征集团汽车设计院,山东日照262300) 摘要:应用Hypermesh分析某中型载货汽车车架的固有频率,验证与外部激励发生共振的可能性,同时得出分析结论。 关键词:Hypermesh;车架结构;有限元 中图分类号:TP202文献标识码:A文章编号:1009-3044(2008)12-20569-02 TheModalAnalysisofMobileFrameBasedonHypermesh LULi-fu1,YUELing1,HUANGXue-tao2 (1.Tai'anDongyueHeavyIndustryCo.Ltd.TechnologyCenter,Tai'an271000,China;2.ChinaAutomotiveGroup5levyDesignInstitute,Rizhao262300) Abstract:Thispapermainlydealswiththeanalysisofthefrequenciesofmedium-sizedlorrycar,itverifiestheresponancepossibilityofthefrequencieswiththeexteriorencourageandbringsforwardtheanalysisresult. Keywords:Hypermesh;FrameStructure;FiniteElement 1概述 Altair公司研发的HyperWorks系列产品可以解决工程优化及分析问题,其中的Hypermesh软件可以完成有限元前处理任务,它可以很好的对几何模型数据完整读取,进行有限元的四面体网格和六面体网格的剖分,还有设置完备的网格检查功能,如今Hy-perwork已成为航空、航天、汽车等领域CAE应用的利器之一。 车架结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标而且反映了汽车车身的整体刚度性能,而且,应作为汽车新产品开发的强制性考核内容。实践证明,用有限元法对车架结构进行模态分析,可在设计初期对其结构刚度、固有振型等有充分认识,尽可能避免相关设计缺陷,及时修改和优化设计,使车架结构具有足够的静刚度,以保证其装配和使用的要求,同时有合理的动态特性达到控制振动与噪声的目的。使产品在设计阶段就可验证设计方案是否能满足使用要求,从而缩短设计试验周期,节省大量的试验费用,是提高产品可靠性的有效方法。 2车架有限元模型的建立 车架的Ug模型和有限元模型分别如图1和图2所示。有限元建模在前处理软件HyperMesh中进行。为了保证计算结果的正确性和经济性,在建模过程中尽量保持和原始结构一致的同时,也需要进行必要的简化。因为过于细致地描述一些非关键结构,不但增加建模难度和单元数目,还会使有限元模型的单元尺寸变化过于剧烈而影响计算精度。对于必要的简化要以符合结构主要力学特性为前提。车架结构中的小尺寸结构,如板簧吊耳、副簧限位件等,对车架的整体振型影响不大,可以忽略不计。而对于链接两个零件的铆钉,则采用刚性单元代替。 图1车架模型在UG环境下的实现图2车架结构有限元模型车架结构都采用板壳单元进行离散。单元形态以四边形单元为主,避免采用过多的三角形单元引起局部刚性过大;为了使整个车架有限元模型规模不致过大保证计算的经济性,单元尺寸控制在10~25mm。 车架板壳结构的材料参数取:弹性模量E=2.1e11pa,伯松比u=0.3,密度均取:ρ=7900kg/m3。模型规模:车架单元总数为36378个,节点总数为39064个。 3车架结构振动分析 在汽车设计领域,伴随着计算技术的迅猛发展,有限元分析在汽车数字化开发过程中获得了广泛的应用,尤其是对轿车承载式车身基本力学性能的分析,已经作为新产品开发设计中结构分析的主要内容。然而对于载货车,由于其非承载式的结构且在行驶过程中悬架系统和挠性橡胶垫较好的缓冲、吸振、吸能作用,故对其强度刚度和振动模态特性的要求要低于承载式车身,目前还没有 收稿日期:2008-03-12 569

