数列求和习题及答案

数列求和习题及答案
数列求和习题及答案

数列求和练习1

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.在等比数列{a n } (n ∈N *

)中,若a 1=1,a 4=18

,则该数列的前10项和为( )

A .2-128

B .2-1

29

C .2-1210

D .2-1

211

2.若数列{a n }的通项公式为a n =2n

+2n -1,则数列{a n }的前n 项和为( ) A .2n

+n 2

-1 B .2

n +1+n 2

-1

C .2

n +1+n 2

-2

D .2n

+n -2

3.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( ) A .126

B .130

C .132

D .134

4.数列{a n }的通项公式为a n =(-1)n -1

·(4n -3),则它的前100项之和S 100等于

( ) A .200

B .-200

C .400

D .-400

5.数列1·n ,2(n -1),3(n -2),…,n ·1的和为( ) n(n +1)(n +2) n(n +1)(2n +1) n(n +2)(n +3)

n(n +1)(n +2)

二、填空题(每小题6分,共24分)

6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2

n =________.

7.已知数列{a n }的通项a n 与前n 项和S n 之间满足关系式S n =2-3a n ,则a n =__________.

8.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列???

?

?

?

1b n b n +1的前n 项和S n =________.

9.设关于x 的不等式x 2

-x<2nx (n ∈N *

)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 三、解答题(共41分)

10.(13分)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *

满足关系式2S n =3a n -3. (1)求数列{a n }的通项公式;

(2)设数列{b n }的通项公式是b n =

1

log 3a n ·log 3a n +1

,前n 项和为T n ,求证:对于任

意的正数n ,总有T n <1.

11.(14分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差

中项.

(1)求数列{a n }的通项公式;

(2)若b n =a n log 12

a n ,S n =

b 1+b 2+…+b n ,求使S n +n ·2n +1

>50成立的最小正整数n 的值.

12.(14分)已知等差数列{a n }的首项a 1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式;

(2)设b n =

1n (a n +3)

(n ∈N *

),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对

任意的n 均有S n >t

36总成立若存在,求出t ;若不存在,请说明理由.

答案

6. 13

(4n

-1) 7. 12? ??

??34n -1

8.

n

n +1

100

10. (1)解 由已知得???

??

2S n =3a n -3,

2S n -1=3a n -1-3

(n ≥2).

故2(S n -S n -1)=2a n =3a n -3a n -1,即a n =3a n -1 (n ≥2). 故数列{a n }为等比数列,且公比q =3. 又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n

. (2)证明 ∵b n =

1n (n +1)=1n -1n +1

.

∴T n =b 1+b 2+…+b n

=? ????1-12+? ????12-13+…+? ????1

n -1n +1 =1-

1

n +1

<1. 11解 (1)设此等比数列为a 1,a 1q ,a 1q 2

,a 1q 3

,…,其中a 1≠0,q ≠0. 由题意知:a 1q +a 1q 2

+a 1q 3

=28, ① a 1q +a 1q 3

=2(a 1q 2

+2).

②×7-①得6a 1q 3

-15a 1q 2

+6a 1q =0, 即2q 2

-5q +2=0,解得q =2或q =12

.

∵等比数列{a n }单调递增,∴a 1=2,q =2,∴a n =2n

. (2)由(1)得b n =-n ·2n

∴S n =b 1+b 2+…+b n =-(1×2+2×22

+…+n ·2n

). 设T n =1×2+2×22

+…+n ·2n

,③ 则2T n =1×22

+2×23+…+n ·2

n +1

.④

由③-④,得-T n =1×2+1×22

+…+1·2n

-n ·2n +1

=2

n +1

-2-n ·2

n +1

=(1-n )·2

n +1

-2,

∴-T n =-(n -1)·2n +1

-2.

∴S n =-(n -1)·2n +1

-2.

要使S n +n ·2

n +1

>50成立, 即-(n -1)·2

n +1

-2+n ·2

n +1

>50,即2n

>26.

∵24

=16<26,25

=32>26,且y =2x

是单调递增函数, ∴满足条件的n 的最小值为5.

