[配套k12学习]九年级数学下册第2章二次函数1复习检测题
(必考题)初中数学九年级数学下册第二单元《二次函数》检测卷(答案解析)

一、选择题1.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根2.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 23.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .4.如图,抛物线与x 轴交于()2,0A -,()4,0B 两点,点()P m n ,从点A 出发,沿抛物线向点B 匀速运动,到达点B 停止,设运动时间为t 秒,当3t =和9t =时,n 的值相等.有下列结论:①6t =时,n 的值最大;②10t =时,点P 停止运动;③当5t =和7t =时,n 的值不相等;④4t =时,0m =.其中正确的是( )A .①④B .②④C .①③D .②③5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( ) A .2B .4C .-4D .7.当函数21(1)23a y a x x +=-++ 是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-8.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()4,0,其对称轴为直线1x =,结合图像给出下列结论:①0b <;②420a b c -+>;③当2x >时,y 随x 的增大而增大;④所以正确关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个9.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .33C .222+D .25+11.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s二、填空题13.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x 轴有n 个交点,则所有可能的数对(,)m n 是__________.14.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.15.如图已知1A ,2A ,3A ,n A ⋅⋅⋅是x 轴上的点,且112233411n n OA A A A A A A A A -====⋅⋅⋅==,分别过点1A ,2A ,3A ,n A ⋅⋅⋅作x 轴的垂线交二次函数()02>=x x y 的图象于点1P ,2P ,3P ,n P⋅⋅⋅,若记11OA P △的面积为1S ,过点1P 作1122P B A P ⊥于点1B ,记112P B P △的面积为2S ,过点2P 作2233P B A P ⊥于点2B ,记223P B P △的面积为3S ,…依次进行下去,则3S =______,最后记()111n n n PB P n -->△的面积为n S ,则n S =______.16.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.17.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).19.道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落在同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是___________.20.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22mm ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.23.已知抛物线23(0)y ax bx a =+-≠经过(1,0)(3,0)A B -,两点,C 点是抛物线与y 轴交点,直线l 是抛物线的对称轴. (1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得ACM △的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.24.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 25.跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为20.9y ax bx =++. (1)求该抛物线的表达式;(2)如果小明站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶上方0.4米处,求小明的身高是多少?此时小明若向点O 方向走多少米,就能让绳子甩到最高处时,绳子刚好通过他的头顶;(3)如果有若干个与小明同身高的同学一起站在OD 之间玩跳绳,现知只要绳子甩到最高处时超过她们的头顶且每个同学同方向站立时的脚跟之间距离不小于0.55米就可以一起玩,问最多可以几个同学一起玩.26.阅读材料:二次函数的应用小明在学习过程中遇到一个问题:下列两个两位数相乘的运算中(两个乘数的十位上的数都是8,个位上的数的和等于10),猜想其中哪个积最大,并说明理由.8189⨯,8288⨯,8387⨯,……,8783⨯,8882⨯,8981⨯ 小明结合已学知识做了如下尝试:设两个乘数的积为y ,其中一个乘数的个位上的数为x ,则另一个乘数个位上的数为(10)x -,根据题意得:(80)[80(10)]y x x =++-=(80)(90)(80)(90)x x x x +-=-+-……(1)问题解决:请帮助小明判断以上问题中哪个积最大并求出这个最大的积;(2)问题拓展:下列两个三位数相乘的运算中(两个乘数的百位上的数都是7,十位上的数与个位上的数组成的数的和等于100),用以上方法猜想其中哪个积最大,并说明理由.701799⨯,702798⨯,703797⨯,……,797703⨯,798702⨯,799701⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2.A解析:A 【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题. 【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+, ∴当x=3时,S 取得最大值,此时S=18, 故选:A . 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.3.B解析:B 【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-,∴抛物线一定经过原点, ∴选项A 排除;∵()222y mx m x =+- ,∴对称轴为直线x=22224m m m m---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m-<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合; 故选B. 【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.4.A解析:A 【分析】根据题意首先求得抛物线的对称轴,然后由抛物线的轴对称性质和二次函数的性质解答. 【详解】解:过点P 作PQ ⊥x 轴于Q ,根据题意,该抛物线的对称轴是直线x=422- =1.设点Q 的运动速度是每秒v 个单位长度,则∵当t=3和t=9时,n 的值相等, ∴x=12[(9v−2)+(3v−2)] =1, ∴v=12. ①当t=6时,AQ=6×12=3,此时点P 是抛物线顶点坐标,即n 的值最大,故结论正确;②当t=10时,AQ=10×12=5,此时点Q 与点B 不重合,即n≠0,故结论错误; ③当t=5时,AQ=52,此P 时点的坐标是(12,0); 当t=7时,AQ=72,此时点P 的坐标是(32,0). 因为点(12,0)与点(32,0)关于对称轴直线x=1对称,所以n 的值一定相等,故结论错误;④t=4时,AQ=4×12=2,此时点Q 与原点重合,则m=0,故结论正确. 综上所述,正确的结论是①④. 故选:A . 【点睛】本题主要考查了抛物线与x 轴的交点,二次函数的最值,二次函数图象上点的坐标特征,根据题意求得对称轴和点Q 的运动速度是解题的关键.5.C解析:C 【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标. 【详解】 解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1), 故选:C . 【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.6.D解析:D 【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解. 【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯,∵顶点在x 轴上,∴241441b ⨯⨯-⨯=0,解得b 2=16, b=±4. 故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.7.D解析:D 【分析】根据二次函数的定义去列式求解计算即可. 【详解】 ∵函数21(1)23ay a x x +=-++ 是二次函数,∴a-1≠0,2a 1+=2, ∴a≠1,21a =, ∴1a =-, 故选D . 【点睛】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.8.C解析:C 【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x 轴y 轴的交点,综合判断即可. 【详解】解:抛物线开口向上,因此a >0,抛物线的对称轴为x=-2ba=1,所以0b <,所以①正确;抛物线的对称轴为x=1,与x 轴的一个交点为(4,0),则另一个交点(-2,0),于是4a-2b+c=0,所以②不正确;x >1时,y 随x 的增大而增大,所以③正确;抛物线与x 轴有两个不同的交点,因此一元二次方程20ax bx c ++=有两个不相等的实数根,所以④正确;综上所述,正确的结论有①③④. 故答案为:C . 【点睛】本题考查二次函数的图形和性质,掌握二次函数的图形和系数之间的关系是正确判断的前提.9.A解析:A 【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴222AC ==, 即:函数图象中,222,m n ==, ∴222m n +=+故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.二、填空题13.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2)【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解.【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-;对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =;② 当a b 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =;②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =; ③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当a b 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即2n =; 综上所述,当a b =时,1n =或0n =;当a b 时,1n =或2n =. ∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2).【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式. 14.【分析】求出A 点坐标和对称轴根据对称性求出M 点坐标利用中点求出B 点坐标进而求出P 点坐标代入求a 即可【详解】解:由题意得:对称轴为直线P 点横坐标为1当x=0时y=3∴A 点坐标为:根据对称性可知M 点坐标 解析:94【分析】求出A 点坐标和对称轴,根据对称性求出M 点坐标,利用中点,求出B 点坐标,进而求出P 点坐标,代入求 a 即可.【详解】 解:由题意得:对称轴为直线212a x a -=-=,P 点横坐标为1, 当x=0时,y=3,∴A 点坐标为:()0,3,根据对称性可知,M 点坐标为()2,3 ,∵M 为AB 中点,∴B 点坐标为:()4,3设OB 解析式为y=kx ,把B ()4,3代入得,3=4k解得,k=34, ∴直线OB 解析式为34y x =, 把1x =代入34y x =得,34y =, ∴P 点坐标为31,4⎛⎫ ⎪⎝⎭, 代入抛物线得:3234a a -+=,解得,94a =, 故答案为:94. 【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式.15.【分析】先根据二次函数图象上点的坐标特征求出点P (11)则根据三角形面积公式求得S1=同样求得S2=S3=S4=所有对应的三角形面积的分母都为2分子为2n-1从而可得Sn=【详解】解:∵当∴点P1( 解析:52, 212n - 【分析】 先根据二次函数图象上点的坐标特征求出点P (1,1),则根据三角形面积公式求得S 1=12,同样求得S 2=32,S 3=52,S 4=72,所有对应的三角形面积的分母都为2,分子为2n-1,从而可得S n =212n -. 【详解】解:∵()02>=x x y 当1x =,1y =,∴点P 1(1,1)∴S 1=111122=⨯⨯= 当2x =时,224y ==∴点P 2(2,4)∴S 2()1314122=⨯⨯-= 当3x =时,239y ==∴点P 2(3,9)∴S 3()1519422=⨯⨯-= 同理:S 4()17116922=⨯⨯-= ∴S n 212n -= 故答案为:52;212n - 【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也涉及到三角形面积公式,图形类规律探索,解题的关键是学会利用数形结合的思想,找出相应三角面积的规律.16.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35, 故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.17.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键.18.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.19.4【分析】根据抛物线形状建立二次函数模型以AB中点为原点建立坐标系xOy通过已知线段长度求出A(10)B(-1O)由二次函数的性质确定y=ax2-a利用PQ=EF建立等式求出二次函数中的参数a即可得解析:4【分析】根据抛物线形状建立二次函数模型,以AB中点为原点,建立坐标系xOy,通过已知线段长度求出A(1,0),B(-1,O),由二次函数的性质确定y=ax2-a,利用PQ=EF建立等式,求出二次函数中的参数a,即可得出EF的值.【详解】解:如图,令P下方的点为H,以AB中点为原点,建立坐标系xOy,则A(1,0),B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a . ∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故答案为:0.4.【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.20.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m <n ,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m ,n 的大小是解题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.23.(1)223y x x =--;(2)在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【分析】(1)利用待定系数法即可得出结论;(2)点确定出点M 时直线BC 与直线l 的交点,利用待定系数法求出直线BC 解析式即可得出结论;【详解】解:(1)把(1,0)A -,(3,0)B 代入23y ax bx =+-得,309330a b a b --=⎧⎨+-=⎩, 解得,12a b =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, 点M 在对称轴1x =上,且ACM ∆的周长最短,MC MA ∴+最小,点A 、点B 关于直线1x =对称,∴连接BC 交直线1x =于点M ,此时MC MA +最小,设直线BC 的关系式为y kx b =+,(3,0)B ,(0,3)C -,∴303k b b +=⎧⎨=-⎩, 解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当1x =时,132y =-=-,∴点(1,2)M -,∴在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【点睛】此题时二次函数综合题,主要考查了待定系数法,对称性,解题关键时掌握待定系数法,和判断出点M 的位置,24.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.25.(1)20.10.60.9y x x =-++;(2)1.4米;(3)8个【分析】(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E (1,1.4),B (6,0.9)坐标代入即可;(2)小明站在OD 之间,且离点O 的距离为3米,即OF=3,求当x=3时的函数值即可得出小明身高;将y=1.4代入解析式求出x 的值,再减去1即可得出答案;(3)求出y=1.4时x 的值,再用两者之间的差除以0.55,取整得出答案.【详解】解:(1)由题意得把点E (1,1.4),B (6,0.9),代入y=ax 2+bx+0.9得,0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩, 解得0.10.6a b =-⎧⎨=⎩ , ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9;(2)把x=3代入y=-0.1x 2+0.6x+0.9得:y=-0.1×32+0.6×3+0.9=1.8;1.8-0.4=1.4(米),∴小明的身高是1.4米;把y=1.4代入y=-0.1x 2+0.6x+0.9得-0.1x 2+0.6x+0.9=1.4,解得:x 1=1,x 2=5(舍),则3-1=2(米),此时小明向点O 方向走2米就能让绳子甩到最高处时绳子刚好通过他的头顶. (3)当y=1.4时,-0.1x 2+0.6x+0.9=1.4,解得x 1=1,x 2=5,∴5-1=4,∴4÷0.55≈7.27,∴最多可以8个同学一起玩.【点睛】本题考查了二次函数的应用及坐标的求法,此题为数学建模题,解题的关键是注意审题,将实际问题转化为求函数最值问题,培养自己利用数学知识解答实际问题的能力. 26.(1)8585⨯最大,为7225;(2)750750⨯的积最大,理由见解析【分析】(1)由(80)(90)y x x =-+-,求解抛物线的对称轴,从而得到抛物线的顶点的横坐标,于是可得函数的最大值;(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,从而可得函数关系式为::w =(700)(800)a a -+-,再求解抛物线的对称轴为:7008001005022a -+===,再利用二次函数的性质可得答案.【详解】(1)解: (80)(90)y x x =-+-, ∴ 抛物线的对称轴为:809010522x -+=== 而对称轴5x =在自变量取值范围内(19x ≤≤且x 为整数)∴当5x =时,2max (580)(590)857225y =-+-==,所以:8585⨯最大,最大积为7225.(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,依题意,得:(700)[700(100)]w a a =++-=(700)(800)(700)(800)a a a a +-=-+- ∴抛物线的对称轴为:7008001005022a -+=== 而对称轴50a =在自变量取值范围内(199a ≤≤且x 为整数)∴当50a =时,750750⨯的积最大.【点睛】本题考查的是列二次函数关系式,二次函数的性质与二次函数的最值,二次函数的应用,掌握以上知识是解题的关键.。
(典型题)初中数学九年级数学下册第二单元《二次函数》测试题(包含答案解析)(1)