基于+ANSYS+的混凝土搅拌车副车架的有限元分析

设 计 基于ANSYS的混凝土搅拌车 副车架的有限元分析 高耀东1 李 帅1 孔祥刚2 (1.内蒙古科技大学机械工程学院,内蒙古014010; 2.内蒙古北方巴里巴工程专用车有限公司,内蒙古014033) 摘要:利用ANSYS软件对14m3混凝土搅拌车副车架的静动态特性进行仿真分析。通过CATIA软件建立副车架的三维实体模型,并导入ANSYSY有限元分析软件对模型进行静力分析和模态分析,得到其最大应力的分布情况和固有频率及振型特点。为该类型车辆的进一步改进设计提供了理论指导。 关键词:搅拌车;副车架;有限元分析;静动态特性;模型 中图分类号:TU642 文献标识码:A FiniteElementAnalysisofConcreteMixer SubFrameBasedonANSYS GaoYaodong,LiShuai,KongXianggang Abstract:Emulationalanalysesondynamicandstaticcharacteristicsof14m3concretemixersubframehavebeenimplementedbyapplyingANSYS.ThreedimensionalsolidmodelofsubframehasbeenestablishedthroughCATIA,andstaticstressandmodeanalysesonthemodelhavebeencarriedoutbyquotingANSYSYfiniteelementanalysissoft-ware,finallytoobtainmaximumstressesdistributionstatusesandnaturalfrequenciesaswellasvibrationmodelcharac-teristics,whichprovidedtheoreticguidanceforfurtherdesignimprovementofthistypesofvehicle.Keywords:concretemixer;subframe;finiteelementanalysis;staticanddynamiccharacteristics;model 目前我国生产的混凝土搅拌车多数是由上装部分和通用底盘组装而成的[1]。其中,上装部分由搅拌筒、前后支撑、副车架、液压系统、操纵系统、清洗系统等主要部件组成。副车架起着连接底盘和整个上装部分的重要作用。混凝土搅拌车在行驶过程中,副车架不仅要承受拉伸、扭转、弯曲的复合应力,而且还要受动载荷作用产生冲击、振动。当达到一定的工作次数后,副车架会产生疲劳失效,这也是副车架结构的常见失效形式。 针对上述的实际情况,本文以某厂生产的14m3混凝土搅拌车为研究对象,用ANSYS有限元分析软件对该车型的副车架结构进行静力学分析和模态分析[4],验证该结构是否具有足够的强度和刚度。 收稿日期:2012—10—30 作者简介:高耀东(1966—),内蒙古科技大学教授,东南大学硕士,主要从事CAD、CAE技术的应用和研究工作。 李帅(1987—),内蒙古科技大学硕士研究生,主要从事 CAD、CAE技术的应用和研究工作。1 有限元模型的建立 1.1 副车架结构 该副车架为钢板焊接的纵截面为U型槽钢的箱型结构,主要由2根纵梁、2根横梁、8根X型斜梁组成,长6830mm、宽90mm、高140mm。其几何模型的主要尺寸如图1所示。材料为 Q345-B,弹性模量E=2.06×105MPa,泊松比μ=0.3,质量密度ρ=7850kg/m3,抗拉强度极限σb的范围为470MPa~630MPa,屈服强度极限σs=345MPa。该材料为塑性材料,故选取极限屈服强度作为极限应力,取强度安全系数n=1.4,则有许用应力值[σ]=σs/n=247 MPa。 图1 副车架的主要尺寸 Figure1 Mainsizesofsubframe 1 枟中国重型装备枠No.1CHINAHEAVYEQUIPMENTMarch2013

基于Workbench的赛车车架模态分析

基于Workbench 的赛车车架模态分析 摘要:参照中国大学生方程式汽车大赛竞赛规则,利用SolidWorks 软件建立了车架三维模型,在Workbench 中建立车架梁单元模型,并对车架进行模态分析,求取其前阶模态频率,并利用其振型动 画,找到试验模态的最佳激励点和悬挂点,接着通过试验模态的方法对车架 进行模态测试,将试验数据与仿真结果进行对比,前五阶频率误差不超过 2Hz,结果表明,通过梁单元建立的车架模型会有较高的精 度,可以进行后续的优化设计。 关键词:赛车车架;固有频率;模态测试;模态分析车架作为赛车总成最重要的一部分,其上安装着所有的 零部件,承载着来自各个系统的载荷,车架的结构设计在汽车总体设计中显得非常重要。赛车车架承受着来自道路的各种复杂载荷,在行驶时会由于各种不同振动源激励而产生振动。由于全国方程式赛车比赛时在良好道路条件下进行的,因此路面的激励不是主要激励,发动机激励为赛车车架的主要激励源。本文采用有限元软件Workbench 对某赛车车架进行模态分析,并与实际试验数据进行对比,结果表明利用梁单元建立的车架模型具有较高的精度,可以利用此模型进行后续的优化设计。

