数学百大经典例题

数学百大经典例题
数学百大经典例题

判断正误练习

判断下面说法是否正确,如果并说明原因。

(1)R)ai(a ∈是纯虚数;

(2)在复平面内,原点也在虚轴上;

分析:先判断正误,若错误考虑如何纠错?或直接改正或举反例试之。

(1)错误。因为当0a =时,不是纯虚数。

(2)错误。因为原点不在虚轴上。

探究性问题

已知关于x 的方程()03122=-+--i m x i x 有实根,求实数m 的取值。

分析:注意不能用判别式△来解。

如:∵ 方程有实根

∴ ()()044122

≥---=?i m i 错误的原因是虚数不能比较大小,因此涉及到大小问题的概念和理论如与不等式有关的判别

解:设方程的实根为x 0,则

()031202

0=-+--i m x i x 整理得:()1124002

0=+-++i x m x x 由复数相等的条件知:

210

12030020=??????=+=++m x m x x

复数的分类例题

例 实数a 分别取什么值时,复数i a a a a a Z )152(3

622--++--=是(1)实数(2)虚数(3)纯虚数。 解:实部3

)3)(2(362+-+=+--a a a a a a ,虚部)5)(3(1522-+=--a a a a (1)当5=a 时,Z 是实数;(2)当5≠a ,且3-≠a 时,Z 是虚数;(3)当2-=a 或3=a 时是纯虚数.

复数的相等例题

例 设i m m m m z )34()32(221+-+--=(R m ∈),i z 352+=,当m 取何值时,(1)

21z z =;

(2).01≠z 分析:复数相等的充要条件,提供了将复数问题转化为实数问题的依据,这是解复数问题常用的思想方法,这个题就可利用复数相等的充要条件来列出关于实数m 的方程,求出m 的值.

解:(1)由可得:

?????=+-=--3

3453222m m m m 解之得4=m , 即:当4=m 时.21z z =

(2)当01≠z 可得:

0322≠--m m 或0342≠+-m m ,即3≠m 时01≠z

复数与复平面上的点的对应关系的例题

例 设复数bi a z +=和复平面的点Z (b a ,)对应,a 、b 必须满足什么条件,才能使点Z 位于:(1)实轴上?(2)虚轴上?(3)上半平面(含实轴)?(4)左半平面(不含虚轴及原点)?

分析:本题主要考查复数bi a Z +=与复平面的点Z (b a ,)建立一一对应的关系. 解:(1)0=b

(2)0=a 且0≠b

(3)0≥b

(4)0

求点的轨迹的例题

例 已知关于t 的一元二次方程)R ,(,0)(2)2(2

∈=-++++y x i y x xy t i t

(1)当方程有实根时,求点),(y x 的轨迹方程.

(2)求方程的实根的取值范围.

思路分析

(1)本题方程中有y x t 、、三个未知数由复数相等的充要条件能得到两个等式,而结论是要求动点),(y x 的轨迹方程,联想到解析几何知识,求),(y x 的轨迹方程就是求关于y x 、的方程,于是上面的两个等式正是轨迹方程的参数形式,消去参数t ,问题得解

(2)由上面解答过程中的②知0=+-t y x 可看作一条直线,由③知

2)1()1(22=++-y x 是一个圆,因此求实根t 的范围可转化为直线与圆有公共点的问题.

解答

(1)设实根为t ,则0)(2)2(2=-++++i y x xy t i t

即0)()22(2=-++++i y x t xy t t

根据复数相等的充要条件得???=-+=++)

2(0)1(0222 y x t xy t t 由(2)得x y t -=代入(1)得02)(2)(2=+-+-xy x y x y

即2)1()1(22=++-y x (3)

∴所求点的轨迹方程为2)1()1(22=++-y x ,轨迹是以(1,-1)为圆心,2为半径的圆.

(2)由(3)得圆心为(1,-1),半径2=

r , 直线与圆有公共点,则22)1(1≤+--t

, 即22≤+t ∴04≤≤-t ,

故方程的实根的取值范围为[]0,4-.