一、选择题1.如图,抛物线y =ax 2+bx +c 的顶点坐标为(1,﹣4a ),点A (4,y 1)是该抛物线上一点,若点B (x 2,y 2)是该抛物线上任意一点,有下列结论:①4a ﹣2b +c >0;②抛物线y =ax 2+bx +c 与x 轴交于点(﹣1,0),(3,0);③若y 2>y 1,则x 2>4;④若0≤x 2≤4,则﹣3a ≤y 2≤5a .其中,正确结论的个数是( )A .0B .1C .2D .32.二次函数2y ax bx c =++的图象如图所示,则函数值y 0>时,x 的取值范围是( )A .x 2<-B .x 5>C .2x 5-<<D .x 2<-或x 5> 3.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 2 4.抛物线222=++y x x 与y 轴的交点坐标为( )A .(1,0)B .(0,1)C .(0,0)D .(0,2) 5.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax bc =+的图象大致是( )A .B .C .D .6.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-; ③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个 B .2个C .3个D .4个 7.抛物线()2212y x =+-的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 8.如图,二次函数y =a 2x +bx+c (a >0)的图象与x 轴交于A ,B 两点,与y 轴的正半轴交于点C ,它的对称轴为直线x =﹣1.有下列结论:①abc >0;②4ac ﹣2b >0;③c ﹣a >0;④当x =﹣2n ﹣2(n 为实数)时,y≥c .其中,正确结论的个数是( )A .0B .1C .2D .39.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个10.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+B .23(-5)1y x =-C .23(5)1y x =+-D .23(5)1y x =++11.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①② B .②④ C .③④ D .②③④ 12.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题13.如图所示,二次函数2(0)y ax bx c a =++≠的图像与x 轴交于点()3,0,对称轴为直线1x =.则方程20cx bx a ++=的两个根为_____.14.已知()11y ,,()23y ,是函数226y x x c =-++图像上的点,则1y ,2y 的大小关系是______.15.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x 轴有n 个交点,则所有可能的数对(,)m n 是__________.16.抛物线y =a (x ﹣2)(x ﹣2a)(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____.17.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b -=;③320b c +>;④2(am bm a b m +≤-为实数).其中正确结论是_____________(只填序号).18.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.19.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.20.教练对小明推铅球的录像进行技术分析,如图,发现铅球行进高度()y m 与水平距离()x m 之间的关系为()21184105y x =--+ ,由此可知铅球推出的距离_____ m .三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式(2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件?(3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元?23.如图,抛物线y =a (x ﹣1)2+4与x 轴交于点A ,B ,与y 轴交于点C ,过点C 作CD//x 轴交抛物线的对称轴于点D ,连接BD ,已知点A 的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD 的面积.(3)直线BC 上方的抛物线上是否存在一点P ,使△PBC 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.24.喜迎元旦,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.(1)假设设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,求y 与x 之间的函数关系式.(2)每件商品的售价上涨多少元时,该商店每星期销售这种商品可获得最大利润?此时,该商品的定价为多少元?获得的最大利润为多少?25.已知二次函数y =ax 2+bx ﹣2(a ≠0)的图像与x 轴交于点A 、B ,与y 轴交于点C . (1)若点A 的坐标为(4,0)、点B 的坐标为(﹣1,0),求a +b 的值;(2)若图像经过P (1,y 1),Q (m ,n ),M (3,y 2),N (3﹣m ,n ),试比较y 1、y 2的大小关系;(3)若y =ax 2+bx ﹣2的图像的顶点在第四象限,且点B 的坐标为(﹣1,0),当a +b 为整数时,求a 的值.26.如图,已知一次函数2y kx =-的图象与x 轴交于点A ,与y 轴交于点B ,二次函数2y x bx c =++经过点B ,且与一次函数2y kx =-的图象交于点()6,4C .(1)求一次函数与二次函数的解析式.(2)在y 轴上是否存在点M ,使得以点B ,M ,C 为顶点的三角形与BAO 相似?若存在,请求出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用对称轴公式和顶点坐标得出﹣4a =a +b +c ,b =﹣2a ,c =﹣3a ,则可对①进行判断;抛物线解析式为y =ax 2﹣2ax ﹣3a ,配成交点式得y =a (x ﹣3)(x +1),可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算x =4时,y =5a ,则根据二次函数的性质可对④进行判断.【详解】解:①∵二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(1,﹣4a ),∴x =﹣2b a=1,且﹣4a =a +b +c , ∴b =﹣2a ,c =﹣3a ,∵抛物线开口向上,则a >0, ∴4a ﹣2b +c =4a +4a ﹣3a =5a >0,故结论①正确;②∵b =﹣2a ,c =﹣3a ,∴y =ax 2﹣2ax ﹣3a =a (x ﹣3)(x +1),∴抛物线y =ax 2+bx +c 与x 轴交于点(﹣1,0),(3,0),故结论②正确;③∵点A (4,y 1)关于直线x =1的对称点为(﹣2,y 1),∴当y 2>y 1,则x 2>4或x 2<﹣2,故结论③错误;④当x =4时,y 1=16a +4b +c =16a ﹣8a ﹣3c =5a ,∴当0≤x 2≤4,则﹣4a ≤y 2≤5a ,故结论④错误.故选:C .【点睛】本题考查了二次函数的图象与性质,掌握二次函数图象与性质的相关知识并能灵活运用所学知识求解是解题的关键.2.C解析:C【分析】根据函数图象求出与x 轴的交点坐标,再由图象得出答案.【详解】解:有函数图象观察可知,当25x -<<时,函数值0y >.故选:C .【点睛】本题考查二次函数与不等式.掌握数形结合思想是解题关键.3.A解析:A【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题.【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+,∴当x=3时,S 取得最大值,此时S=18,故选:A .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答. 4.D解析:D【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2)【详解】令x=0,则y=2,∴抛物线与y 轴的交点为(0,2),故选:D .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;5.B解析:B【分析】根据二次函数的图像,确定a ,b ,c 的符号,后根据一次函数k,b 的符号性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半轴,∴c >0,∵抛物线的对称轴在原点的左边, ∴2b a-<0,且a <0, ∴b <0,∴bc <0;∴y ax bc =+的图像分布在第二,第三,第四象限, 故选B .【点睛】本题考查了二次函数的图像,一次函数的图像,熟练掌握二次函数的图像与各系数之间的关系,一次函数中k ,b 与图像分布之间的关系是解题的关键.6.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a , ∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形, 则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC , Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7, 即c 2=7,∵抛物线与y 轴负半轴交于点C , ∴c <0,c 7=-,∴a 33c =-=. Ⅱ、当AB =AC =4时, 在Rt △OAC 中, ∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15, 即c 2=15,∵抛物线与y 轴负半轴交于点C , ∴c <0,c=,∴a 33c =-=. Ⅲ、当AC =BC 时, ∵OC ⊥AB , ∴点O 是AB 的中点, ∴AO =BO ,这与AO =1,BO =3矛盾, ∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确. 故答案选:D 【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2ba=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.7.B解析:B 【分析】根据二次函数的顶点式的性质求对称轴即可; 【详解】∵ ()2212y x =+- ,∴对称轴为:x=-1, 故选:B . 【点睛】本题考查了二次函数顶点式的性质,正确掌握知识点是解题的关键.8.C解析:C 【分析】根据二次函数的开口方向,对称轴的位置,二次函数的性质,二次函数的图像与x 轴的交点情况去分析判断即可. 【详解】解:由图象开口向上,可知a >0, 与y 轴的交点在x 轴的上方,可知c >0, 又对称轴为直线x =﹣1,∴﹣2ba <0, ∴b >0, ∴abc >0, 故①正确;∵二次函数y =a 2x +bx+c (a >0)的图象与x 轴交于A ,B 两点, ∴2b ﹣4ac >0, ∴4ac ﹣2b <0, 故②错误;∵﹣2ba =﹣1, ∴b =2a ,∵当x =﹣1时,y =a ﹣b+c <0, ∴a ﹣2a+c <0, ∴c ﹣a <0, 故③错误;当x =﹣2n ﹣2(n 为实数)时,y =a 2x +bx+c =a 22(2)n --+b (﹣2n ﹣2)+c =a 2n (2n +2)+c , ∵a >0,2n ≥0,2n +2>0, ∴y =a 2n (2n +2)+c≥c , 故④正确, 故选:C . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.9.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下, ∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确; 根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确. 则其中正确的有3个,为①②③. 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.10.C解析:C 【分析】根据“左加右减、上加下减”的原则进行解答即可. 【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2; 再向下平移1个单位为:y=3(x+5)2-1. 故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.B解析:B 【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④. 【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误; ②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2ba=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④, 故选:B . 【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键.12.B解析:B 【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可. 【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴, ∴a >0, b <0,c <0, ∴abc >0, ∴结论①错误; ∵抛物线的对称轴为x=1, ∴12ba-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0), ∴0a b c -+=; ∴结论②错误;∵当x=-2时,y=4a-2b+c >0,∵12ba-=,则b=-2a ∴80a c +>, ∴结论④正确;故选B . 【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.二、填空题13.【分析】根据题意和二次函数的性质可以得到二次函数的图像与轴的另一个交点然后得到的解然后再变形即可得到方程的两个根;【详解】∵二次函数的图象与x 轴交于点对称轴为直线∴该函数与x 轴的另一个交点为∴当时可解析:11x =-,213x = 【分析】根据题意和二次函数的性质,可以得到二次函数2(0)y ax bx c a =++≠的图像与x 轴的另一个交点,然后得到20ax bx c ++=的解,然后再变形,即可得到方程的两个根; 【详解】∵二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点()3,0,对称轴为直线1x =, ∴该函数与x 轴的另一个交点为()1,0-, ∴当0y =时,20ax bx c =++, 可得:11x =-,23x =,当20ax bx c ++=,0x ≠时,可得2110a b cx x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 设1t x=,可得20ct bt a ++=, ∴11t =-,213t =,由上可得,方程20cx bx c ++=的两个根为11x =-,213x =;故答案为:11x =-,213x =. 【点睛】本题主要考查了二次函数与一元二次方程的应用,准确分析计算是解题的关键.14.【分析】经过配方后确定抛物线的对称轴进而确定抛物线的增减性根据自变量的大小关系可确定函数值的大小关系【详解】解:∵∴抛物线的对称轴为∵a=-2<0∴抛物线开口向下∵1比3更接近对称轴∴故答案为:【点 解析:12y y >【分析】经过配方后确定抛物线的对称轴,进而确定抛物线的增减性,根据自变量的大小关系可确定函数值的大小关系. 【详解】解:∵()2223926=23222y x x c x x c x c ⎛⎫=-++--+=--++ ⎪⎝⎭ ∴抛物线的对称轴为32x = ∵a=-2<0 ∴抛物线开口向下∵1比3更接近对称轴, ∴12y y >故答案为:12y y >. 【点睛】本题考查了二次函数值的大小比较,根据二次函数的解析式确定对称轴的位置是解题的关键.15.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2) 【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解. 【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-; 对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =; ② 当ab 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =;③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当ab 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即2n =;综上所述,当a b =时,1n =或0n =;当ab 时,1n =或2n =.∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2). 【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式.16.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由解析:-1 【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值. 【详解】 解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a=+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数, ∴1a =±,当1a =时,y=0(不符合题意,舍去); 当1a =-时,y=4,(符合题意) ∴1a =-; 故答案为-1. 【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.17.①②④【分析】根据抛物线开口向下对称轴抛物线与轴相交于正半轴可得可以判断①和②正确;当时有解得由图像可知化简后可判断得③错误;由图像可知当时抛物线有最大值当时根据得到化简后得故④正确【详解】解:抛物解析:①②④.【分析】根据抛物线开口向下,对称轴12bx a=-=-,抛物线与y 轴相交于正半轴,可得0a <,20b a =<,0c >,可以判断①和②正确;当0y =时,有210a x c a,解得11a cx a,21a cx a,由图像可知,011a c a,化简后可判断得③错误;由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,根据12y y ≥得到20a bcam bmc化简后得2am bm a b +≤-,故④正确.【详解】 解:抛物线开口向下,0a ∴<,抛物线的对称轴12bx a=-=-, 20b a ∴=<,抛物线与y 轴相交于正半轴,0c ∴>,∴0abc >,故①正确;∴2220a b a a -=-=,故②正确;当0y =时,2220ax bx c ax ax c ,∴210a x c a∴11a cx a, 21a cx a由图像可知,011a c a∴14a c a则有30a c +<,∴62320a c b c +=+<,故③错误; 由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,∵12y y ≥ ∴20a bcam bmc则2am bm a b +≤-,故④正确; 故答案是:①②④. 【点睛】本题考查了二次函数的图象与系数的关系,熟悉相关性质是解题的关键.18.2【分析】设正方形的边长为a 则CFEC 均可用a 表示证明△ABE ∽△ECF 写出比例式找到y 与x 之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2 【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值. 【详解】设正方形的边长为a ,则CF=a-y . ∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°, ∴∠BAE=∠CEF . 又∠B=∠C , ∴△ABE ∽ECF , ∴BE FC AB EC =,x a ya a x-=-, 整理得:21y x x a a=-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3,∴334a=, 解得:4a =,∴22ax m ===. 故答案为:2. 【点睛】本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.19.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是解析:2467y x x =+-. 【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式. 【详解】解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+-即2467y x x =+-, 故答案为:2467y x x =+-. 【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键.20.10【分析】根据铅球落地时高度y=0实际问题可理解为当y=0时求x 的值即可【详解】解:令函数式中y=00=解得x1=10x2=-2(舍去)即铅球推出的距离是10m 故答案为:10【点睛】本题考查了二次解析:10 【分析】根据铅球落地时,高度y=0,实际问题可理解为当y=0时,求x 的值即可. 【详解】解:令函数式()21184105y y x ==--+中,y=0, 0=()21184105x --+, 解得x 1=10,x 2=-2(舍去), 即铅球推出的距离是10m . 故答案为:10. 【点睛】本题考查了二次函数的应用,取函数或自变量的特殊值列方程求解是解题的关键.三、解答题21.证明见详解. 【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-, ∵1,,39a b k c k ==-=-,()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x轴的交点问题,掌握二次函数与x轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)y=-x2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元.【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x的一元二次方程,解方程即可得到产品售价x的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答.【详解】解:(1)y=(x-120)(200-x)=-x2+320x-24000 ;(2)日销售利润是1500元,即y=1500,则1500=-x2+320x-24000解得:x1=170,x2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件.