1.发动机激励分析 发动机激励是整车最为重要的激励源,如果车架的某阶 频率与发动机激励频率接近,车架将会发生严重的振动,从 而影响赛车的平顺性及可靠性。方程式赛车采用CRF-450单缸4 冲程发动机,转速区间900-9500r/min 。发动机2 阶点火激励为最主要的激励,其频率可以表示为: 2.车架模态测试 2.1模态试验原理试验时赛车车架采用自由悬挂方式,赛车车架用四 根弹 簧绳悬挂,模拟自由约束状态。试验原理图如图1 所示,由 于赛车车架质量只有32.6kg,使用激振器不方便安装,试验 过程中容易晃动造成试验数据不准确,所以试验时使用50KN 的冲击力锤产生激励信号。6 个单向加速度传感器,用于测 量各拾振点的振动信号,DH8302 采集系统用于数据采集及 分析。加速度传感器通过磁座安装在车架钢管上。 2.2模态测试测点和激振点选择与布置方案根据赛车车架的结构特 点,对其进行模态测试时,布置 了一个激振点,57 个测点,分别测取x、y、z 三个方向的加取平均值,模态测试测点及激振点布置如图3 所示,其中红色点位测点位置。 速度信号,为提高测试结果的精度,每个测点敲击4 次,求 2.3模态试验结果

轿车后副车架结构强度与模态分析.

轿车后副车架结构强度与模态分析 郑松林王寅毅冯金芝袁锋李丽 (上海理工大学机械工程学院) 【摘要】 根据某轿车后副车架的实际结构,运用有限元软件Hyperworks对后副车架进行有限元建模。 由有限元模型分析后副车架的结构强度,并计算后副车架的模态。从而反映后副车架可能存在的问题。在理论上为结构的进一步改进提供了重要参考二 【主题词】模态分析后副车架汽车 0 引言 随着轿车技术的不断进步,人们对于轿车的 舒适程度提出了更高的要求。副车架作为底盘系 统重要的承载元件,与车身和悬架系统相连,主要作用是提高悬架系统的连接刚度,减少路面震动

的传人,从而带来良好的舒适性。目前,一些中高 档轿车均采用独立式前后悬架系统,后副车架也 应用得越来越广泛。在设计时不仅要考虑到其强度,同时,为了避免振动和噪声,还要将模态特征作为对后副车架设计的约束条件。本文以某轿车后副车架为例,运用有限元软件对后副车架进行强度分析及模态分析,为轿车后副车架的设计改进提供了理论依据。 1 后副车架有限元模型的建立 后副车架三维模型是运用CATIAV5建立 的。后副车架如图1所示,通过4个悬置与车身相连。 使用Hyperworks软件的Hypermesh模块对3D 模型进行网格划分建立有限元模型。为保证有限 元模型的准确性,尽可能采用了四边形壳单元。 收稿日期:2009一∞一21 ?20?图1后副车架三维模型

考虑到模型的结构尺寸及运算效率采用以下划分标准:最小网格边长>10mm,最大网格边长≤ 20 mm;四边形单元的长宽比≤5,最大角150。,最 小角>30。,雅可比>0.6。三角单元的总数占总单元的比例不超过10%;得到有限元模型如图2所示。 图2后副车架有限元模型 有限元模型计算所使用的普通钢的材料参数 上海汽车2009.11 万方数据 为:密度7.8 x 103 kg/m3;弹性模量210GPa;泊松 比0.3。

曲轴强度模态分析报告

柴油机曲轴ANSYS计算报告 蔡川东:20114541

目录 1摘要3 2workbench高级应用基础3 2.1接触设置 (3) 2.2多点约束MPC (4) 3模型介绍5 3.1模型简化 (5) 3.1.1轴瓦建立 (6) 3.1.2质量块建立 (6) 3.2材料性能和参数 (7) 3.3有限元模型构建 (7) 4强度分析9 4.1理论简介 (9) 4.2载荷工况 (9) 4.3计算分析 (11) 5模态分析12 5.1理论简介 (12) 5.2约束条件 (12) 5.3计算分析 (12) 6结果与讨论13