思维诊断

此题涉及到复数与解析几何的知识,综合性较强,学生往往不易入手,审题不到位,且有畏惧心理,是思维受阻的主要因素,在第(2)题求实根的取值范围时还可由(1)(2)消去y 建立关于实数x 的二次方程,用判别式?求出t 的范围.同时通过本题,同学们要进一步认识,把复数问题转化为实数问题求解的必要性,这是解决有关复数与方程问题惯用的手法,要切实掌握好.

复数相等的例题2

例 已知x 是实数,y 是纯虚数,且满足i y y i x )3()12(--=+-,求x 与y .

思路分析

因为y 是纯虚数,所以可设)0,R (≠∈=b b bi y ,代入等式,把等式的左、右两边都整理成bi a +形式后,可利用复数相等的充要条件得到关于x 与b 的方程组,求解后得x 与b 值.

解答

设)0R (≠∈=b b bi y 且代入条件并整理得

i b b i x )3()12(-+-=+-

由复数相等的条件得???-=-=-3112b b x 解得??

???-==234x b ∴.4,23i y x =-= 思维诊断

一般根据复数相等的充要条件,可由一个复数等式得到两个实数等式组成的方程组,从而可确定两个独立参数,本题就是利用这一重要思想,化复数问题为实数问题得以解决.在解此题时,学生易忽视y 是纯虚数这一条件,而直接得出等式??

?--==-)

3(112y y x 进行求解,这是审题不细所致.

复数相等的例题3

例 已知关于x 的方程02)2(2=++++ki x i k x 有实根,求这个实根以及实数k 的值. 思路分析

方程的实根必然适合方程,设0x x =为方程的实根,代入整理后得0=+bi a 的形式)R (∈b a 、.由复数相等的充要条件,可得关于0x 与k 的方程组,通过解方程组便可求得0x 与k .

解答

设0x x =是方程的实根,代入方程并整理得

0)2()2(0020=++++i k x kx x

由复数相等的条件得???=+=++0

2020020k x kx x 解得?????-==22,20k x 或?????=-=,

22,20k x ∴方程的实根为2=

x 或2-=x ,相应的k 值为22-=k 或22=k .

思维诊断

学生易给出如下错解:∵方程有实根,∴0)2(4)2(2≥+-+=?ki i k .解得32≥k 或32-≤k .这是由于错把实系数一元二次方程根的判别式运用到了复系数一元二次方程中,事实上,在复数集内解复系数一元二次方程,判别式?不能够判断方程有无实根,这一点后面还会提到.因此,解关于方程有实根的问题,一般都是把实根代入方程,用复数相等条件求解.

复数的分类例题

例 m 取何实数时,复数i m m m m m z )152(3

622--++--=(1)是实数?(2)是虚数?(3)是纯虚数?

思路分析

本题是判断复数在何种情况下为实数、虚数、纯虚数.由于所给复数z 已写成标准形式,即)R (∈+=b a bi a z 、,所以只需按题目要求,对实部和虚部分别进行处理,就极易解决此题.

解答

(1)当???≠+=--0

301522m m m 时,即???-≠=-==35 35m m m m 即时或 ∴5=m 时,z 是实数.

(2)当???≠+≠--0

301522m m m 时,即???-≠-≠≠335m m m 且 ∴当5≠m 且3-≠m 时,z 是虚数.

(3)当??

???≠--≠+=--0152030622m m m m m 时即?????-≠≠-≠-==35323m m m m m 且或

∴当3=m 或2-=m 时,z 是纯虚数.

思维诊断

研究一个复数在什么情况下是实数、虚数或纯虚数时,首先要保证这个复数的实部、虚部是有意义的,这是一个前提条件,学生易忽略这一点.如本题易忽略分母不能为0的条件,丢掉03≠+m ,导致解答出错.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

小升初数学训练典型例题分析-找规律篇

名校真题 测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

小升初数学测试题经典十套题及答案

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* (人教版)小升初入学考试数学试卷(一) 班级______姓名______得分______ 一、选择题:(每小题4分,共16分) 1、在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。 A、15点 B、17点 C、19点 D、21点 2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。 A、10 B、12 C、14 D、16 3、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。 A、提高了50% B、提高40% C、提高了30% D、与原来一样 4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。 A、18 B、19.2 C、20 D、32 二、填空题:(每小题4分,共32分) 1、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。 2、甲乙两桶油重量差为9千克,甲桶油重量的1/5等于乙桶油重量的1/2,则乙桶油重()千克。 3、两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是()。 4、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是()厘米。