(3)∵y=-x2+320x-24000=-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元.【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.23.(1)y=﹣(x﹣1)2+4;(2)6;(3)存在,当P31524⎛⎫⎪⎝⎭,时,△PBC的面积最大,最大值为278.【分析】(1)把A的坐标代入抛物线解析式求得a的值即可得解;(2)根据抛物线的性质可以得到CD、OC、OB的值,再根据梯形面积的计算公式可以得到答案;(3)过点P作y轴的平行线,交直线BC于点F,交AB于点E,设P(m,﹣2m+2m+3),则△PBC的面积可以表示为m的二次函数,最后根据二次函数的性质即可得到解答.【详解】解:(1)将A (﹣1,0)代入y =()214a x -+中,解得:a =﹣1,则抛物线解析式为y =()214x --+;(2)对于抛物线解析式y =()214x --+,令x =0,得到y =3,即OC =3,∵抛物线解析式为y =()214x --+的对称轴为直线x =1, ∴CD =1,∵A (﹣1,0),∴B (3,0),即OB =3则COBD S 梯形=1332+⨯()=6; (3)y =()221423x x x --+++=﹣.设直线BC 为(0)y px q p =+≠将B (3,0),C (0,3)代入直线BC 得:直线BC 的解析式为:y =﹣x+3.如图,过点P 作y 轴的平行线,交直线BC 于点F ,交AB 于点E ,设P (m ,﹣2m +2m+3),则F (m ,﹣m+3),∴PF =﹣2m +2m+3+m ﹣3=﹣2m +3m .∴PBC S=12PF•OB =12(﹣2m +3m )×3 =23327m 228--+() ∴当m=32时,△PBC 的面积最大,此时﹣2m +2m+3=2332322-+⨯+()=154, 即当P 31524(,)时,△PBC 的面积最大,最大值为278. 【点睛】 本题考查二次函数的综合应用,熟练掌握二次函数与一次函数解析式的求法、抛物线的性质及梯形和三角形面积的求法是解题关键.24.(1)2101002000(020)y x x x =-++≤<;(2)每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y 与x 的函数关系式; (2)根据二次函数的性质即可得到结论.【详解】(1)(6050)(20010)y x x =-+-2(10)(20010)101002000(020)x x x x x =+-=-++≤<.(2)2210100200010(52250y x x x =-++=--+)所以,当5x =时,y 取得最大值为2250.答:每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据每天的利润=一件的利润⨯销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.25.(1)-1;(2)若a >0,则y 1<y 2;若a <0,则y 1>y 2;(3)32a =【分析】(1)把A (4,0),B (-1,0)代入二次函数关系式求出a ,b 的值即可得到结果; (2)由点Q ,点N 的纵坐标相同,根据抛物线的对称性可得抛物线的对称轴,确定点P 距对称轴更近,分a >0和a <0两种情况讨论即可;(3)分别求出a +b =1,a-b-2=0,联立方程组求解即可.【详解】解:(1)∵二次函数y =ax 2+bx ﹣2(a≠0)的图像过A (4,0),B (-1,0) ∴1642020a b a b +-=⎧⎨--=⎩解得,1=23=2a b ⎧⎪⎪⎨⎪-⎪⎩∴13122a b +=-=- (2)∵Q (m ,n ),N (3﹣m ,n ),∴二次函数图象的对称轴为3322m m +-=∵P (1,y 1),M (3,y 2),∴点P 距离对称轴更近若a >0,则y 1<y 2;若a <0,则y 1>y 2;(3)由题意知,∵图像的顶点在第四象限,∴对称轴2b x a=->0 ∵B (﹣1,0),∴A 点横坐标大于1当x=1时,y=a+b-2<0∴0<a+b <2∵a +b 为整数∴a +b =1又∵B (﹣1,0),∴a-b-2=0 联立120a b a b +=⎧⎨--=⎩解得,32a =【点睛】本题为二次函数综合题,主要考查了待定系数法求函数的解析式,以及二次函数的性质. 26.(1)一次函数解析式为2y x =-,二次函数解析式为:252y x x =--;(2)存在,点M 的坐标为(0,4)或(0,10).【分析】(1)由一次函数2y kx =-的图象与y 轴交于点B ,可求B (0,-2),由一次函数2y kx =-的图象过点()6,4C ,可求1k =,一次函数解析式为2y x =-,由2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩,解方程组求出52b c =-⎧⎨=-⎩即可;(2)存在,先求出OA=2,OB=2,∠AOB=90°,由勾股定理=M 为直角顶点时,当点C 为直角顶点时,利用相似三角形及其性质,可求BM=6或12,即可求出点M 的坐标.【详解】解:(1)∵一次函数2y kx =-的图象与y 轴交于点B ,∴当x=0时,y=-2,B (0,-2),∵一次函数2y kx =-的图象过点()6,4C ,∴462k =-,∴1k =,∴一次函数解析式为2y x =-,∵2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩, 解方程组得52b c =-⎧⎨=-⎩, ∴二次函数解析式为:252y x x =--;(2)存在,理由如下,∵已知一次函数2y x =-的图象与x 轴交于点A ,∴y=0,x=2,∴A(2,0),B(0,-2),∴OA=2,OB=2,∠AOB=90°,在Rt △AOB 中,由勾股定理由勾股定理= ①当点M 为直角顶点时,CM ⊥y 轴,CM ∥OA ,∴∠MCB=∠OAB ,∠MBC=∠OBA , ∴△CMB ∽△AOB ,∴BM BC =BO BA 即BM 2, ∴BM=6,∴OM=MB-OB=6-2=4,∴M (0,4),②当点C 为直角顶点时,∴CM ⊥BC ,∴∠MCB=∠AOB=90°,∠MBC=∠ABO , ∴△MCB ∽△AOB ,∴BC BM =BO BA ∴BM=12,∴OM=MB-OB=12-2=10,∴M (0,10), ∴以点B ,M ,C 为顶点的三角形与BAO 相似点M 的坐标为M (0,4)或(0,10).【点睛】本题考查一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,掌握一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,解题关键是分类考虑以点C与点M为直角时的相似三角形.。
(典型题)初中数学九年级数学下册第二单元《二次函数》检测(有答案解析)

一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( ) A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠2.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .3.抛物线222=++y x x 与y 轴的交点坐标为( ) A .(1,0)B .(0,1)C .(0,0)D .(0,2)4.如图,抛物线与x 轴交于()2,0A -,()4,0B 两点,点()P m n ,从点A 出发,沿抛物线向点B 匀速运动,到达点B 停止,设运动时间为t 秒,当3t =和9t =时,n 的值相等.有下列结论:①6t =时,n 的值最大;②10t =时,点P 停止运动;③当5t =和7t =时,n 的值不相等;④4t =时,0m =.其中正确的是( )A .①④B .②④C .①③D .②③5.如图,二次函数y =a 2x +bx+c (a >0)的图象与x 轴交于A ,B 两点,与y 轴的正半轴交于点C ,它的对称轴为直线x =﹣1.有下列结论:①abc >0;②4ac ﹣2b >0;③c ﹣a >0;④当x =﹣2n ﹣2(n 为实数)时,y≥c .其中,正确结论的个数是( )A .0B .1C .2D .36.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有( )A .4B .3C .2D .17.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小 8.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( ) A .()()352005y x x =-- B .()()354005y x x =-- C .()()402005y x x =--D .()()403755y x x =--9.如图,抛物线22y x x m =-+交x 轴于点(),0A a ,(),0B b ,交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①无论m 取何值,2CD =恒成立;②当0m =时,ABD △是等腰直角三角形;③若2a =-,则6b =;④()11,P x y ,()22,Q x y 是抛物线上的两点,若121x x ,且122x x +>,则12y y <.正确的有( )A .①②③④B .①②④C .①②D .②③④10.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<11.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P .若点P 的横坐标为1-,则一次函数()y a b x b =--的图象大致是( )A .B .C .D .12.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是( ) A .2-B .2-C .0D .52二、填空题13.将二次函数()2y a x m k =++(0a ≠)的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的表达式是()214y x =-+,则原函数的表达式是________.14.在平面直角坐标系中,函数21y ax bx c =++,2y ax b =+,3y ax c =+,其中a ,b ,c 为常数,且a<0,函数1y 的图象经过点A (1,0),B (1x ,0),且满足143x -<<-,函数y 2的图象经过点(x 2,0);函数y 3的图象经过点(x 3,0),若2311m x m n x n <<+<<+,,且m ,n 是整数,则m=_______;n=________. 15.二次函数()22336y x x x =--≤≤的最小值是_________.16.二次函数()20y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,有下列结论:①240b ac ->;②421a b c -+>-;③132x -<<-;④当m 为任意实数时,2a b am bm -≤+;⑤30a c +<.其中,正确结论的序号是(________)17.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA 为12m ,拱桥的最高点B 到水面OA 的距离为6m .则抛物线的解析式为________.18.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).19.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)20.如图,点P 是双曲线()4:0C y x x=>上的一点,过点P 作x 轴的垂线交直线1:22AB y x =-于点Q ,连结,OP OQ 当点P 在曲线C 上运动,且点P 在Q 的上方时,POQ △面积的最大值是________.三、解答题21.已知函数()()1210,()y x m x m y ax m a =+--=+≠在同一平面直角坐标系中.(1)若1y 经过点()12-,,求1y 的函数表达式;(2)若2y 经过点()1,1m +,判断1y 与2y 图象交点的个数,说明理由;(3)若1y 经过点1,02⎛⎫ ⎪⎝⎭,且对任意x ,都有12y y >,请利用图象求a 的取值范围. 22.如图,在平面直角坐标系中,已知抛物线22y ax x c =-+与直线y kx b =+都经过点(0,3)A -和点(3,0)B ,该抛物线的顶点为C .(1)求抛物线和直线AB 的解析式; (2)连结,AC BC ,求CAB △的面积. 23.如图, 已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2y ax bx c =++与直线交于A ,E 两点,与x 轴交于B (1,0),C (2,0)两点.(1)求该抛物线的解析式;(2)动点P 在x 轴上移动, 当△PAE 是直角三角形时, 请通过计算写出一个满足条件点P 的坐标.24.如图是长方形鸡场平面示意图,一边靠墙(足够长),另外三面用竹篱笆围成,若竹篱笆总长为36m ,设垂直于墙的一边长为xm .(1)若所围的面积为160m 2,求x 的值?(2)求当x 的值是多少时,所围成的鸡场面积最大,最大值是多少?25.如图,抛物线y =﹣x 2+bx +c 与x 轴相交于A (﹣3,0),D (1,0)两点,其中顶点为B .(1)求该抛物线的解析式;(2)若该抛物线与y 轴的交点为C ,求△ABC 的面积.26.如图,已知一次函数2y kx =-的图象与x 轴交于点A ,与y 轴交于点B ,二次函数2y x bx c =++经过点B ,且与一次函数2y kx =-的图象交于点()6,4C .(1)求一次函数与二次函数的解析式.(2)在y 轴上是否存在点M ,使得以点B ,M ,C 为顶点的三角形与BAO 相似?若存在,请求出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数, ∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则 △=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠.故选:C . 【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形, ∴2DM x =-,∴()222EM x x x =--=-, ∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.3.D解析:D【分析】令x=0,则y=2,抛物线与y轴的交点为 (0,2)【详解】令x=0,则y=2,∴抛物线与y轴的交点为(0,2),故选:D.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;4.A解析:A【分析】根据题意首先求得抛物线的对称轴,然后由抛物线的轴对称性质和二次函数的性质解答.【详解】解:过点P作PQ⊥x轴于Q,根据题意,该抛物线的对称轴是直线x=422=1.设点Q的运动速度是每秒v个单位长度,则∵当t=3和t=9时,n的值相等,∴x=12[(9v−2)+(3v−2)] =1,∴v=12.①当t=6时,AQ=6×12=3,此时点P是抛物线顶点坐标,即n的值最大,故结论正确;②当t=10时,AQ=10×12=5,此时点Q与点B不重合,即n≠0,故结论错误;③当t=5时,AQ=52,此P时点的坐标是(12,0);当t=7时,AQ=72,此时点P的坐标是(32,0).因为点(12,0)与点(32,0)关于对称轴直线x=1对称,所以n 的值一定相等,故结论错误; ④t=4时,AQ=4×12=2,此时点Q 与原点重合,则m=0,故结论正确. 综上所述,正确的结论是①④.故选:A .【点睛】 本题主要考查了抛物线与x 轴的交点,二次函数的最值,二次函数图象上点的坐标特征,根据题意求得对称轴和点Q 的运动速度是解题的关键.5.C解析:C【分析】根据二次函数的开口方向,对称轴的位置,二次函数的性质,二次函数的图像与x 轴的交点情况去分析判断即可.【详解】解:由图象开口向上,可知a >0,与y 轴的交点在x 轴的上方,可知c >0,又对称轴为直线x =﹣1,∴﹣2b a<0, ∴b >0,∴abc >0,故①正确; ∵二次函数y =a 2x +bx+c (a >0)的图象与x 轴交于A ,B 两点,∴2b ﹣4ac >0,∴4ac ﹣2b <0,故②错误;∵﹣2b a=﹣1, ∴b =2a , ∵当x =﹣1时,y =a ﹣b+c <0,∴a ﹣2a+c <0,∴c ﹣a <0,故③错误;当x =﹣2n ﹣2(n 为实数)时,y =a 2x +bx+c =a 22(2)n --+b (﹣2n ﹣2)+c =a 2n (2n +2)+c ,∵a >0,2n ≥0,2n +2>0,∴y =a 2n (2n +2)+c≥c ,故④正确,故选:C .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.6.B解析:B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a =-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a=-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a-=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.7.D解析:D【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论.【详解】 该二次函数图象的对称轴为直线21122m x m m -=-=-+, 若0m >,对于22m x m -=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下, ∴当1x >时,y 随x 的增大而减小,故选:D .【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.8.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =--- 即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.9.B解析:B【分析】①先求出C 、D 的坐标,再根据两点距离公式求得CD ,便可判断;②当m=0时,可得抛物线与x 轴的两个交点坐标和顶点坐标即可判断;③根据抛物线与x 轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断; ④根据二次函数图象当x 1<1<x 2,且x 1+x 2>2,根据离对称越远的点的纵坐标就越大得出结论.【详解】解:①∵y=x 2-2x+m=(x-1)2+m-1,∴C (0,m ),D (1,m-1),∴,故①正确;②当m=0时,抛物线与x 轴的两个交点坐标分别为A (0,0)、B (2,0),顶点D (1,-1),∴,∴△ABD 是等腰直角三角形,故②正确;③当a=-2时,抛物线与x 轴的一个交点坐标为(-2,0),∵对称轴x=1,∴另一个交点坐标为(4,0),∴b=4,故③错误;④观察二次函数图象可知:当x 1<1<x 2,且x 1+x 2>2,则1-x 1<x 2-1∴y 1<y 2.故④正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点、等腰直角三角形,解决本题的关键是综合利用以上知识.10.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 11.C解析:C【分析】根据二次函数的图象可以判断a 、b 、-a b 的正负情况,从而得以解决.【详解】解:由二次函数的图象开口向下,且经过第三象限的点P ,点P 的横坐标为1-, 则有0a <,对称轴在y 轴的左边, ∴02b a -<,且122b a ∴0b <,且a b <∴0a b -<,∴一次函数()y a b x b =--的图像向下,并且与y 轴交于正半轴,故选:C .【点睛】本题考查二次函数的性质、一次函数的性质,熟悉相关性质是解答本题的关键. 12.D解析:D【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.二、填空题13.【分析】根据二次函数表达式是易得新抛物线的顶点然后得到经过平移后的原抛物线的顶点根据平移不改变二次项的系数可得原抛物线解析式【详解】解:∵平移后抛物线的解析式是∴此抛物线的顶点为(14)∵向左平移3 解析:()226y x =++【分析】根据二次函数表达式是()214y x =-+易得新抛物线的顶点,然后得到经过平移后的原抛物线的顶点,根据平移不改变二次项的系数可得原抛物线解析式.【详解】解:∵平移后抛物线的解析式是()214y x =-+,∴此抛物线的顶点为(1,4),∵向左平移3个单位,再向上平移2个单位可得原抛物线顶点,∴原抛物线顶点为(-2,6),∴原抛物线的解析式是()226y x =++. 故答案为:()226y x =++.【点睛】本题考查了二次函数图象与性质,掌握二次函数图象的平移与坐标的变化规律是解题的关键. 14.-33【分析】根据二次函数对称轴的性质一次函数与坐标轴的交点坐标列式计算即可;【详解】解:由题意得∴;故答案是:;【点睛】本题主要考查了二次函数与一次函数综合准确计算是解题的关键解析:-3 3【分析】根据二次函数对称轴的性质,一次函数与坐标轴的交点坐标列式计算即可;【详解】解:由题意得,0a b c ++=,2b x a=-,3c x a =- 1131222+-<-=<-x b a ,232-<=-<-b x a, ∴3314+<==+<a b b x a a, 3m ∴=-,3n =;故答案是:3-,3;【点睛】本题主要考查了二次函数与一次函数综合,准确计算是解题的关键.15.【分析】先求出二次函数的对称轴为直线x=1a >0然后知x <1时y 随x 的增大而减小x >1时y 随x 的增大而增大再依据二次函数的增减性解答即可【详解】解:∵抛物线的对称轴为a=1>0∴x <1时y 随x 的增大解析:0【分析】先求出二次函数的对称轴为直线x=1,a >0,然后知x <1时,y 随x 的增大而减小,x >1时,y 随x 的增大而增大,再依据二次函数的增减性解答即可.【详解】解:∵抛物线的对称轴为=12b x a=-,a=1>0, ∴x <1时,y 随x 的增大而减小,x >1时,y 随x 的增大而增大.∴在36x ≤≤内,x=3时,y 有最小值,此时23233=0y =-⨯-.