12解 (1)由题意得(a 1+d)(a 1+13d)=(a 1+4d)2

, 整理得2a 1d =d 2

.

∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *

). (2)b n =

1n (a n +3)=12n (n +1)=12? ??

??1

n -1n +1,

∴S n =b 1+b 2+…+b n

=12??????? ????1-12+? ????12-13+? ????1

n -1n +1 =12? ????1-1n +1=n

2(n +1)

. 假设存在整数t 满足S n >t

36

总成立,

又S n +1-S n =n +12(n +2)-n 2(n +1)=1

2(n +2)(n +1)

>0,

∴数列{S n }是单调递增的.

∴S 1=14为S n 的最小值,故t 36<1

4,即t<9.

又∵t ∈Z,∴适合条件的t 的最大值为8.

数列求和练习2

1.求下列数列的前n 项和n S :

(1)5,55,555,5555,…,5(101)9

n

-,…;

(2)1111

,,,,

,

132435

(2)

n n ???

+;

(3)n a =

(4)2

3

,2,3,,,

n a a a na ;

(5)13,24,35,,(2),n n ???+;

(6)2222sin 1sin 2sin 3sin 89++++.

2.已知数列{}n a 的通项65()

2

()n n n n a n -?=??为奇数为偶数,求其前n 项和n S .

数列求和练习2参考答案

解:(1)55555555

5n n S =+++

+个

5

(999999999)9

n =+++

+个

235

[(101)(101)(101)(101)]9

n =-+-+-++- 235505

[10101010](101)9819

n n n n =++++-=--. (2)∵

1111

()(2)22n n n n =-++, ∴11111111[(1)()()()]2324352n S n n =-+-+-++-+11

11

(1)2

212

n

n =+--++.

(3

)∵n a

===

1n S

n =+++

+1)(1n =++++1=.

(4)2323n

n S a a a na =++++,

当1a =时,123n S =+++ (1)

2

n n n ++=,

当1a ≠时,2323n S a a a =+++…n

na + ,

23423n aS a a a =+++…1n na ++,

两式相减得 2

3

(1)n a S a a a -=+++ (1)

1(1)1n n n n a a a na

na a

++-+-=--,

∴212

(1)(1)

n n n na n a a

S a ++-++=-. (5)∵2

(2)2n n n n +=+,

∴ 原式2

2

2

(123=+++ (2)

)2(123n ++?+++…)n +(1)(27)

6

n n n ++=.

(6)设2222sin 1sin 2sin 3sin 89S =++++, 又∵2222sin 89sin 88sin 87sin 1S =++++,

∴ 289S =,892

S =

. 2.已知数列{}n a 的通项65()

2

()n n n n a n -?=??为奇数为偶数,求其前n 项和n S .

解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列;

当n 为奇数时,奇数项有12n +项,偶数项有1

2

n -项,

∴1

121(165)

4(14)(1)(32)4(21)221423

n n n n n n n S --++--+--=+=+

-, 当n 为偶数时,奇数项和偶数项分别有2

n

项,

∴2(165)

4(14)(32)4(21)221423n n n n n n n S +----=+=+

-, 所以,1(1)(32)4(21)

()23

(32)4(21)()23n n n

n n n S n n n -?+--+??=?--?+??

为奇数为偶数.

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

数列求和—裂项相消专题

数列求和—裂项相消专题 裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111 (1)1n a n n n n ==- ++ 1111 ()(2)22n a n n n n = =-++ ┈┈ 1111 () ()n a n n k k n n k = =-++ 2 n p a An Bn C ?= ++(分母可分解为n 的系数相同的两个因式) 2. 1111 ()(21)(21)22121n a n n n n ==--+-+ 1111 ()(21)(23)22123n a n n n n ==-++++ 1111 ()(65)(61)66561 n a n n n n = =--+-+ 3. 1111 (1)(2)2(1)(1)(2)n a n n n n n n n ??==-??+++++?? 4. 111211 (21)(21)2121 n n n n n n a ---==- ++++ +1+1211(21)(21)2121 n n n n n n a ==-++++ 122(1)111 (1)2(1)22(1)2n n n n n n n n a n n n n n n -++-= =?=- ++?+ ┈┈ 1 2 = 1 k =

1.在数列{}n a 中,11211++ ???++++=n n n n a n ,且1 2+?=n n n a a b ,求数列{}n b 的前n 项的和. 2.已知数列{}n a 是首相为1,公差为1的等差数列,2 1 n n n b a a += ?,n S 为{}n b 的前n 项 和,证明:1334 n S ≤<.