5、如图,电车从A站经过B站到达C站,然后返回。去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时()千米。 6、扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作: 第一步,分发左中右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步,从左边一堆拿出两张,放入中间一堆; 第三步,从右边一堆拿出一张,放入中间一堆; 第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。 这时小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是()。 7、前30个数的和为()。 8、如图已知直角三角形的面积是12平方厘米,则阴影部分的面积是()。 三、计算:(每小题5分,共10分)

小升初数学典型题数与代数

小升初数学典型题数与 代数 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第一章 数与代数 第一节 数与代数 1.某一个数十万位上是最大的一位数,万位上是最小的合数,百位上最小的质数,其余各位上都是0,则这个数写作( ),读作( ),省略万位后面的尾数约是( )。 2.用三个8和三个0组成的六位数中,一个零都不读出的最小六位数是( ),只读出一个零的最大六位数是( ),读出两个零的六位数是( )。 3.填空。(1)如果向东走20米记作+20米,那么向西走15米应该记作( )。(2)如果把零下℃ 记作℃,那么零下℃ 记作( ),零上24℃ 记作( )。(3)如果足球比赛负一场记作-1,那么负两场记作( ),胜三场记作( )。 4.判断。(1)3· 是纯循环小数。( ) (2)一个自然数不是质数,就是合数。( ) (3)33 100米可以记作33%米。( ) (4)小数点的后面添上0或去掉0,小数点的大小不变。( ) 5.一个三位小数,“四舍五入”后约是,这个三位小数最大是( ),最小是( )。 6.庆“六一”,六年级同学买来336枝红花,252枝黄花,210枝粉花。用这些花最多可以扎成多少束同样的花束在每束花中,红、黄、粉三种花各有几枝 7.有一堆苹果,3个3个地数余2个,4个4个地数余3个,5个5个地数余4个,这堆苹果最少有多少个 8.要比较9 10和1112的大小,你能用哪些方法 9. ( ) ( ) = =( ):( )=( )% = ( )折 第二节 数的运算

1. 计算(1)9 4×8 5 ÷1.7(2)0.5×[51 5 ÷(3?2.5×7 8 )] 2. 如果83 5?1.5÷[12 3 ×( +11 3 )]=82 5 ,那么□=() 3. 解答下面各题。(1)有一个减法算式,被减数、减数和差的和是71 5 ,差是减数的2倍。请写出这个减法算式。 (2)有一个除法算式,被除数、除数、商和余数的和是100,已知商是12,余数是5。请你求出被除数。 4. 选择。a是大于0的数,(a+a)÷a+(a?a)×a的结果是() A. a B. 2 C. 2-a 5. 下面各题怎样简便就怎样算。 (1)4 7×3 5 +3 7 ÷5 3 (2)4 9 +2.28?5 9 (3)(4)×4.6+6.4×3.7?3.7 6.计算下面各题 (1)16 27×[3 4 ?(7 16 ?1 4 )] (2)1 2 +1 6 +1 12 +1 20 +1 30 +1 42 第三节常见的量 1. 45000平方米=()公顷小时=()分钟 20升20毫升=()升 4小时15分钟=()小时=()分钟千克=()千克()克=()克 2. 王军每天早上7:45到校,中午11:05放学;下午2:20到校,5:00放学。王军一天的在校时间是多少

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式, 找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812 , ,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数 是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

小升初数学经典题型汇总

小升初数学:应用题综合训练1 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=份 所以,每亩原有草量60-30×=12份 第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份 新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛 所以,一共需要+=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=每亩原有草量为*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24**80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