故答案为:0.【点睛】本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴是解题的关键.16.①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:故③正确;x=0与x=-2时的函数值相等即可判断②错误;根据对称轴为直线得到当x=-1时函数值最小故当x=m 时函数值大于等于解析:①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:132x -<<-,故③正确;x=0与x=-2时的函数值相等,即可判断②错误;根据对称轴为直线1x =-,得到当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++,即可判断④正确;由对称轴为直线1x =-,得到b=2a ,由图象可得:当x=1时,y>0,故a+b+c>0,代入得到3a+c>0,由此判断⑤错误.【详解】∵函数图象与x 轴的交点为()()12,0,0x x ,∴240b ac ->,故①正确;∵对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,∴132x -<<-,故③正确;根据抛物线的对称性得到:x=0与x=-2时的函数值相等,∵图象与y 轴的交点纵坐标小于-1,∴421a b c -+<-,故②错误;∵对称轴为直线1x =-,∴当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++, ∴2a b am bm -≤+,故④正确;∵对称轴为直线1x =-, ∴12b a-=-,得b=2a , 由图象可得:当x=1时,y>0,∴a+b+c>0,∴3a+c>0,故⑤错误,故答案为:①③④.【点睛】此题考查二次函数的图象,函数图象与x 轴交点问题,利用图象判断式子的正负,函数最值,根据图象得到相关的信息是解题的关键.17.【分析】根据题意得到顶点B 的坐标为(66)设抛物线解析式为y=a (x-6)2+6将点O (00)代入求出a 即可得到函数解析式【详解】根据题意可知:顶点B 的坐标为(66)∴设抛物线解析式为y=a (x-6 解析:21(6)66y x =--+ 【分析】根据题意得到顶点B 的坐标为(6,6),设抛物线解析式为y=a (x-6)2+6,将点O (0,0)代入,求出a 即可得到函数解析式.【详解】根据题意可知:顶点B 的坐标为(6,6),∴设抛物线解析式为y=a (x-6)2+6,将点O (0,0)代入,36a+6=0,解得a=16-, ∴抛物线的解析式为21(6)66y x =--+, 故答案为:21(6)66y x =--+. 【点睛】 此题考查待定系数法求函数解析式,根据实际问题得到图象上点的坐标,设定函数解析式是解题的关键.18.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p <0时,()()120<--p m x m x∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.19.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=, ∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答. 20.3【分析】设P (x )则Q (xx−2)得到PQ =−x +2根据三角形面积公式得到S △POQ =−(x−2)2+3根据二次函数的性质即可求得最大值【详解】解:∵PQ ⊥x 轴∴设P (x )则Q (xx−2)∴PQ =解析:3【分析】设P (x ,4x ),则Q (x ,12x−2),得到PQ =4x −12x +2,根据三角形面积公式得到S △POQ =−14(x−2)2+3,根据二次函数的性质即可求得最大值. 【详解】解:∵PQ ⊥x 轴,∴设P (x ,4x ),则Q (x ,12x−2), ∴PQ =4x −12x +2, ∴S △POQ =12(4x −12x +2)•x =−14(x−2)2+3, ∵−14<0, ∴△POQ 面积有最大值,最大值是3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y =k x (k≠0)系数k 的几何意义:从反比例函数y =k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 三、解答题21.(1)212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点,理由:见详解;(3)01a <<或10a <<【分析】(1)将()1,2-代入1y ,解关于m 的方程即可求解; (2)将点()1,1m +代入2y 求出a ,由解析式1y 和2y 联立方程组消去y 得到关于x 的一元二次方程,根据一元二次方程根的情况判断1y 与2y 交点的个数即可;(3)将1,02⎛⎫ ⎪⎝⎭代入1y 求出m 的值,把m 的值代入1y 与2y ,结合图像,根据对任意x ,都有12y y >即可求解.【详解】解:(1)将()1,2-代入1y ,得()()2111m m -=+--,解得,122,1m m =-= ,()()121y x x ∴=-+,即 212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点. 理由如下:2y 经过点()1,1m +,1m a m ∴+=+,1a ,()()121,y x m x m y x m =+--=+ ∴联立方程组()()1y x m x m y x m ⎧=+--⎨=+⎩,消去y ,得()2202x x m m -+=- ()()222242484410m m m m m =++=++=+≥△∴方程()2202x x m m -+=-有实数根据,当1m =-时,0=, 方程()2202x x m m -+=-有两个相等的实数根,1y 与2y 有一个交点;当1m ≠-时,0>,方程()2202x x m m -+=-有两个不相等的实数根,1y 与2y 有两个交点;综上所术,当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点;(3)1y 经过点1,02⎛⎫ ⎪⎝⎭, ∴ 110122m m =+--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, 解得,12m =-, 2121,122y x y ax ⎛⎫ ⎪⎝⎭∴=-=- 联立方程组2121212y x y ax ⎧⎛⎫=-⎪ ⎪⎪⎝⎭⎨⎪=-⎪⎩,消去y 得,()23014x a x ++=-, 若方程有两个相等的实数根,图像1y 与2y 有一个交点,则()231404a =+-⨯=△,解,得1a =,如图所示,对任意x ,都有12y y >,031a ∴<<或310a <<,【点睛】本题是二次函数与一次函数的综合题,考查了待定系数法求函数的解析式,二次函数与一次函数图像的交点与一元二次方程根的判别式的关系及利用图像求不等式的解集,关键在于正确理解二次函数与一次函数图像的交点与一元二次方程的关系以及数形结合的思想. 22.(1)y=x 2-2x-3;y=x-3;(2)3【分析】(1)利用待定系数法求抛物线和直线AB 的解析式;(2)过C 点作CD ∥y 轴交AB 于D ,如图,把一般式配成顶点式得到C (1,-4),再确定D 点坐标,然后利用三角形面积公式计算.【详解】解:(1)把A (0,-3)和B (3,0)代入y=ax 2-2x+c 得3960c a c =-⎧⎨-+=⎩, 解得:13a c =⎧⎨=-⎩, ∴抛物线的解析式为y=x 2-2x-3;把A (0,-3)和B (3,0)代入y=kx+b 得330b k b =-⎧⎨+=⎩, 解得:13k b =⎧⎨=-⎩, ∴直线AB 的解析式为y=x-3;(2)过C 点作CD ∥y 轴交AB 于D ,如图,∵y=x 2-2x-3=(x-1)2-4,∴C (1,-4),当x=1时,y=x-3=-2,则D (1,-2),∴△CAB 的面积=12×3×(-2+4)=3.【点睛】 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.23.(1)213122=-+y x x ;(2)点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2. 【分析】(1)根据直线的解析式求得点A (0,1),然后利用待定系数法求得函数解析式;(2)让直线解析式与抛物线的解析式结合即可求得点E 的坐标.△PAE 是直角三角形,应分点P 为直角顶点,点A 是直角顶点,点E 是直角顶点三种情况探讨. 【详解】解:(1)解:(1)∵直线y=12x+1与y 轴交于点A , ∴A (0,1),将A (0,1),B (1,0),C (2,0)代入2y ax bx c =++中 10420c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:12321a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线的解析式为:213122=-+y x x (2) 设点E 的横坐标为m ,则它的纵坐标为213122m m -+即E 点的坐标213(,1)22m m m -+, 又∵点E 在直线112y x =+上,∴213111222m m m -+=+解得10m =(舍 去) ,24m =, E ∴的坐标为(4,3).(Ⅰ)当A 为直角顶点时,过A 作1AP DE ⊥交x 轴于1P 点,设1(,0)P a 易知D 点坐标为(2,0)-,由Rt AOD Rt ∆∽△1POA 得:DO OA OA OP =,即211a=, 12a ∴=, 11(2P ∴,0). (Ⅱ) 同理,当E 为直角顶点时, 过E 作2EP DE ⊥交x 轴于2P 点,由Rt AOD Rt ∆∽△2P ED 得,2DO DE OA EP =,即221EP =,2EP ∴=,21522DP ∴==, 1511222a ∴=-=, 2P 点坐标为11(,0)2.(Ⅲ) 当P 为直角顶点时, 过E 作EF x ⊥轴于F ,设3(P b ,0),由90OPA FPE ∠+∠=︒,得OPA FEP ∠=∠,Rt AOP Rt PFE ∆∆∽, 由AO OP PF EF =得143b b =-, 解得13b =,21b =,∴此时的点3P 的坐标为(1,0)或(3,0),综上所述, 满足条件的点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.24.(1)x的值为8或10;(2)当x的值是9时,所围成的鸡场面积最大,最大值是162m2.【分析】由垂直于墙的一边长为xm,平行墙的边长=(36-2x),根据面积列方程,利用面积列函数关系,根据二次项系数为负,配方即可求出最值即可.【详解】解:(1)由题意得:x(36﹣2x)=160,整理得:x2-18x+80=0,解得:x1=8,x2=10,∵0<36﹣2x<36,∴0<x<18,∴x的值为8或10.(2)设长方形鸡场的面积为S,由题意得:S=x(36﹣2x)=﹣2x2+36x=﹣2(x﹣9)2+162,∵﹣2<0,二次函数开口向下,函数有最大值,∴当x=9时,S取得最大值,最大值为162.∴当x的值是9时,所围成的鸡场面积最大,最大值是162m2.【点睛】本题考查了一元二次方程的应用,二次函数,解题关键是找准题目中的等量关系列方程及二次函数解析.25.(1)y=﹣x2﹣2x+3;(2)3【分析】(1)利用待定系数法确定函数关系式;(2)根据抛物线解析式求得点B、C的坐标,过点B作BE⊥x轴于点E,交直线AC于F,由直线AC 的解析式和一次函数图象上点的坐标特征求得点F 的坐标,然后根据三角形面积公式求解.【详解】解:(1)∵抛物线y =﹣x 2+bx +c 与x 轴相交于A (﹣3,0),D (1,0)两点, ∴9301+=0b c b c --+=⎧⎨-+⎩, 解得:2=3b c =-⎧⎨⎩. 故该抛物线解析式为y =﹣x 2﹣2x +3;(2)由抛物线解析式y =﹣x 2﹣2x +3,可得B (﹣1,4),C (0,3).如图,过点B 作BE ⊥x 轴于点E ,交直线AC 于F ,则点F 的横坐标是﹣1.∵直线AC 经过点A (﹣3,0),C (0,3),∴直线AC 的解析式是y =x +3.把x =﹣1代入y =x +3,得y =2.则F (﹣1,2).∴BF =2.∵AO =3∴S △ABC =S △ABF +S △BCF =12BF •(AE+OE )=12BF •AO =1232⨯⨯=3.【点睛】本题考查了待定系数法求二次函数的解析式和求坐标系中三角形的面积问题,难度不大,属于基础题型,熟练掌握待定系数法求二次函数的解析式是关键.26.(1)一次函数解析式为2y x =-,二次函数解析式为:252y x x =--;(2)存在,点M 的坐标为(0,4)或(0,10).【分析】(1)由一次函数2y kx =-的图象与y 轴交于点B ,可求B (0,-2),由一次函数2y kx =-的图象过点()6,4C ,可求1k =,一次函数解析式为2y x =-,由2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩,解方程组求出52b c =-⎧⎨=-⎩即可;(2)存在,先求出OA=2,OB=2,∠AOB=90°,由勾股定理=M 为直角顶点时,当点C 为直角顶点时,利用相似三角形及其性质,可求BM=6或12,即可求出点M 的坐标.【详解】解:(1)∵一次函数2y kx =-的图象与y 轴交于点B ,∴当x=0时,y=-2,B (0,-2),∵一次函数2y kx =-的图象过点()6,4C ,∴462k =-,∴1k =,∴一次函数解析式为2y x =-,∵2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩, 解方程组得52b c =-⎧⎨=-⎩, ∴二次函数解析式为:252y x x =--;(2)存在,理由如下,∵已知一次函数2y x =-的图象与x 轴交于点A ,∴y=0,x=2,∴A(2,0),B(0,-2),∴OA=2,OB=2,∠AOB=90°,在Rt △AOB 中,由勾股定理由勾股定理= ①当点M 为直角顶点时,CM ⊥y 轴,CM ∥OA ,∴∠MCB=∠OAB ,∠MBC=∠OBA , ∴△CMB ∽△AOB ,∴BM BC =BO BA 即BM 2, ∴BM=6,∴OM=MB-OB=6-2=4,∴M (0,4),②当点C 为直角顶点时,∴CM ⊥BC ,∴∠MCB=∠AOB=90°,∠MBC=∠ABO ,∴△MCB ∽△AOB ,∴BC BM=BO BA 即62=222,∴BM=12,∴OM=MB-OB=12-2=10,∴M(0,10),∴以点B,M,C为顶点的三角形与BAO相似点M的坐标为M(0,4)或(0,10).【点睛】本题考查一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,掌握一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,解题关键是分类考虑以点C与点M为直角时的相似三角形.。
(典型题)初中数学九年级数学下册第二单元《二次函数》测试卷(包含答案解析)(1)

一、选择题1.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根2.对称轴为y 轴的二次函数是( ) A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)23.关于二次函数22y x x =-+的最值,下列叙述正确的是( ) A .当2x =时,y 有最小值0. B .当2x =时,y 有最大值0. C .当1x =时,y 有最小值1 D .当1x =时,y 有最大值14.下列函数:①2y x =-,②3y x=,③2y x ,④234y x x =++,y 是x 的反比例函数的个数有( ). A .1个B .2个C .3个D .4个5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个6.小凯在画一个开口向上的二次函数图象时,列出如下表格: x … -1 0 1 2 … y…1211…A .(-1,1)B .(0,2)C .(1,1)D .(2,1)7.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-308.如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论: ①2a +b =0; ②abc >0;③方程ax 2+bx +c =3有两个相等的实数根; ④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0). 其中正确的是( )A .①②③B .②④C .①③④D .①③⑤9.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .332C .222+D .25+11.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D .12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >二、填空题13.将抛物线243y x x =-+沿y 轴向下平移3个单位,则平移后抛物线的顶点坐标为_____.14.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________. 15.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.16.已知二次函数y=ax 2﹣4ax+4,当x 分别取x 1、x 2两个不同的值时,函数值相等,则当x 取x 1+x 2时,y 的值为________________________17.若实数m 、n 满足m +n =2,则代数式2m 2+mn +m ﹣n 的最小值是_____. 18.二次函数224y x x =-++的最大值是______. 19.如图,点P 是双曲线()4:0C y x x=>上的一点,过点P 作x 轴的垂线交直线1:22AB y x =-于点Q ,连结,OP OQ 当点P 在曲线C 上运动,且点P 在Q 的上方时,POQ △面积的最大值是________.20.若方程20ax bx c ++=的两个根是3-和1,那么二次函数2y ax bx c =++的图象的对称轴是直线x = _____________________三、解答题21.已知函数()()1210,()y x m x m y ax m a =+--=+≠在同一平面直角坐标系中.(1)若1y 经过点()12-,,求1y 的函数表达式; (2)若2y 经过点()1,1m +,判断1y 与2y 图象交点的个数,说明理由;(3)若1y 经过点1,02⎛⎫ ⎪⎝⎭,且对任意x ,都有12y y >,请利用图象求a 的取值范围. 22.如图,抛物线2y x bx c =+-与x 轴交于A (-1,0),B (3,0)两点,直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求抛物线及直线AC 的函数表达式;(2)点M 是线段AC 上的点(不与A ,C 重合)过M 作MF //y 轴交抛物线于F ,若点M 的横坐标为m ,请用含m 的代数式表示MF 的长.23.东坡区农产品资源极为丰富,其中晚熟柑橘远销北上广等大城市.某水果店购进一批优质晚熟柑橘,进价为5元/千克,售价不低于8元/千克,且不超过20元/每千克,根据销售情况,发现该柑橘在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) … 42 45 48 51 … 售价x (元/千克)…1815129…(2)设某天销售这种柑橘获利m 元,写出m 与售价x 之间的函数关系式.如果水果店该天获利450元,那么这天柑橘的售价为多少元?24.在平面直角坐标系xOy 中,二次函数y =ax 2+2x ﹣3a (a ≠0)交x 轴于A 、B 两点(点A 在点B 的左侧),且抛物线的对称轴为直线x =﹣1. (1)求此抛物线的解析式及A 、B 两点坐标;(2)若抛物线交y 轴于点C ,顶点为D ,求四边形ABCD 的面积.25.如图,一农户要建一矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用27m 长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m 宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积最大,最大面积是多少?26.如图,在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于()30A -,,()10B ,两点,与y 轴交于点()0,3C ,连接AC ,点P 为第二象限抛物线上的动点.(1)求a 、b 、c 的值;(2)连接PA 、PC 、AC ,求PAC △面积的最大值;(3)过P 作PQ AC ⊥,垂足为Q ,是否存在这样的点P 、Q ,使得CPQ CBO △△,若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2.C解析:C 【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可. 【详解】解:二次函数的对称轴为y 轴, 则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0, 故选:C . 【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.3.D解析:D 【分析】先将二次函数配方成()211y x =--+,即可求解. 【详解】解:()()2221221y x x x x x =-+=----+=,二次函数的图象开口向下,当1x =时,y 有最大值1, 故选:D . 【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键.4.A解析:A 【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案. 【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项②符合题意; 2yx 是二次函数,故选项③不符合题意;234y x x =++是二次函数,故选项④不符合题意;∴y 是x 的反比例函数的个数有:1个 故选:A . 【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.5.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断. 