数列求和专题

1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=+++L ,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=? ?+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()231234222n n T n n =-?+-?++?L ,① ()()23+1231234222n n T n n =-?+-?++?L ,② -②①得 ()()()()123124213123222222312321 n n n n n T n n -++-∴=--?+++++?=--?+? -L ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 数列求和专题

例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()() 21n n n n b c b b = --,求数列{}n c 的前n 项和n T . 【答案】(1)63n a n =-+,12n n b +=;(2)11121 n n T +=- -. 【解析】(1)2n ≥时,()22 133163n n n a S S n n n -??=-=----=-+?? , 当1n =时,113a S ==-符合上式,63n a n ∴=-+, ∵{}n b 为等比数列3 1232 512b b b b ∴==,28b ∴=, 设{}n b 的公比为q ,则21328 ,8b b b b q q q q ====,而315a =-, 113383158a b a b q q ∴+=+?-+ =-+,解得2q =或12 q =-, ∵{}n b 单调递增,2q ∴=,21222n n n b b -+∴=?=. (2)()()()()()()111112211 222121212121n n n n n n n n n c +++++===-------, 11223111111 1212121212121n n n n T c c +??????∴=++=-+-++- ? ? ?------?????? L L 1 111111212121 n n ++=-=----. 一、单选题 1.已知等差数列{}n a 中918S =,240n S =,()4309n a n -=>,则项数为( ) A .10 B .14 C .15 D .17 【答案】C 对点增分集训

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

数列求和专题(学生版)

数列求和专题 讲点1.公式法:用于等差与等比数列,必须记住数列前n项和公式 ; 例1.(2014福建卷)在等比数列中,a2=3,a5=81. (1)求a n; (2)设,求数列的前n项和S n. 讲点2.分组求和 (等差+等比) 把一组需要求和的数列拆分成两组或两组以上的特殊数列来求和 例2.(2014·北京卷)已知是等差数列,满足a1=3,a4=12,数列满足b1=4,b4=20,且{b n-a n}为等比数列. (1)求数列和的通项公式; (2)求数列的前n项和. 变式1.求和 变式2.求数列的前n项和:,… 变式3.在数列中,,其前项的和=__________ 变式4.等差数列中, (1)求数列的通项公式;

(2)设数列是首项为,公比为的等比数列,求数列的前项和. 讲点3.错位相减 (等差×等比) 例3.(2014·全国新课标卷Ⅰ)已知是递增的等差数列,a2,a4是方程x2-5x+6=0的根. (1)求的通项公式; (2)求数列的前n项和. 变式1.设数列满足 (1) 求的通项公式; (2) 设,求数列的前n项和. 变式2.已知正项数列满足:(),且 (1)求得通项公式; (2)设,求数列的前项和

讲点4.裂项相消 (分式型) 常用的裂项公式有 例4.(2014-2015武汉中学期中)等比数列的各项均为正数,且,(Ⅰ)求数列的通项公式; (Ⅱ)若,求的前项和. 变式1. 在数列中,,又,求数列的前项和. 变式2.求和 变式3. .求数列的前n项和. 变式4.求数列的前n项和. 例5.(襄阳四中2011-2012高一下期中)数列的通项公式是 ,前项和为9,则等于. 变式5.求数列的前项和. 讲点5.倒序相加 前后对应项的和为定值 例6. 已知函数当时,,则 =_________. 变式1.设求的值.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

数列求和专题(完美归纳难度二级)