小升初数学典型题

升中典型题 1、一种商品按定价的75折出售,仍可获利20%,若按定价出售可获利()%。 2、圆柱体和圆锥体的底面半径的比是2:3,高的比是4:3,则圆柱与圆锥的体积比是(): ()。 3、有一个长方体,它的正面和上面的面积之和是209,如果它是长、宽、高都是质数,那么 这个长方体的体积是()。 4、小芳骑车从甲地到乙地每小时行30千米,然后按原路返回,若想往返的平均速度为40千 米,则返回时每小时应行()千米。 5、一个半圆形,半径是r,它的周长是()。 6﹑水结成冰后体积增了1 11 , 冰融化成水后,体积减少( ) 7.冰化成水后,体积比原来减少1 12,水结成冰后,体积比原来增加了(). 8、甲数为a,比乙数的3 4多b,表示乙数的式子是()。 9、一个圆柱和一个圆锥的体积相等。已知圆柱的高是圆锥高的 2 3,圆柱的底面积和圆锥底 面积的比是() .10、甲种商品降价20%后与乙商品涨价20%后的价格相等,甲乙两种商品的原价的比是()。 11.甲数比乙数少20%,乙数比甲数多()%。 12.甲乙两个数最大公因数是3,最小公倍数是45,若甲数是9,那么乙数是()。 13. 相同的小正方形拼成一个大正方形,至少要()个。相同的小正方体拼成一个大正方体,至少要()个。 二、解决问题。 1﹑用同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖(用比例解) 2﹑小明读一本书,第一天读了这本书的1 4 多6页,第二天读了这本书的 2 5 少2页,第三天读完剩 下的17页,这本书共有多少页 3、一筐梨,先拿走30kg,又拿出余下的70%,这时剩下的梨正好是原来的1 10。这筐梨原来 多少kg

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

小升初数学典型题:工程问题练习题

小升初数学典型题:工程问题练习题 工程问题历来是小升初考试的必考科目,题型多样,可出现于填空题,应用题。题目变化多,问题难易跨度大,下面是几道工程问题练习题,希望同学们可以认真学习。 题目一某工程,甲先做56天,乙接着做35天即可完成。若甲乙合做需42天也可以完成。现在,由甲先做48天,再由乙单独完成。问:乙还需做多少天? 题目二一项工程,甲队独做需要150天,乙队独做需要180天。现两队合作,甲队做5天休息2天,乙队做6天休息1天。问,甲乙合作几天能完工? 题目三甲队每工作6天休息1天,乙队每工作5天休息2天。一件工程,甲队单独做需97天,乙队单独做需75天。现两队合作,2019年3月3日开工,问完工时是几月几日? 答案及解析 题目一 解法一: 把甲独做56天,乙接着做35天看做甲乙共同做了35天后,甲再独做(56-35)天。 因为甲乙合做需42天,即合做效率为1/42,共同做的这35天就完成了35/42.剩下的由甲独做(56-35)天完成,可计算出甲的效率,进而算出乙的效率。 (1-1/42×35)÷(56-35)=1/6÷21=1/126

1/42-1/126=1/63 现在,甲先做48天,可找到甲已经完成的部分,余下的工作量即为乙总共需要完成的。 根据时间=工作量÷工作效率,即可得出乙工作天数 (1-1/126×48)÷1/63=13/21×63=39(天) 解法二: 甲乙合做42天看成甲先做42天,再由乙做42天。 甲做56天,乙做35天可以完成 甲做42天,乙做42天可以完成。 可以看出,甲少做(56-42)天,乙就要多做(42-35)天。 可以找到时间比,甲:乙=(56-42):(42-35)=2:1 甲做天数=56+35×2=126(天) 乙做天数=126÷2=63(天) 进而算出两人效率 现在,甲先做48天,可找到甲已经完成的部分,余下的工作量即为乙总共需要完成的。 根据时间=工作量÷工作效率,即可得出乙工作天数 (1-1/126×48)÷1/63=13/21×63=39(天) 题目二和题目三表面看着差别不大,其实是难度不同的两道题。题目二是基础题,题目三是易错题。区别在于独做时间与休息时间说法的顺序。 题目二在最开始就说了两队独做的时间,而只有在合作这项

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

小升初数学经典试题

小升初数学经典试题 小升初入学考试与初中升高中的中考、高中升大学的高考并列为中小学生的三大考试。 1 人大附中考题 ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点, 求乙车每秒走多少厘米? 2 清华附中考题 已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两 地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地 出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离时多少? 3 十一中学考题 甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、 丙相遇,那麽这条长街的长度是?米. 4 西城实验考题 甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。当乙从A处返回时走了lO米第二次与甲相遇。A、B相距多少米? 5 首师大附考题 甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次? 6 清华附中考题 从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩 下的几何体的表面积是_________平方厘米. 7 三帆中学考试题 有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个 小长方体这60个小长方体的表面积总和是______平方米

相关文档
最新文档