【详解】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0, ∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确; ④当x=-1时,y=a -b+c <0,④错误; ⑤当x=2时,y=4a+2b+c <0,⑤错误; ⑥∵图象与x 轴无交点, ∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个. 故选:D . 【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键.6.A解析:A 【分析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论. 【详解】解:观察y 值发现y =1时x 有三个不同的值,因此这三个值中必有一对计算错误. 由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线032x =,根据二次函数的增减性,当开口向上时,在对称轴的左边,y 随x 的增大而减小,所以1x =-时,y 一定是大于1的, 故选A . 【点睛】本题考查了二次函数的图象,找出图表数据特点,根据函数的对称性解答即可,熟练掌握二次函数的图象和性质,是解答的关键.7.C解析:C 【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.C解析:C 【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断. 【详解】∵抛物线的顶点坐标A (1,3), ∴抛物线的对称轴为直线x =2ba=1, ∴2a +b =0,所以①正确; ∵抛物线开口向下, ∴a <0, ∴b =﹣2a >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以②错误; ∵抛物线的顶点坐标A (1,3), ∴x =1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确.∵抛物线与x 轴的一个交点为(4,0), 而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误; 故选:C . 【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.9.B解析:B 【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论. 【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12ba-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误;②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0), ∴9a +3b +c =0,结论②正确; ③∵对称轴为直线x =1, ∴12ba-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误. 综上所述,正确的结论有:②③. 故选:B . 【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴222AC AM ==, 即:函数图象中,222,m n ==,∴222m n +=+,故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.12.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m ⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.(2-4)【分析】首先根据二次函数解析式写成顶点式可得顶点坐标再根据平移得性质得出平移后得顶点坐标即可【详解】∵y=x2-4x+3=(x-2)2-1∴顶点坐标为(2-1)∵将抛物线y=x2-4x+3解析:(2,-4)【分析】首先根据二次函数解析式写成顶点式,可得顶点坐标,再根据平移得性质得出平移后得顶点坐标即可.【详解】∵y=x2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),∵将抛物线y=x2-4x+3沿y轴向下平移3个单位,∴平移后得抛物线得顶点坐标为(2,-4),故答案为:(2,-4)【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移.14.7或15【分析】根据题意可知抛物线顶点纵坐标是±4化成顶点式求解即可【详解】解:∵抛物线y=x2-6x+c-2的顶点到x轴的距离是4∴抛物线顶点纵坐标是±4抛物线y=x2-6x+c-2化成顶点式为:解析:7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x2-6x+c-2的顶点到x轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x轴的距离是纵坐标的绝对值,注意:分类讨论.15.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A第一次关于x轴对称后在第四象限第解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫- ⎪⎝⎭【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点.16.4【分析】根据二次函数的性质和二次函数图象具有对称性可以求得的值从而可以求得相应的y 的值【详解】解:∵y=当x 分别取两个不同的值时函数值相等∴∴当x 取时y=故答案为4【点睛】本题考查二次函数图象上的 解析:4【分析】根据二次函数的性质和二次函数图象具有对称性,可以求得12x x +的值,从而可以求得相应的y 的值.【详解】解:∵y=()2244244ax ax a x a -+=--+,当x 分别取 12,x x 两个不同的值时,函数值相等,∴124x x +=,∴当x 取12x x +时,y=()242444a a --+=,故答案为4.【点睛】本题考查二次函数图象上的坐标特征,解答本题的关键是明确题意,利用二次函数的性质17.﹣6【分析】设y=2m2+mn+m-n由m+n=2得n=2-m再由二次函数的性质即可解决问题【详解】设y=2m2+mn+m﹣n∵m+n=2∴n=2﹣m∴y=2m2+m(2﹣m)+m﹣(2﹣m)=m2解析:﹣6.【分析】设y=2m2+mn+m-n,由m+n=2得n=2-m,再由二次函数的性质即可解决问题.【详解】设y=2m2+mn+m﹣n,∵m+n=2,∴n=2﹣m,∴y=2m2+m(2﹣m)+m﹣(2﹣m)=m2+4m﹣2=(m+2)2﹣6,此为一个二次函数,开口向上,有最小值,当m=﹣2时,y有最小值为﹣6,故答案为:﹣6.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.18.【分析】利用二次函数的配方法确定最值即可【详解】∵∵a=-1<0∴二次函数有最大值且最大值为5;故答案为:5【点睛】本题考查了二次函数的最值问题熟练运用配方法确定二次函数的最值是解题的关键解析:【分析】利用二次函数的配方法确定最值即可.【详解】∵224=-++y x x2=---(24)x x2[(1)14]=----x2x=--+,(1)5∵a= -1<0,∴二次函数224y x x=-++有最大值,且最大值为5;故答案为:5.【点睛】本题考查了二次函数的最值问题,熟练运用配方法确定二次函数的最值是解题的关键. 19.3【分析】设P(x)则Q(xx−2)得到PQ=−x+2根据三角形面积公式得到S△POQ=−(x−2)2+3根据二次函数的性质即可求得最大值【详解】解:∵PQ⊥x轴∴设P(x)则Q(xx−2)∴PQ=解析:3设P (x ,4x ),则Q (x ,12x−2),得到PQ =4x −12x +2,根据三角形面积公式得到S △POQ =−14(x−2)2+3,根据二次函数的性质即可求得最大值. 【详解】解:∵PQ ⊥x 轴, ∴设P (x ,4x ),则Q (x ,12x−2), ∴PQ =4x −12x +2, ∴S △POQ =12(4x −12x +2)•x =−14(x−2)2+3, ∵−14<0, ∴△POQ 面积有最大值,最大值是3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y =k x (k≠0)系数k 的几何意义:从反比例函数y =k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 20.【分析】先根据题意得出抛物线与x 轴的交点坐标再由两点坐标关于抛物线的对称轴对称即可得出结论【详解】解:∵方程ax2+bx+c=0的两个根是-3和1∴二次函数y=ax2+bx+c 的图象与x 轴的交点分别解析:1-【分析】先根据题意得出抛物线与x 轴的交点坐标,再由两点坐标关于抛物线的对称轴对称即可得出结论.【详解】解:∵方程ax 2+bx+c=0的两个根是-3和1,∴二次函数y=ax 2+bx+c 的图象与x 轴的交点分别为(-3,0),(1,0).∵此两点关于对称轴对称,∴对称轴是直线x=312-+=-1. 故答案为:-1.【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键.三、解答题21.(1)212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点,理由:见详解;(3)01a <<或10a <<【分析】(1)将()1,2-代入1y ,解关于m 的方程即可求解; (2)将点()1,1m +代入2y 求出a ,由解析式1y 和2y 联立方程组消去y 得到关于x 的一元二次方程,根据一元二次方程根的情况判断1y 与2y 交点的个数即可;(3)将1,02⎛⎫ ⎪⎝⎭代入1y 求出m 的值,把m 的值代入1y 与2y ,结合图像,根据对任意x ,都有12y y >即可求解.【详解】解:(1)将()1,2-代入1y ,得()()2111m m -=+--,解得,122,1m m =-= ,()()121y x x ∴=-+,即 212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点. 理由如下:2y 经过点()1,1m +,1m a m ∴+=+,1a ,()()121,y x m x m y x m =+--=+∴联立方程组()()1y x m x m y x m ⎧=+--⎨=+⎩,消去y ,得()2202x x m m -+=- ()()222242484410m m m m m =++=++=+≥△∴方程()2202x x m m -+=-有实数根据,当1m =-时,0=, 方程()2202x x m m -+=-有两个相等的实数根,1y 与2y 有一个交点;当1m ≠-时,0>,方程()2202x x m m -+=-有两个不相等的实数根,1y 与2y 有两个交点;综上所术,当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点;(3)1y经过点1,02⎛⎫ ⎪⎝⎭,∴110122m m=+--⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭,解得,12m=-,2121,122y x y ax⎛⎫⎪⎝⎭∴=-=-联立方程组2121212y xy ax⎧⎛⎫=-⎪ ⎪⎪⎝⎭⎨⎪=-⎪⎩,消去y得,()2314x a x++=-,若方程有两个相等的实数根,图像1y与2y有一个交点,则()231404a=+-⨯=△,解,得31a=±-,如图所示,对任意x,都有12y y>,031a∴<<或310a<<,【点睛】本题是二次函数与一次函数的综合题,考查了待定系数法求函数的解析式,二次函数与一次函数图像的交点与一元二次方程根的判别式的关系及利用图像求不等式的解集,关键在于正确理解二次函数与一次函数图像的交点与一元二次方程的关系以及数形结合的思想.22.(1)223y x x=--,1y x=--;(2)22MF m m=-++【分析】(1)把点A和点B的坐标代入抛物线解析式求出b和c的值即可求出抛物线解析式;再把点C 的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC 的表达式;(2)已知点M 的横坐标为m ,点M 又在直线AB 上,所以可求出其纵坐标,而点F 在抛物线上,所以可求出其纵坐标,进而可用m 的代数式表示MF 的长.【详解】解:(1)把A (-1,0)、B (3,0)代入y=x 2+bx-c 得:01093b c b c --⎧⎨+-⎩==, 解得:23b c =-⎧⎨=⎩, ∴解析式为:y=x 2-2x-3,把x=2代入y=x 2-2x-3得y=-3,∴C (2,-3),设直线AC 的解析式为y=kx+n ,把A (-1,0)、C (2,-3)代入得023k n k n -+=⎧⎨+=-⎩, 解得:11k n =-⎧⎨=-⎩, ∴直线AC 的解析式为1y x =--;(2)∵点M 在直线AC 上,∴M 的坐标为(m ,-m-1);∵点F 在抛物线y=x 2-2x-3上,∴F 点的坐标为(m ,m 2-2m-3),∴MF=(-m-1)-( m 2-2m-3)=-m 2+m+2.【点睛】本题考查了待定系数法求二次函数的解析式、待定系数法求一次函数的解析式、二次函数图象上点的坐标特征.在(1)中注意待定系数法的应用步骤,在(2)中用m 表示出点M 、F 的坐标是解题的关键.23.(1)柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)m =-x 2+65x -300;这天柑橘的售价为15元.【分析】(1)用待定系数求出一次函数解析式,再代入自变量的值求得函数值;(2)根据利润=销量×(售价−成本),列出m 与x 的函数关系式,再由函数值求出自变量的值.【详解】解:(1)设该一次函数解析式为y =kx +b ,则1545951k b k b +=⎧⎨+=⎩,解得:160 kb=-⎧⎨=⎩∴y=-x+60(8≤x≤20).∴当x=10时,y=50.∴柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)由题易知m=y(x-5)=(-x+60)( x-5)=-x2+65x-300当m=450时,则-x2+65x-300=450.整理,得x2-65x+750=0.解得x1=50,x2=15.∵8≤x≤20,∴x=15.所以这天柑橘的售价为15元.【点睛】本题是一次函数与二次函数的应用的综合题,主要考查了用待定系数法求函数的解析式,由函数值求自变量,由自变量的值求函数值,正确求出函数解析式是解题的关键.24.(1)y=x2+2x﹣3,A(﹣3,0),B(1,0);(2)四边形ABCD的面积是9【分析】(1)根据抛物线对称轴方程x=b2a求得a的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A、B两点坐标;(2)由抛物线解析式求得点C、D的坐标,然后利用分割法求得四边形ABCD的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x=﹣22a=﹣1,则a=1.故该抛物线解析式是:y=x2+2x﹣3.因为y=x2+2x﹣3=(x+3)(x﹣1),所以A(﹣3,0),B(1,0);(2)如图:由(1)知,A(﹣3,0),B(1,0),由抛物线y =x 2+2x ﹣3知,C (0,﹣3).∵y =x 2+2x ﹣3=(x+1)2﹣4,∴D (﹣1,﹣4),E (﹣1,0).∴AE =2,OC =3,OE =1,OB =1,ED =4,∴S 四边形ABCD =S △BOC +S 梯形OEDC +S △DAE =12×1×3+12(3+4)×1+12×2×4=9. 即四边形ABCD 的面积是9.【点睛】本题考查了抛物线与x 轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.25.矩形猪舍的长、宽分别为12米、8米时,猪舍的面积最大,最大面积是96平方米.【分析】设猪舍的宽为m x ,则长为(2721)m x -+,由题意可得2(2721)2(7)98y x x x =-+=--+,然后再根据二次函数的性质进行求最大值即可;【详解】设猪舍的宽为m x ,则长为(2721)m x -+,由题意得2(2721)2(7)98y x x x =-+=--+,对称轴为7x =, 272112x -+≤,27210x -+>,814x ∴≤<,在22(7)98y x =--+中,∵20-<,∴在对称轴右侧y 随着x 的增大而减小,所以当8x =米时,即矩形猪舍的长、宽分别为12米、8米时,猪舍的面积最大,最大面积是96平方米.【点睛】本题考查了二次函数的应用,矩形的面积公式的运用及二次函数的性质,解答时寻找题目的等量关系是关键;26.(1)1a =-,2b =-,3c =;(2)278;(3)存在,57,24P ⎛⎫- ⎪⎝⎭. 【分析】(1)设抛物线的解析式为()()13y a x x =-+.将()0,3C 代入得:33a -=,抛物线的解析式化为223y x x =--+,可得1a =-,2b =-,3c =;(2)过点P 作PE x ⊥轴,交AC 于点P ,设点P 的横坐标为m ,由点P 在抛物线223y x x =--+上,设()2,23P m m m --+,可求直线AC 解析式为:3y x ,(),3E m m +,可得()()222333PE m m m m m =--+-+=--,可求()213322PAC PAE PCE S S S PE OA m m =+=⋅=--△△△配方即可; (3)假设存在,过点Q 作x 轴的平行线l ,过点P 、C 作l 的垂线,垂足为M N ,,由CPQ CBO △△, 可得13PQ OB CQ OC ==,可证PMQ QNC △△;可得13PM MQ PQ QN CN CQ ===,设(),3Q n n +,可求22PM m m n =---,MQ n m =-,QN n =-,CN n =-,可得()232n m m n -=---,()3n n m -=-,解方程即可. 【详解】解:(1)设抛物线的解析式为()()13y a x x =-+.∵将()0,3C 代入得:33a -=,解得1a =-,∴抛物线的解析式为()()13y x x =--+,即223y x x =--+,∴1a =-,2b =-,3c =;(2)过点P 作PE x ⊥轴,交AC 于点P ,设点P 的横坐标为m ,∵点P 在抛物线223y x x =--+上,∴()2,23P m m m --+, ∵直线AC 过点()30A -,、点()0,3C , ∴直线AC 解析式可求得为:3y x , ∴(),3E m m +,∴()()222333PE m m m m m =--+-+=--, ∴()213322PAC PAE PCE S S S PE OA m m =+=⋅=--△△△, ∴()223332732228PAC S m m m ⎛⎫=-+=-++ ⎪⎝⎭△, ∴当点P 的横坐标为32-时,PAC △面积的最大值为278; (3)假设存在,过点Q 作x 轴的平行线l ,过点P 、C 作l 的垂线,垂足为M N ,, ∵CPQ CBO △△, ∴PQ CQ OB OC =, ∴13PQ OB CQ OC ==, ∵∠PMQ=∠QNC=∠PQC=90°,∴∠MQP+∠CQN=90°,∠CQN+∠QCN=90°,∴∠MQP=∠NCQ ,∴PMQ QNC △△; ∴13PM MQ PQ QN CN CQ ===, 设()2,23P m m m --+,(),3Q n n +, ∴22PM m m n =---,MQ n m =-,QN n =-,CN n =-,∴()232n m m n -=---,()3n n m -=-,∴52m =-, ∴,存在,57,24P ⎛⎫- ⎪⎝⎭.【点睛】本题考查抛物线解析式,三角形面积最值,三角形相似判定与性质,解方程组,掌握抛物线解析式,三角形面积最值,三角形相似判定与性质,解方程组,解题关键是利用相似三角形的性质构造方程组.。
(典型题)初中数学九年级数学下册第二单元《二次函数》检测卷(有答案解析)