专题一 数列求和 一、公式法 将数列转化为等差或等比数列,直接运用等差或等比数列的前n 项和公式求得. ①等差数列求和公式:()() 11122 n n n a a n n S na d +-= =+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=? =-?-=≠? --?(切记:公比含字母时一定 要讨论) 常见数列求和 1 1+2+3+=(1)2 n n +…n 21+3+5+=n …+(2n-1) 2+4+6+=(1)n n +…2n 2222(1)(21)1236n n n n ++++++=L 2 3333(1)1232n n n +??++++=????L 例1、 设数列2 2 1 1,(12),(122)122++n -+++++…( …2)…的前n 项和n S . 变式训练: (2017高考山东18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++, ,构成等差数列. (1)求数列{}n a 的通项公式. (2)令31ln 12n n b a n +==L ,,,,求数列{}n b 的前n 项和T .

二、错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n a b g 的前n 项和n S 求解,可用乘公比错位相减法求和。 若n n n a b c =?,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令 112211n n n n n S b c b c b c b c --=++++L 则n qS =122311n n n n b c b c b c b c -+++++L 两式相减并整理即得 例1、 求和:(1){n 2}n n g 求数列的前项和. 23123(2)n n n S a a a a =++++… 变式训练1:(07高考全国Ⅱ21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且 111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ?? ???? 的前n 项和n S .

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

数列求和精选难题、易错题(含答案)

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。(1)若数列{an}是等比数列,求实数t的值; (2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。 解:(1)由题意,当时,有 两式相减,得即:() 当时,是等比数列,要使时是等比数列, 则只需,从而得出 (2)由(1)得,等比数列的首项为,公比, ① 可得② 得 (3)由(2)知, ,, ,数列递增

由,得当时,数列的“积异号数”为1。 2、已知数列{an}的前n项和为Sn,满足. (Ⅰ)求数列{an}的通项公式an; (Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小值;(Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论. 解:(Ⅰ)∵, 由,∴, 又,∴数列是以为首项,为公比的等比数列, ∴,即; (Ⅱ), ∴ , ∴,即n的最小值为5; (Ⅲ)∵, 若,,成等比数列, 即 由已知条件得,∴, ∴, ∴上式可化为,

∵,∴, ∴, ∴为奇数,为偶数, 因此不可能成立, ∴,,不可能成等比数列. 3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15 (1)求{an},{bn}的通项公式。 (2)若数列{cn}满足求数列{cn}的前n项和Wn。 设等差数列{an}的公差为d,等比数列{bn}的公比为q ∵a1=1,b1=3由a2+b2=8,得1+d+3q=8 ① 由T3-S3=15得3(q2+q+1)-(3+3d)=15 ② 化简①②∴消去d得q2+4q-12=0 ∴q=2或q=-6 ∵q>0∴q=2则d=1∴an=n bn=3·2n-1 ⑵∵an=n∴① 当时,…② 由①-②得∴cn=3n+3 又由⑴得c1=7 ∴ ∴{an}的前n项和…

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

涵盖所有高中数列求和的方法和典型例题

数列的求和 1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 2 . 公 式 法 : 222221 (1)(21) 1236 n k n n n k n =++=++++= ∑L 2 3 3 3 3 3 1 (1)1232n k n n k n =+?? =++++=????∑L 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常 见 拆 项公式 : 1 11)1(1+-=+n n n n ; 1111 ()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1()1()1 (n n n x x x x x x S ++++ ++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 1 10101011112-= ++++==k k k k a Λ321Λ个 ])101010[(9 1)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[ 911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ n x x x x x x n n 2)1 11()(242242++++++++=ΛΛ (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2) 1() 1)(1(21)1(1)1(2 2222222222+-+-=+--+--=+---