1摘要 曲轴是柴油机中最重要的部件之一,也是受力情况最复杂的部件,他的参数尺寸以及设计方法在很大程度上影响着柴油机的性能和可靠性。随着柴油机技术的不断完善和改进,曲轴的工作条件也越来越复杂。曲轴设计是否可靠,对柴油机使用寿命有很大影响,因此在研制过程中需要给予高度重视。因此,对曲轴的结构进行强度分析在柴油机的设计和改进过程中占有极为重要的地位。此外,在周期性变化的载荷作用下,曲轴系统可能在柴油机转速范围内发生共振,产生附加的动应力,使曲轴过早的出现弯曲疲劳破坏和扭转疲劳破坏,因此有必要对曲轴进行动态特性分析以获取其固有频率避免共振带来不良影响。本文以六缸柴油机的曲轴为对象,计算分析了曲轴在一种载荷工况下的强度分析,找出其最大应力所在位置,以及讨论起是否在参考安全范围内,为曲轴设计中的强度计算提供一种可行性方案。同时对曲轴进行模态分析,找出其各阶固有频率,并观察其各阶模态形状,为柴油机避免共振提供数据参考。 实验采用有限元法对曲轴进行分析,有限元法是根据变分原理求解数学物理问题的一种数值计算方法,是分析各种结构问题的强有力的工具,使用有限元法可方便地进行分析并为设计提供理论依据。本文利用曲轴的三维模型IGES文件,导入Workbench中进行工况设计。比较准确地得到应力、变形的大小及分布和曲轴的固有频率及振型。 2workbench高级应用基础 2.1接触设置 (1)接触问题属于不定边界问题,即使是弹性接触问题也具有表面非线性,其中既有由接触面 积变化而产生的非线性及由接触压力分布变化而产生的非线性,也有由摩擦作用产生的非线性。由于这种表面非线性和边界不定性,所以,一般来说,接触问题的求解是一个反复迭代过程。 当接触内力只和受力状态有关而和加载路径无关时,即使载荷和接触压力之间的关系是非线性的,仍然属于简单加载过程或可逆加载过程。通常无摩擦的接触属于可逆加载。当存在摩擦时,在一定条件下可能出现不可逆加载过程或称复杂加载过程,这时一般要用载荷增量方法求解。 (2)接触面的连接条件。在接触问题中,除了各相互接触物体内部变形的协调性以外,必须保 证各接触物体之间在接触边界上变形的协调性,不可相互侵入。同时还包括摩擦条件—称为接触面的连接条件。采用有限元法分析接触问题时,需要分别对接触物体进行有限元网格剖分,并规定在初始接触面上,两个物体对应节点的坐标位置相同,形成接触对。 (3)workbench中有5中接触类型分别是: ?Bonded无相对位移。就像共用节点一样。 ?No seperation法向不分离,切向可以有小位移。 ?Frictionless法向可分离,但不渗透,切向自由滑动 ?Rough法向可分离,不渗透,切向不滑动

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒定的位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A 端振动,由A 端振动引起的波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波 在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示 向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位 始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为:

汽车前副车架模态分析与参数识别

汽车前副车架模态分析与参数识别 摘要:通过了解模态分析的定义及概念,学习模态参数识别的基本方法与技术,在介绍结构模态试验方法的基础上,以汽车前副车架为研究对象,采用锤击激励法和白噪声激励法进行了模态试验,又用3种模态参数识别软件作模态参数识别,并对识别结果进行误差分析。 关键词:前副车架,模态试验,激振,模态参数识别

Modal analysis and parameters identification of car front subframe Abstract:By understanding the definitions and concepts of modal analysis, modal parameter identification of learning the basic methods and techniques, based on the introduction of structural modal test methods, automobile front subframe for the study, using a hammer and a white noise excitation method encourage a modal test method, and use three kinds of modal parameter identification software for modal parameter identification, error analysis and recognition results. Keyword: front subframe, modal test, exciting, identification modal parameters

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

车架的模态分析知识讲解

车架的模态分析

Frame模型的模态分析 班级:T943-1 姓名:王子龙 学号:20090430124

Frame模型的模态分析 T943-1-24王子龙20090430124 一、模型问题描述 1、如图所示1,机架为一焊接件,材料为结构钢,在两根长纵梁的八个圆孔内表面采用Cylinder Support约束,分析结构的前6阶固有频率。 2、在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与 原结构对比。 短纵梁 短纵梁 图1 机架模型 二、模型分析 (一)无预紧力情况 1、导入模型:打开ANSYS Workbench,从左侧工具栏中双击Modal(ANSYS),右击A3项,右键选择 Import Gemetry→Browse,找到文件Frame.x_t点击打开,然后双击A4栏,打开Mechanical窗口。 2、施加约束:选择左侧结构树中的Modal,选择两根长纵梁的八个圆孔内表面,右键选择Insert→ Cylindrical Support,如图2所示。