一、选择题1.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( )A .B .C .D .2.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x -2 -1 0 1 2 3 4 y72-1-2m27A .1B .-1C .2D .-23.抛物线222=++y x x 与y 轴的交点坐标为( ) A .(1,0)B .(0,1)C .(0,0)D .(0,2)4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个5.二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有①abc >0;②b 2﹣4ac <0;③2a >b ;④(a +c )2<b 2;⑤a ﹣2b +4c >0.( )A .1个B .2个C .3个D .4个6.如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论: ①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根; ④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0). 其中正确的是( )A .①②③B .②④C .①③④D .①③⑤7.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个8.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( ) A .2B .4C .-4D .9.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >10.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④11.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s12.已知二次函数2y ax bx c =++的图象如图所示,则下列结论正确的个数有( ) ①0c >;②240b ac -<;③0a b c -+>;④当1x >时,y 随x 的增大而减小A .4个B .3个C .2个D .1个二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.15.如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为_____cm 216.如图,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;……如此进行下去,直至得13C . 若()1,P m 在1C 上,则m =______.若()37,P n 在第13段抛物线13C 上,则n =______.17.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.18.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.19.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.如图,抛物线223y x x =--与x 轴交于A 、B 两点.(1)抛物线与x 轴的交点坐标为______; (2)求抛物线与坐标轴围成的ABC 的面积;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.22.在平面直角坐标系中,已知抛物线y =x 2﹣2x .(1)它的顶点坐标是 ,当x 时,y 随x 的增大而减小;(2)将抛物线y =x 2﹣2x 向左平移2个单位长度,再向下平移3个单位长度,设所得新抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,写出新抛物线的解析式并求△ABC 的面积. 23.当自变量4x =时,二次函数的值最小,最小值为3-,且这个函数的图像与x 轴的一个交点的横坐标为1.(1)求这个二次函数的表达式;(2)求这个函数的图像与y 轴交点的坐标.24.如图(1),已知抛物线C 1:y =﹣x 2+2x +3与x 轴交于点A 、B (点A 在点B 左边),与y 轴交于点C ,抛物线C 2经过点A ,与x 轴的另一个交点为E (4,0),与y 轴交于点D (0,﹣2).(1)求抛物线C 2的解析式;(2)点P (m ,0)为线段AB 上一动点(不与A 、B 重合),过点P 作y 轴的平行线交抛物线C 1于点M ,交抛物线C 2于点N .①请用含m 的代数式分别表示点M 、N 的坐标;②设四边形OMEN 的面积为S ,求S 关于m 的函数关系式,并求出当S 的最大值以及此时m 的值;③在点P 移动的过程中,若CM =DN ≠0,则m 的值为 .(3)如图(2),点Q (0,n )为y 轴上一动点(0<n <4),过点Q 作x 轴的平行线依次交两条抛物线于点R 、S 、T 、U ,则TU ﹣RS = .25.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 26.已知抛物线y =x 2﹣2(a +1)x +a 2+2a .(1)求证:不论a 取何实数,该抛物线与x 轴都有两个交点;(2)若抛物线与x 轴的两个交点分别为A 、B ,与y 轴的交点为C ,当a =1时,求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解. 【详解】 解:2(0)y ax bx a =+≠,0c,∴二次函数经过坐标原点,故B 、C 选项错误;A 、根据二次函数开口向上0a >,对称轴bx 02a=->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A . 【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.2.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案. 【详解】根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.3.D解析:D 【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2) 【详解】 令x=0,则y=2,∴抛物线与y 轴的交点为(0,2), 故选:D . 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;4.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断. 【详解】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0, ∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确; ④当x=-1时,y=a -b+c <0,④错误; ⑤当x=2时,y=4a+2b+c <0,⑤错误; ⑥∵图象与x 轴无交点, ∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个. 故选:D . 【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键.5.C解析:C 【分析】由函数图象可知a <0,对称轴﹣1<x <0,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;即可得出b ﹣2a >0,b <0;△=b 2﹣4ac >0;再由图象可知当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;当x =﹣12时,y >0,即14a ﹣12b +c >0,即可求解. 【详解】解:由函数图象抛物线开口向下,对称轴﹣1<x <0,图象与y 轴的交点c >0, ∴a <0,2ba-<0,c >0, ∴b <0,∴abc >0,故①正确;∵函数与x 轴有两个不同的交点, ∴△=b 2﹣4ac >0,故②错误; ∵2ba->﹣1,∴2a <b ,故③错误;当x =1时,y <0,即a +b +c <0; 当x =﹣1时,y >0,即a ﹣b +c >0;∴(a +b +c )(a ﹣b +c )<0,即(a +c )2<b 2;故④正确; ∵x =﹣12时,y >0, ∴14a ﹣12b +c >0,即a ﹣2b +4c >0,故⑤正确;故选:C . 【点睛】此题考查二次函数的图象,根据图象确定式子的正负,正确理解函数图象,由图象得到相关信息,掌握二次函数的性质,根的判别式与图象的关系是解题的关键.6.C解析:C 【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断. 【详解】∵抛物线的顶点坐标A (1,3), ∴抛物线的对称轴为直线x =2ba=1, ∴2a +b =0,所以①正确; ∵抛物线开口向下, ∴a <0, ∴b =﹣2a >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以②错误; ∵抛物线的顶点坐标A (1,3), ∴x =1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确. ∵抛物线与x 轴的一个交点为(4,0), 而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误; 故选:C .本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.7.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B .【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.8.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.9.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出.解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=, 解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 10.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-, 2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0, 12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.11.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.12.B解析:B【分析】根据二次函数的图象与y 轴的交点判断c 的正负;根据二次函数的图象与x 轴交点个数,判断②的正确性;根据1x =-时,y 取值的正负,判断③的正确性;根据图象中函数的增减性判断④的正确性.【详解】解:∵二次函数的图象与y 轴的交点在正半轴,∴0c >,故①正确;∵二次函数的图象与x 轴有两个交点,∴方程20ax bx c ++=有两个不相同的实数根,∴240b ac ->,故②错误;当1x =-时,0y >,即0a b c -+>,故③正确;根据图象,当1x >时,y 随x 的增大而减小,故④正确.故选:B .【点睛】本题考查二次函数,解题的关键是根据二次函数的图象分析解析式中系数的关系.二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=( 解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值.【详解】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】 本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第 解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+ ∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭ 点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫-⎪⎝⎭【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点. 15.15【分析】在Rt △ABC 中利用勾股定理可得出AC=6cm 设运动时间为t (0≤t≤4)则PC=(6-t )cmCQ=2tcm 利用分割图形求面积法可得出S 四边形PABQ=S △ABC-S △CPQS 四边形P解析:15【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=S△ABC-S△CPQ,S四边形PABQ=(t-3)2+15,则可求出四边形PABQ的面积最小值,此题得解.【详解】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴=6cm.设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,∴S四边形PABQ=S△ABC-S△CPQ,代入得:S四边形PABQ =12×6×8-12(6-t)×2t变形得:S四边形PABQ =(t-3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故答案为:15.【点睛】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法,列出二次函数并进行变形求极值是解题的关键.16.2【分析】把点P(1m)坐标代入y=﹣x(x﹣3)即可求出m的值再求出抛物线C1与x轴的交点坐标观察图形可知第奇数号抛物线都在x轴上方然后求出到抛物线C13平移的距离再根据向右平移横坐标加表示出抛物解析:2【分析】把点P(1,m)坐标代入y=﹣x(x﹣3)即可求出m的值,再求出抛物线C1与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线C13平移的距离,再根据向右平移横坐标加表示出抛物线C13的解析式,然后把点P的坐标代入计算即可得解.【详解】解:∵点P(1,m)在C1上,∴m=﹣1×(1﹣3)=2,令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C13在x轴上方,相当于抛物线C1向右平移6×6=36个单位得到,∴抛物线C13的解析式为y=﹣(x﹣36)(x﹣36﹣3)=﹣(x﹣36)(x﹣39),∵P(37,m)在第13段抛物线C13上,∴m=﹣(37﹣36)(37﹣39)=2.故答案为:2,2.【点睛】本题考查了二次函数图象与几何变换,利用点的变化确定函数图象的变化更简便,平移的规律:左加右减,上加下减.17.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h−2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.18.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.19.【分析】根据题意先把抛物线的一次项系数和常数项用含的式子表示出来从而表示出点P 的坐标再利用两点间的距离求出MN 的长和点P 到MN 的距离即可求出三角形的面积;再根据点MN 在矩形内部求出的范围进而可求的范 解析:42b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m +抛物线2y x bx c =++的对称轴为:2b x =-22b m ∴-=+ 24b m ∴=--将点 M (m 、n )代入2y x bx c =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△ 2224424b c m m m n m m n +=--+++=++-②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<<点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围20.【分析】当BCP 三点共线且C 在BP 之间时BP 最大连接PB 此时△OAQ ∽△BAP 且相似比为1:3由此即可求得求出BP 的最大值即可求解【详解】解:如下图所示连接BP 当BCP 三点共线且C 在BP 之间时BP 最 解析:73【分析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 【详解】解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)()1,0-或()3,0;(2)6;(3)点P 的坐标为()17,3、()17,3、()0,3-、()2,3-.【分析】(1)令y=0,转化为一元二次方程,方程的根就是与x 轴交点的横坐标;(2)求出AB 的长度,OC 的长度,按公式计算即可;(3)利用面积公式,抛物线的解析式转化成一元二次方程求解即可.【详解】解:(1)当0y =时,2230x x --=,解得 11x =-,23x =,∴抛物线与x 轴的交点坐标为()1,0-或()3,0,故答案为:()1,0-或()3,0.(2)由(1)点()1,0A -,()3,0B ,()0,3C-, ∴()314AB =--=,3OC =, ∴14362ABC S =⨯⨯=△. (3)∵点()1,0A -,点()3,0B ,()222314y x x x =--=--,∴此抛物线有最小值,此时4y =-,()314AB =--=,∵6PAB S =△,抛物线上有一个动点P ,∴点P 的纵坐标的绝对值为6234⨯=, ∴2233x x --=或2233x x --=-, 解得,117x =,217x =,30x =,42x =,∴点P 的坐标为()17,3、()17,3-、()0,3-、()2,3-.【点睛】本题考查了二次函数与坐标轴的交点,抛物线上的内接三角形的面积,动点问题,熟练掌握性质,并能灵活运用是解题的关键.22.(1)(1,-1),x<1;(2)y =x 2+2x -3,6.【分析】(1)先将y =x 2﹣2x 化为顶点式,即可得出顶点坐标,再根据二次函数的性质可求出y 随x 的增大而减小时自变量的取值情况;(2)根据函数图象的平移规律,可求出新抛物线的解析式,再利用新抛物线的函数解析式求出△ABC 的底和高,即可求出面积.【详解】解:(1)∵y =x 2﹣2x =(x -1)2-1,则顶点坐标为(1,-1),∵y =x 2﹣2x 为二次函数,且a =1,∴开口向上,对称轴为x=1,∴在x<1时,y 随x 的增大而减小.故答案为:(1,-1),x<1.(2)将抛物线y =x 2﹣2x =(x -1)2-1向左平移2个单位得y =(x -1+2)2-1=(x +1)2-1,再向下平移三个单位,得y =(x +1)2-1-3=(x +1)2-4,化简得y =x 2+2x -3,即新抛物线的解析式为y =x 2+2x -3,∵抛物线y =x 2+2x -3与x 轴交于两点A 、B 两点,∴令y =0,则x 2+2x -3=0,解得x 1=-3,x 2=1,∴AB =4,令x =0,y =-3,∴C 点坐标为(0,-3),S △ABC 中,底边为AB ,三角形的高即为C 点到x 轴的距离,∴S △ABC =12×4×3=6. 【点睛】此题考查了二次函数的综合问题,熟练掌握二次函数的图象与性质的相关知识并能灵活运用是解题的关键. 23.(1)()21433y x =--;(2)70,3⎛⎫ ⎪⎝⎭【分析】(1)根据题意可设二次函数顶点式,再将()1,0代入求解即可;(2)令0x =即可得到结果;【详解】(1)∵当自变量4x =时,二次函数的值最小,最小值为3-,∴顶点坐标为()4,3-,可设顶点式为()243y a x =--,将()1,0代入得:930a -=, 解得:13a =, ∴这个二次函数的表达式为()21433y x =--; (2)∵()21433y x =--,∴令0x =时,1716333y =⨯-=, ∴与y 轴的交点坐标为70,3⎛⎫ ⎪⎝⎭;【点睛】本题主要考查了待定系数法求解二次函数解析式,准确计算是解题的关键.24.(1)y =12x 2﹣32x ﹣2;(2)①M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2);②S AMBN =﹣3m 2+7m +10(﹣1<m <3),当m =76时,S AMBN 有最大值,最大值=16912;③1或73;(3)1. 【分析】(1)令抛物线l 1:y=0,可求得点A 和点B 的坐标,然后设设抛物线l 2的解析式为y=a (x+1)(x-4),将点D 的坐标代入可求得a 的值,从而得到抛物线的解析式. (2)①利用待定系数法可得,M (m ,-m 2+2M+3),N (M ,12m 2-32m-2). ②由点A 和点B 的坐标可求得AB 的长,依据S AMBN =12AB•MN 列出S 与x 的函数关系,从而可得到当S 有最大值时,m 的值,于是可得结论.③CM 与DN 不平行时,可证明四边形CDNM 为等腰梯形,然后可证明GM=HN ,列出关于m 的方程,于是可求得点P 的坐标;当CM ∥DN 时,四边形CDNM 为平行四边形.故此DC=MN=5,从而得到关于m 的方程,从而可得结论.(3)设S ,T 的横坐标分别为x 1,x 2,设R ,U 的横坐标分别为x 3,x 4.利用根与系数的关系解决问题即可.【详解】解:(1)∵令﹣x 2+2x +3=0,解得:x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),设抛物线l 2的解析式为y =a (x +1)(x ﹣4),∵将D (0,﹣2)代入得:﹣4a =﹣2,∴a =12, ∴抛物线的解析式为y =12x 2﹣32x ﹣2. (2)①由题意P (m ,0),可得M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2). ②如图1所示:∵A (﹣1,0),B (3,0),∴AB =4,∵P (m ,0),M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2), ∵MN ⊥AB ,∴S AMBN =12AB •MN =﹣3m 2+7m +10(﹣1<m <3), ∴当m =76时,S AMBN 有最大值,最大值=16912. ③如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,如果CM 与DN 不平行.∵DC ∥MN ,CM =DN ,∴四边形CDNM 为等腰梯形.∴∠DNH =∠CMG .在△CGM 和△DNH 中,DNH CMG DHN CGM DN CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGM ≌△DNH (AAS ),∴MG =HN .∴PM ﹣PN =1.∵P (m ,0),则M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2). ∴(﹣m 2+2m +3)+(12m 2﹣32m ﹣2)=1,解得:m 1=0(舍去),m 2=1. 当CM ∥DN 时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN=5∴﹣m2+2m+3﹣(12m2﹣32m﹣2)=5,∴m1=0(舍去),m2=73,综上所述,m的值为1或73.故答案为:1或73.(3)设S,T的横坐标分别为x1,x2,设R,U的横坐标分别为x3,x4.则TU=x4﹣x2,RS=x1﹣x3,∴TU﹣RS=(x4﹣x2)﹣(x1﹣x3)=(x3+x4)﹣(x1+x2),由﹣x2+2x+3=n,可得,x2﹣2x﹣3+n=0,∴x1+x2=2,由12x2﹣32x﹣2=n,可得x2﹣3x﹣4﹣2n=0,∴x3+x4=3,∴TU﹣RS=(x3+x4)﹣(x1+x2)=3﹣2=1,故答案为:1.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,全等三角形的判定和性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数,构建一元二次方程解决问题,属于中考压轴题.25.(1)(﹣1,0);(2)y=x2+4x+3;(3)﹣3<x<0.【分析】(1)先求出点B,点A坐标,由对称性可求点C坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y=x+3分别交x轴和y轴于点A和B,∴点A(﹣3,0),点B(0,3),∵抛物线的对称轴为直线x=﹣2.抛物线与x轴的另一个交点为C,∴点C(﹣1,0),故答案为(﹣1,0);(2)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),点C(﹣1,0),∴3093ca b ca b c=⎧⎪=-+⎨⎪=-+⎩,解得:143abc=⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y=x2+4x+3;(3)如图所示:当﹣3<x<0时,二次函数值小于一次函数值,故答案为:﹣3<x<0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.26.(1)证明见解析,(2)3.【分析】(1)当y=0时,判断一元二次方程是否有两个不相等的实数根即可;(2)求出解析式和A、B、C三点坐标,利用面积公式即可求.解:当y=0时,0=x2﹣2(a+1)x+a2+2a.2224=[2(1)]4(2)b ac a a a--+-⨯+=4>0,∴不论a取何实数,该抛物线与x轴都有两个交点;(2)当a=1时,抛物线解析式为:y=x2﹣4x+3当y=0时,x2﹣4x+3=0,解得,x1=1,x2=3,设A点坐标为(1,0),B点坐标为(3,0),当x=0时,y=3,C点坐标为(0,3)S△ABC=1(31)33 2⨯-⨯=.【点睛】本题考查了二次函数与x轴交点个数和求与坐标轴交点坐标,解题关键是熟练运用一元二次方程知识解决问题.。