三种常用的数列求和方法-高考文科数学分类专题突破训练

考查角度2三种常用的数列求和方法 分组转化法求和 已知等差数列{a n}满足a2=2,a1+a4=5. {a n}的通项公式; (2)若数列{b n}满足b1=3,b2=6,{b n-a n}为等比数列,求数列{b n}的前n T n. 利用已知条件求出等差数列{a n}的通项公式;(2)因为{b n n,所以数列{b n}的前n项和T n可以看成数列{b n-a n} {a n}的前n项和的总和. 设等差数列{a n}的公差为d, {a n}满足a2=2,a1+a4=5, ∴解得a1=d=1, ∴a n=1+(n-1)×1=n. (2)设等比数列{b n-a n}的公比为q,∵b1=3,b2=6, ∴b1-a1=3-1=2,b2-a2=6-2=4, ∴q=2. ∴b n-a n=2×2n-1=2n, ∴b n=n+2n, ∴数列{b n}的前n项和 T n=(1+2+3+…+n)+(2+22+…+2n)=+- -=+2n+1-2. 从求和数列的通项入手,将其转化为等差数列与等比 ,再利用等差数列与等比数列的求和公式进行分组求和. 错位相减法求和 已知{a n}的前n项和S n=4n-n2+4. {a n}的通项公式; (2)求数列-的前n项和T n. 由{a n}的前n项和求出数列{a n}的通项公式;(2)利用错 (当n=1时要单独考虑). 当n≥2时,a n=S n-S n-1=4n-n2-[4(n-1)-(n-1)2]=5-2n; 1时,a1=S1=7. ∴a n= - (2)令b n=-,

当n=1时,T1=b1=-=0; 当n≥2时,b n=-= - , ∴T n=0++++…+ -+ - , T n=+++…+ - +, 两式相减得T n=1+++…+ --= - - -=2-, ∴T n=4- - (n≥2 . 当n=1时,满足上式. 综上所述,T n=4- - . 用错位相减法求和时,应注意: ,特别是等比数列的公比为负数的情形; (2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式; (3)在应用错位相减法求和时,若等比数列的公比未知,应分公比等于1和不等于1两种情况求解. 分类透析三a n=型的裂项相消法求和 已知数列{a n}为单调递增数列,S n为其前n项和,2S n=+n. (1)求{a n}的通项公式. (2)若b n=,T n为数列{b n}的前n项和,证明:T n<. 由递推公式2S n=+n求出{a n}的通项公式;(2)先用裂项相消法求和,再进行适当放缩证明. 当n=1时,2S1=2a1=+1,即(a1-1)2=0,解得a1=1. 又{a n}为单调递增数列,所以a n≥1. 由2S n=+n得2S n+1=+n+1, 所以2S n+1-2S n=-+1, 整理得2a n+1=-+1,所以=(a n+1-1)2. 所以a n=a n+1-1,即a n+1-a n=1, 所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

专题训练-常见数列的求和

专题训练-常见数列的求和 德阳二中 谢超强 在前面,我们学习了如何求等差数列和等比数列的前n 项和。下面介绍既非等差数列又 非等比数列的某些数列前n 项和的求法。 一、分组求和法 某些数列,通过适当的分组,可得出两个或几个等差数列或等比数列,从而可利用等差数列或等比数列的求和公式分别求和,得出原数列的和。 例1:求数列3 11,912 ,2713,…,)3 1n n +(,…的前n 项和。 解:n S =311+912+271 3+…+)3 1n n +( =(1+2+3+…+n )+)3 1 2719131(n ++++ = 3 11) 311(312 )1(--++n n n =)3 1 1(21)1(21n n n -++ 二、聚合法 有的数列表示形式较复杂,每一项是若干个数的和,这时常采用聚合法,先对其第n 项求和,然后将通项化简,从而改变原数列的形式,再采用分组求和。 例2:求数列 ,2 221,,221,21,11 2 2 -+++++++n 的前n 项和。 解:∵122 1212 22112 -=--=++++=-n n n n a ∴n n a a a a S ++++= 321 =)12()12()12()12(3 2 1 -++-+-+-n =n n -++++)2222(3 2 1 = 222 1) 21(21--=---+n n n n 三、裂项相消法 这种方法是先把数列的第n 项n a 分裂为几项的代数和,从而改变数列的形式,以便可以进行消项处理,进而达到解决问题的目的。 例3.求数列 ,) 1(6,,436,326,216+????n n 的前n 项和。

相关文档
最新文档