图2 八圆孔内表面施加约束 3、在solution(A6)中插入Toal Deformation,点击Solve求解,求解结果如图3所示。

图3 无应力时的变形图及6阶频率 (二)有预紧力情况 1、回到Workbench界面,从左侧工具栏中的Static Structural(Ansys)拖至A4栏,如图4所示,双 击B5栏,进入Mechanical窗口。 图4 拖拽Static Stuctual(ANSYS)到A4 2、按住“shift”键,选择A5分支中Cylindrical Support,右键选择Copy,右键单击B5项,选择 Paste。 3、在Static Structual(B5)中施加载荷:选择焊接件底面insert→Force,Force=4000N,如图5所 示。

弦振动实验报告

实验13 弦振动得研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动就是产生波动得根源,波动就是振动得传播。均匀弦振动得传播,实际上就是两个振幅相同得相干波在同一直线上沿相反方向传播得叠加,在一定条件下可形成驻波。本实验验证了弦线上横波得传播规律:横波得波长与弦线中得张力得平方根成正比,而与其线密度(单位长度得质量)得平方根成反比、 一、 实验目得 1、 观察弦振动所形成得驻波。 2、 研究弦振动得驻波波长与张力得关系、 3. 掌握用驻波法测定音叉频率得方法。 二。 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三。 实验原理 1、 两列波得振幅、振动方向与频率都相同,且有恒定得位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊得干涉现象——形成驻波、如图3—13—1所示。在音叉一臂得末端系一根水平弦线,弦线得另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A 端振动引起得波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续得入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉、当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波得波节;而有些点振动最强,称为驻波得波腹。 2、 图3—13-2所示为驻波形成得波形示意图。在图中画出了两 列波在T=0,T/4,T/2时刻得波形,细实线表示向右传播得波,虚线表示 向左传播得波,粗实线表示合成波。如取入射波与反射波得振动相位 始终相同得点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们得波动方程分别为:

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

车架模态分析报告

110ZH车架模态分析报告 编制: 审核: 批准: 2006年 3 月 15 日

第一章 车架模态分析 一、模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了某结构在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 由于车架的结构振动会直接引起驾驶室振动,所以分析三轮摩托车振动时,应对车架进行模态和响应分析,优化车架结构,并从工艺设计上保证乘客的安全、舒适。三轮摩托车车架是一个多自由度弹性振动系统,作用于这个系统的各种激扰力就是使摩托车产生复杂振动的动力源。引起各种激扰力的因素可概括为两类:一是摩托车行驶时路面不平度对车轮作用的随机激振;二是发动机运转时引起的简谐激振。如果这些激励力的激振频率和车架的某一固有频率相吻合时,就会产生共振,并导致在车架上某些部位产生数值很大的共振动载荷,影响乘骑的舒适性,而且往往会造成车架有被破坏的危险。因此,车架的动态设计要求车架具有一定的固有频率和振型,这样才能保证车架具有良好的动态特性。 本次分析主要针对车架进行模态分析,以期预计车架主要模态的固有频率和形状,并借以指导车架改进设计,达到优化摩托车动态性能的目的。 1、模态分析处理 本次分析采用自由边界条件下的模态分析(即不添加任何边界支撑和约束力,计算车架的自由模态。)和添加6个车架的边界条件状态下的模态分析(左右板簧4个,前轮支撑轴承处2个)。 1.1、模型材料参数 车架材料为:Q235,有限元分析过程中材料参数为: 密度 7829 kg/m^3

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。 通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是 如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以 单独确定。以这个假定为根据的模态参数识别方法叫做单自由度 (SDOF 法 n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: r e Q R 而频域表示则近似为: 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算 机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正 确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模 型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由 度(MDOF 法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因 此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选 项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多 数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统 极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在 固有频率附近,频响函数通过自己的极值,此时其实部为零 (同相部分最 2-1 hj Q r j j r UR LR 2 2-2

相关文档
最新文档