九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
(典型题)初中数学九年级数学下册第二单元《二次函数》检测卷(答案解析)
一、选择题1.在同一直角坐标系中,函数y mx m =+和222y mx x =-++的图象可能是( ) A . B .C .D .2.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠D .18m 且0m ≠ 3.关于二次函数22y x x =-+的最值,下列叙述正确的是( )A .当2x =时,y 有最小值0.B .当2x =时,y 有最大值0.C .当1x =时,y 有最小值1D .当1x =时,y 有最大值14.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 5.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =06.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴是直线12x =,且经过点()20,,下列说法∶①0abc >;②240b ac -<;③1x =-是关于x 的方程20ax bx c ++=的一个根;④0a b +=.其中正确的个数为( )A .1B .2C .3D .47.二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有①abc >0;②b 2﹣4ac <0;③2a >b ;④(a +c )2<b 2;⑤a ﹣2b +4c >0.( )A .1个B .2个C .3个D .4个8.如图,二次函数2y ax bx c =++的图象经过点(1,0),则下列结论正确的是( )A .0c >B .0ab >C .0a b c ++>D .0a b +>9.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④ 10.对于抛物线22()1y x =-+,下列说法错误的是( )A .抛物线的开口向上B .抛物线与x 轴有两个交点C .抛物线的对称轴是2x =D .抛物线的顶点坐标是(2,1)11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0ab <;②24b ac >;③20a b c ++<;④30a c +<.其中正确的是( )A .①②④B .②④C .①②③D .①②③④ 12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m > 二、填空题13.如图所示,二次函数2(0)y ax bx c a =++≠的图像与x 轴交于点()3,0,对称轴为直线1x =.则方程20cx bx a ++=的两个根为_____.14.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.15.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 16.如图,二次函数2y ax bx c =++与反比例函数k y x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2kax bx c x ++>的解是____.17.如图已知1A ,2A ,3A ,n A ⋅⋅⋅是x 轴上的点,且112233411n n OA A A A A A A A A -====⋅⋅⋅==,分别过点1A ,2A ,3A ,n A ⋅⋅⋅作x 轴的垂线交二次函数()02>=x x y 的图象于点1P ,2P ,3P ,n P ⋅⋅⋅,若记11OA P △的面积为1S ,过点1P 作1122P B A P ⊥于点1B ,记112P B P △的面积为2S ,过点2P 作2233P B A P ⊥于点2B ,记223P B P △的面积为3S ,…依次进行下去,则3S =______,最后记()111n n n PB P n -->△的面积为n S ,则n S =______.18.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.19.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.20.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A2021的坐标为____.三、解答题21.喜迎元旦,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.(1)假设设每件商品的售价上涨x元(x为正整数),每星期销售该商品的利润为y元,求y与x之间的函数关系式.(2)每件商品的售价上涨多少元时,该商店每星期销售这种商品可获得最大利润?此时,该商品的定价为多少元?获得的最大利润为多少?22.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.23.天气寒冷,某百货商场准备销售一种围巾,围巾的进货价格为每条50元,并且每条的售价不低于进货价,经过市场调查,每月的销售量y(条)与每条的售价x(元)之间满足人体所示的函数关系.(1)求每月销售y (条)与售价x (元)的函数关系式;(2)物价部门规定,该围巾的每条利润不允许高于进货价的30%,设这种围巾每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发沿着AB 以每秒1cm 的速度向点B 移动;同时点Q 从点B 出发沿着BC 以每秒2cm 的速度向点C 运动.设△DPQ 的面积为S ,运动时间为t 秒.(1)用含t 的代数式表示出BP 的长为 cm ,CQ 的长为 cm ;(2)写出S 与t 之问的函数关系式;(3)当△DPQ 的面积最小时,请判断线段PQ 与对角线AC 的关系,并说明理由.25.在平面直角坐标系中,设二次函数2212,1y x bx a y ax bx =++=++(,a b 是实数,0a ≠).(1)若函数1y 的对称轴为直线3x =,且函数1y 的图象经过点(,)a b ,求1y 的表达式.(2)设函数1y 的图象经过点(,)m n ,函数2y 的图象经过点11,m n ⎛⎫ ⎪⎝⎭,其中0mn ≠,求,m n 满足的关系式.(3)当01x <<时,比较1y 和2y 的函数值的大小.26.如图,已知抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C 且AB =6,抛物线的对称轴为直线x =1(1)抛物线的解析式;(2)x 轴上A 点的左侧有一点E ,满足S △ECO =4S △ACO ,求直线EC 的解析式.【参考答案】***试卷处理标记,请不要删除 一、选择题1.D解析:D【分析】根据m 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一判断即可.【详解】A :由函数y mx m =+的图像可知0m <,即函数222y mx x =-++开口应向上,与图像不符,故A 错误;B 、由函数y mx m =+的图像可知0m <,函数222y mx x =-++的对称轴21022b x a m m=-=-=<-,则对称轴应在y 轴的左侧与图像不符,故B 错误; C :由函数y mx m =+的图像可知0m >,即函数222y mx x =-++开口应向下,与图像不符,故C 错误;D :由函数y mx m =+的图像可知0m <,即函数222y mx x =-++开口向上,函数222y mx x =-++的对称轴21022b x a m m=-=-=<-,则对称轴应在y 轴的左侧与图像相符,故D 正确;故选:D .【点睛】 本题主要考查了一次函数与二次函数图象,关键是熟练掌握一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等. 2.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.3.D解析:D【分析】先将二次函数配方成()211y x =--+,即可求解.【详解】解:()()2221221y x x x x x =-+=----+=, 二次函数的图象开口向下,当1x =时,y 有最大值1,故选:D .【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键. 4.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 5.D解析:D【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断.【详解】解:A .∵抛物线与x 轴有两个交点,∴n 2﹣4mk >0,所以A 选项错误;B .∵抛物线开口向上,∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.6.B解析:B【分析】①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号即可判断;②根据抛物线与x 轴的交点即可判断;③根据二次函数的对称性即可判断;④由对称轴求出=-b a 即可判断.【详解】解:①∵二次函数的图象开口向下,∴0a <,∵二次函数的图象交y 轴的正半轴于一点,∴0c >,∵对称轴是直线12x =, ∴122b a -=, ∴0b a =->, ∴0abc <.故①错误;②∵抛物线与x 轴有两个交点,∴240b ac ->,故②错误;③∵对称轴为直线12x =,且经过点()2,0, ∴抛物线与x 轴的另一个交点为()1,0-,∴1x =-是关于x 的方程20ax bx c ++=的一个根,故③正确;④∵由①中知=-b a ,∴0a b +=,故④正确;综上所述,正确的结论是③④共2个.故选:B .【点睛】本题考查了二次函数的图象和系数的关系的应用,注意:当0a >时,二次函数的图象开口向上,当0a <时,二次函数的图象开口向下.7.C解析:C【分析】由函数图象可知a <0,对称轴﹣1<x <0,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;即可得出b ﹣2a >0,b <0;△=b 2﹣4ac >0;再由图象可知当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;当x =﹣12时,y >0,即14a ﹣12b +c >0,即可求解.【详解】解:由函数图象抛物线开口向下,对称轴﹣1<x <0,图象与y 轴的交点c >0, ∴a <0,2b a -<0,c >0, ∴b <0,∴abc >0,故①正确;∵函数与x 轴有两个不同的交点,∴△=b 2﹣4ac >0,故②错误; ∵2b a->﹣1, ∴2a <b ,故③错误;当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;∴(a +b +c )(a ﹣b +c )<0,即(a +c )2<b 2;故④正确;∵x =﹣12时,y >0, ∴14a ﹣12b +c >0,即a ﹣2b +4c >0,故⑤正确; 故选:C .【点睛】此题考查二次函数的图象,根据图象确定式子的正负,正确理解函数图象,由图象得到相关信息,掌握二次函数的性质,根的判别式与图象的关系是解题的关键.8.A解析:A【分析】根据二次函数的图象与解析式中字母系数之间关系解答即可.【详解】解:A 、图像与y 轴交于正半轴,则0c >,A 正确;B 、图象的开口向下,则0a <;对称轴在y 轴右边且0a <,根据对称轴=0b a->,得 0b >; a 、b 异号,B 错误;C 、将(1,0)代入函数表达式,得0a b c ++=,C 错误;D 、A 中结论0c >,C 中结论0a b c ++=,所以 0a b +<,D 错误;故选A .【点睛】本题考查二次函数的图象与各项系数间的关系,熟知二次函数的图象与各项字母系数之间关系是解答的关键. 9.B解析:B【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12b a-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误; ②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0),∴9a +3b +c =0,结论②正确;③∵对称轴为直线x =1, ∴12b a-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误.综上所述,正确的结论有:②③.故选:B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.10.B解析:B【分析】根据抛物线的性质逐条判断即可.【详解】解:抛物线22()1y x =-+是二次函数的顶点式,由此可知,抛物线开口向上,对称轴是2x =,顶点坐标是(2,1),故A 、C 、D 正确,不符合题意;∵抛物线顶点在第一象限,开口向上,∴抛物线与x 轴没有交点,故B 错误,符合题意;故选:B .【点睛】本题考查了二次函数图象的性质,解题关键是熟知抛物线顶点式的意义,根据顶点位置和开口确定与x 轴是否有交点. 11.C解析:C【分析】根据函数的图像分别确定各项系数的正负,再由对称轴和与x 轴的交点即可解题.【详解】∵抛物线开口向上,∴a>0,∵抛物线与y 轴的交点在x 轴下方,∴c<0,抛物线的对称轴为直线x=-b 2a =10>,即02<b a0a >0b ∴<∴ab<0,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-b 2a =1, ∴b=-2a ,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,即30a c +>所以④错误.故选C .【点睛】本题考查了二次函数的图像与性质,属于简单题,熟悉二次函数的图像性质是解题关键. 12.D解析:D【分析】作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m ⎧=--+∴⎨=-+⎩,由()1430m =--+=, 解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.【分析】根据题意和二次函数的性质可以得到二次函数的图像与轴的另一个交点然后得到的解然后再变形即可得到方程的两个根;【详解】∵二次函数的图象与x 轴交于点对称轴为直线∴该函数与x 轴的另一个交点为∴当时可 解析:11x =-,213x =【分析】根据题意和二次函数的性质,可以得到二次函数2(0)y ax bx c a =++≠的图像与x 轴的另一个交点,然后得到20ax bx c ++=的解,然后再变形,即可得到方程的两个根;【详解】∵二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点()3,0,对称轴为直线1x =, ∴该函数与x 轴的另一个交点为()1,0-,∴当0y =时,20ax bx c =++,可得:11x =-,23x =,当20ax bx c ++=,0x ≠时,可得2110a b c x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 设1t x=,可得20ct bt a ++=, ∴11t =-,213t =, 由上可得,方程20cx bx c++=的两个根为11x =-,213x =; 故答案为:11x =-,213x =. 【点睛】本题主要考查了二次函数与一元二次方程的应用,准确分析计算是解题的关键.14.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第 解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫-⎪⎝⎭ 【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点. 15.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.16.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.17.【分析】先根据二次函数图象上点的坐标特征求出点P (11)则根据三角形面积公式求得S1=同样求得S2=S3=S4=所有对应的三角形面积的分母都为2分子为2n-1从而可得Sn=【详解】解:∵当∴点P1( 解析:52, 212n - 【分析】 先根据二次函数图象上点的坐标特征求出点P (1,1),则根据三角形面积公式求得S 1=12,同样求得S 2=32,S 3=52,S 4=72,所有对应的三角形面积的分母都为2,分子为2n-1,从而可得S n =212n -. 【详解】解:∵()02>=x x y 当1x =,1y =,∴点P 1(1,1)∴S 1=111122=⨯⨯= 当2x =时,224y ==∴点P 2(2,4)∴S 2()1314122=⨯⨯-= 当3x =时,239y ==∴点P 2(3,9)∴S 3()1519422=⨯⨯-= 同理:S 4()17116922=⨯⨯-= ∴S n 212n -= 故答案为:52;212n - 【点睛】 本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也涉及到三角形面积公式,图形类规律探索,解题的关键是学会利用数形结合的思想,找出相应三角面积的规律.18.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h−2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.19.y =x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y =x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y =x 2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y =x 2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y=x2+2.故答案为:y=x2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.20.(-101110112)【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变化规律即解析:(-1011,10112)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2021的坐标.【详解】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==,得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2021(-1011,10112),故答案为(-1011,10112).【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题21.(1)2101002000(020)y x x x =-++≤<;(2)每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y 与x 的函数关系式; (2)根据二次函数的性质即可得到结论.【详解】(1)(6050)(20010)y x x =-+-2(10)(20010)101002000(020)x x x x x =+-=-++≤<.(2)2210100200010(52250y x x x =-++=--+)所以,当5x =时,y 取得最大值为2250.答:每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据每天的利润=一件的利润⨯销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.22.(1)y =﹣2x+44(5≤x <443);(2)S =﹣2x 2+44x ,矩形场地的最大面积为242m 2 【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y ﹣2)+(x ﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y ﹣2)+(x ﹣2)=40,∴y =﹣2x+44,∵墙面长为34米∴y =﹣2x+44≤34解得x≥5∵x <y∴x <﹣2x+44解得x <443∴自变量x 的取值范围是5≤x <443;(2)S =xy=x (﹣2x+44)=﹣2x 2+44x=﹣2(x ﹣11)2+242,∴当x =11时,S 取得最大值,最大值为242,即矩形场地的最大面积为242m 2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.23.(1)y 101200x =-+(x≥50);(2)售价定为65元可获得最大利润,最大利润8250元.【分析】(1)设一次函数解析式y kx b =+ (x≥50),利用待定系数法将(60,600),(80,400)代入即得解得解析式;(2)根据题意列出函数关系式,再利用二次函数的性质求最大利润即可,注意考虑自变量的范围,围巾的每条利润不允许高于进货价的30%.【详解】解:(1)设一次函数解析式y kx b =+ (x≥50).由函数图像可知(60,600),(80,400)在函数图像上,代入即得:6006040080k b k b =+⎧⎨=+⎩解得:101200k b =-⎧⎨=⎩. 所以,每月销售y (条)与售价x (元)的函数关系式:y 101200x =-+(x≥50). (2)由题意得:()()=10120050w x x -+-化简得:2=10170060000w x x -+-由函数解析式可知对称轴是x=85时,x≤85时,w 随x 的增加而增大.因为,围巾的每条利润不允许高于进货价的30%,那么 x≤50×(1+30%),即x≤65. 所以,当x=65时,w 取到最大值:2=106517006560000=8250w -⨯+⨯-. 所以,售价定为65元可获得最大利润,最大利润8250元.【点睛】本题考查了一次函数与二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.24.(1)(6-t),(12-2t);(2)S=t 2-6t+36;(3)PQ ∥AC ,理由见解析【分析】(1)由题意可得出答案;(2)根据△PQD 的面积=矩形ABCD 的面积-△APD 的面积-△PBQ 的面积-△CDQ 的面积可得出答案;(3)由二次函数的性质及中位线定理可得出答案.【详解】解:(1)根据题意得:AP=t(cm),BQ=2t(cm),则BP=(6-t)cm ,CQ=(12-2t)cm ,故答案为:(6-t),(12-2t);(2)∵BP=6-t(cm),CQ=12-2t(cm),∴△PQD 的面积=矩形ABCD 的面积-△APD 的面积-△PBQ 的面积-△CDQ 的面积 =12×6-12×12t-12×2t×(6-t)-12×6(12-2t) =t 2-6t+36, ∴S=t 2-6t+36;(3)∵S=t 2-6t+36=(t-3)2+27,且1>0,∴当t=3时,S 最小;即经过3s 时,△PQD 的面积最小,此时,PQ ∥AC .理由:∵t=3,∴AP=PB=3(cm),CQ=BQ=6(cm),∴PQ ∥AC ..【点睛】本题考查了矩形的性质,二次函数的最值,中位线定理,熟练掌握二次函数的性质是解题的关键.25.(1)2126y x x =+-或2136y x x =+-;(2)220m n -=;(3)当1a <且0a ≠时,12y y <;当1a >时,12y y >【分析】(1)由题意易得32b -=,则有6b =-,然后再把点(,)a b 代入求解即可; (2)把点(),m n 和点11,m n ⎛⎫ ⎪⎝⎭分别代入1y ,2y 进行求解即可; (3)由题意可求12y y -的值,然后根据01x <<及分类讨论a 的范围,从而得出12y y -的大小即可.【详解】解:(1)由函数1y 的对称轴为直线3x =,可得32b -=,∴6b =-,∴点(),6a -,∴266a a a -+=-,解得:122,3a a ==,∴函数1y 的解析式为2126y x x =+-或2136y x x =+-;(2)把点(),m n 和点11,m n ⎛⎫ ⎪⎝⎭分别代入1y ,2y 得: 22111m mb a n b a m mn ⎧++=⎪⎨⎛⎫++=⎪ ⎪⎝⎭⎩, 解得:220m n -=;(3)由2212,1y x bx a y ax bx =++=++可得: ()()()()22212211111y x bx a ax bx a x y a a x =++-++-+-=--=-,∵01x <<,∴210x -<,∴当1a <且0a ≠时,10a ->,则有120y y -<,即12y y <;当1a >时,10a -<,则有120y y ->,即12y y >;综上:当1a <且0a ≠时,12y y <;当1a >时,12y y >.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 26.(1)2142y x x =-++;(2)142y x =+. 【分析】(1)已知了抛物线的对称轴以及AB 的长,即可得到A 、B 的坐标,代入抛物线的解析式中求得待定系数的值,即可得出抛物线的解析式;(2)由于△ECO 和△ACO 的高都为OC ,根据等高三角形的面积比等于底边比可知:OE :OA =4:1,据此可求出E 点坐标,然后根据E 、C 坐标可用待定系数法求出直线EC 的解析式.【详解】解:(1)∵抛物线的对称轴为直线x =1,12a =-, ∴12b a-=, ∴1b =,∵AB =6, ∴A (−2,0),B (4,0),将B (4,0),1b =代入解析式212y x bx c =-++得4c =, ∴抛物线的解析式为:2142y x x =-++; (2)S △ECO =12EO•OC ,S △ACO =12AO•OC , ∵S △ECO =4S △ACO ,且OA=2,∴EO =4AO =8,∵点E 在A 点的左侧,∴E (−8,0),由抛物线的解析式得:C (0,4),设直线EC 的解析式为:y =kx +b ,将E (−8,0),C (0,4),代入得:804k b b -+=⎧⎨=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,∴直线EC 的解析式为142y x =+. 【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式等知识,熟练掌握二次函数的图象与性质并能准确利用待定系数法求函数解析式是解题的关键.。
(典型题)初中数学九年级数学下册第二单元《二次函数》检测卷(包含答案解析)
一、选择题1.在同一直角坐标系中,函数y mx m =+和222y mx x =-++的图象可能是( )A .B .C .D .2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( )A .B .C .D .3.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .14.关于二次函数22y x x =-+的最值,下列叙述正确的是( ) A .当2x =时,y 有最小值0. B .当2x =时,y 有最大值0. C .当1x =时,y 有最小值1D .当1x =时,y 有最大值15.抛物线222=++y x x 与y 轴的交点坐标为( ) A .(1,0)B .(0,1)C .(0,0)D .(0,2)6.二次函数2y x bx c =++的图象经过坐标原点O 和点()7,0A ,直线AB 交y 轴于点()0,7B -,动点(),C x y 在直线AB 上,且17x <<,过点C 作x 轴的垂线交抛物线于点D ,则CD 的最值情况是( ) A .有最小值9B .有最大值9C .有最小值8D .有最大值87.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个8.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <; ③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-. 错误的是( )A .①B .②C .③D .④9.如图,在平面直角坐标系中,反比例函数和二次函数的图象大致如图所示,它们的表达式可能分别为( )A .2,ky y kx x x=-=-+ B .2,ky y kx x x=-=-- C .2,ky y kx x x ==-- D .2,ky y kx x x==-+ 10.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .311.已知二次函数223y x x =--+,下列叙述中正确的是( ) A .图象的开口向上 B .图象的对称轴为直线1x = C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小12.将抛物线()2214y x =--+向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为( ) A .()2241y x =-++ B .()2221y x =--+ C .()2246y x =--+D .()2242y x =--+二、填空题13.在平面直角坐标系中,函数21y ax bx c =++,2y ax b =+,3y ax c =+,其中a ,b ,c 为常数,且a<0,函数1y 的图象经过点A (1,0),B (1x ,0),且满足143x -<<-,函数y 2的图象经过点(x 2,0);函数y 3的图象经过点(x 3,0),若2311m x m n x n <<+<<+,,且m ,n 是整数,则m=_______;n=________. 14.如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2k ax bx c x++>的解是____.15.二次函数y =x 2+2x ﹣4的图象的对称轴是_____,顶点坐标是_____. 16.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2.17.二次函数()20y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,有下列结论:①240b ac ->;②421a b c -+>-;③132x -<<-;④当m 为任意实数时,2a b am bm -≤+;⑤30a c +<.其中,正确结论的序号是(________)18.已知二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠),函数值y 与自变量x 的部分对应值如下表:x… 1-0 1 2 3 4 … y …101y2125…当1y y <时,自变量x 的取值范围是______.19.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.20.若方程20ax bx c ++=的两个根是3-和1,那么二次函数2y ax bx c =++的图象的对称轴是直线x = _____________________三、解答题21.已知函数()()1210,()y x m x m y ax m a =+--=+≠在同一平面直角坐标系中.(1)若1y 经过点()12-,,求1y 的函数表达式; (2)若2y 经过点()1,1m +,判断1y 与2y 图象交点的个数,说明理由;(3)若1y 经过点1,02⎛⎫ ⎪⎝⎭,且对任意x ,都有12y y >,请利用图象求a 的取值范围. 22.已知二次函数2=++y x bx c -的图象如图所示,它与x 轴的一个交点坐标为(1,0)-,与y 轴的交点坐标为(0,3).(1)求此二次函数的表达式,并用配方法求顶点的坐标; (2)直接写出当函数值0y >时,自变量x 的取值范围.23.如图,直线y x m =+和抛物线2y x bx c =++都经过点A (1,0),B (3,2). (1)求m 的值;(2)求不等式2x bx c x m ++>+的解集(直接写出答案).24.如图,在平面直角坐标系中,(0,1)A ,(2,0)B ,将线段AB 绕原点O 逆时针旋转90°,得到线段A B '',且点A ',B ',B 均在抛物线上.(1)求该抛物线的函数表达式.(2)该抛物线的对称轴上有一点Q ,使ABQ △是以AB 为直角边的直角三角形,求Q 点的坐标.25.已知二次函数y =ax 2+bx ﹣2(a ≠0)的图像与x 轴交于点A 、B ,与y 轴交于点C . (1)若点A 的坐标为(4,0)、点B 的坐标为(﹣1,0),求a +b 的值;(2)若图像经过P (1,y 1),Q (m ,n ),M (3,y 2),N (3﹣m ,n ),试比较y 1、y 2的大小关系;(3)若y =ax 2+bx ﹣2的图像的顶点在第四象限,且点B 的坐标为(﹣1,0),当a +b 为整数时,求a 的值.26.突如其来的新冠疫情影响了某商场经济效益,在复工复产时对某商品价格进行了调整,每件的售价比进价多8元,8件的进价相当于6的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件. (1)该商品的售价和进价分别是多少元?(2)在进价不变的条件下,若每天所得的销售利润为2160元时,且销量尽可能大,该商品应涨价多少元?(3)在进价不变的条件下,商场的营销部在调控价格方面,提出了每件商品的利润至少为25元的方案.则在此方案下,涨价多少元时每天的利润最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据m 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一判断即可. 【详解】A :由函数y mx m =+的图像可知0m <,即函数222y mx x =-++开口应向上,与图像不符,故A 错误;B 、由函数y mx m =+的图像可知0m <,函数222y mx x =-++的对称轴21022b x a m m=-=-=<-,则对称轴应在y 轴的左侧与图像不符,故B 错误; C :由函数y mx m =+的图像可知0m >,即函数222y mx x =-++开口应向下,与图像不符,故C 错误;D :由函数y mx m =+的图像可知0m <,即函数222y mx x =-++开口向上,函数222y mx x =-++的对称轴21022b x a m m=-=-=<-,则对称轴应在y 轴的左侧与图像相符,故D 正确; 故选:D . 【点睛】本题主要考查了一次函数与二次函数图象,关键是熟练掌握一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.2.B解析:B 【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断. 【详解】解:A 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2ba>0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b >0,故本选项错误. 故选:B . 【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键.3.D解析:D 【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值. 【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴抛物线的顶点坐标为(2,1), ∵四边形ABCD 为矩形, ∴BD =AC , 而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1, ∴对角线BD 的最小值为1. 故选:D . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.4.D解析:D 【分析】先将二次函数配方成()211y x =--+,即可求解. 【详解】解:()()2221221y x x x x x =-+=----+=,二次函数的图象开口向下,当1x =时,y 有最大值1, 故选:D . 【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键.5.D解析:D 【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2) 【详解】 令x=0,则y=2,∴抛物线与y 轴的交点为(0,2), 故选:D . 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;6.B解析:B 【分析】根据待定系数法求得抛物线的解析式和AB 的解析式,设(,7)C x x -,则2(,7)D x x x -,根据图象的位置即可得出2(4)9CD x =--+,根据二次函数的性质即可求得. 【详解】 解:二次函数2y x bx c =++的图象经过坐标原点O 和点(7,0)A ,∴04970c b c =⎧⎨++=⎩,解得70b c =-⎧⎨=⎩,∴二次函数为27y x x =-,(7,0)A ,(0,7)B -, ∴直线AB 为:7y x =-,令277x x x -=-, 解得:11x =,27x =,∴点E 的横坐标为1,则点C 始终在点D 上方, 设(,7)C x x -,则2(,7)D x x x -,2227(7)87(4)9CD x x x x x x ∴=---=-+-=--+, 17x ∴<<范围内,有最大值9,故选:B .【点睛】本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD的关系式是解题的关键.7.D解析:D【分析】把P点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可.【详解】解:甲:当n=﹣1时,m(﹣m+2)=﹣1,整理得:m2﹣2m﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,即此时点P的个数为2,故甲的说法正确;乙:当n=0时,m(﹣m+2)=0,解得:m=0或2,即此时点P的个数为2,故乙的说法错误;丙:当n=1时,m(﹣m+2)=1,整理得:m2﹣2m+1=0,△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,即此时点P的个数为1,故丙的说法正确;丁:当n=2时,m(﹣m+2)=2,整理得:m2﹣2m+2=0,△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,即此时点P的个数为0,故丁的说法正确;所以正确的个数是3个,故选:D.【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.8.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.9.D解析:D【分析】根据反比例函数图像的位置判断k 的符号,再结合二次函数的图像和性质,逐项判断即可【详解】A 、由反比例函数k y x=-的图像可知,0k >,则二次函数2y kx x =-+的图像开口应向下,与图像不符,故选项错误; B 、由反比例函数k y x=-的图像可知,0k >,则二次函数2y kx x =--的图像开口应向下,与图像不符,故选项错误; C 、由反比例函数k y x=的图像可知,0k <,则二次函数2y kx x =--的图像开口向上,对称轴110222b x a k k-=-=-=->-应位于y 轴的右侧,与图像不符,故选项错误; D 、由反比例函数k y x=的图像可知,0k <,则二次函数2y kx x =-+的图像开口向上,对称轴110222b x a k k=-=-=<-应位于y 轴的左侧,与图像相符,故选项正确; 故选:D .【点睛】 本题考查了反比例函数,二次函数图像的性质,解题关键是熟练掌握反比例函数和二次函数的图像和性质.10.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 11.D解析:D【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误;B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误;C.2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误;D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确;故选:D .【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.12.D解析:D【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-2(x-1)2+4向右平移3个单位,再向下平移2个单位长度后得到抛物线的解析式为:y=-2(x-1-3)2+4-2,即y=-2(x-4)2+2;故选:D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题13.-33【分析】根据二次函数对称轴的性质一次函数与坐标轴的交点坐标列式计算即可;【详解】解:由题意得∴;故答案是:;【点睛】本题主要考查了二次函数与一次函数综合准确计算是解题的关键解析:-3 3【分析】根据二次函数对称轴的性质,一次函数与坐标轴的交点坐标列式计算即可;【详解】解:由题意得,0a b c ++=,2b x a=-,3c x a =- 1131222+-<-=<-x b a ,232-<=-<-b x a, ∴3314+<==+<a b b x a a, 3m ∴=-,3n =;故答案是:3-,3;【点睛】本题主要考查了二次函数与一次函数综合,准确计算是解题的关键.14.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.15.直线x =﹣1(﹣1﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x2+2x ﹣4=(x+1)2﹣5∴该函数图象的对称轴是直线x =﹣1顶点坐标为(﹣1﹣5)故答案为:直线x =﹣1(﹣1﹣5)【解析:直线x =﹣1 (﹣1,﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x 2+2x ﹣4=(x +1)2﹣5,∴该函数图象的对称轴是直线x =﹣1,顶点坐标为(﹣1,﹣5),故答案为:直线x =﹣1,(﹣1,﹣5).【点睛】本题主要考查了二次函数对称轴和顶点坐标的求解,准确计算是解题的关键.16.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 17.①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:故③正确;x=0与x=-2时的函数值相等即可判断②错误;根据对称轴为直线得到当x=-1时函数值最小故当x=m 时函数值大于等于 解析:①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:132x -<<-,故③正确;x=0与x=-2时的函数值相等,即可判断②错误;根据对称轴为直线1x =-,得到当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++,即可判断④正确;由对称轴为直线1x =-,得到b=2a ,由图象可得:当x=1时,y>0,故a+b+c>0,代入得到3a+c>0,由此判断⑤错误.【详解】∵函数图象与x 轴的交点为()()12,0,0x x ,∴240b ac ->,故①正确;∵对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,∴132x -<<-,故③正确;根据抛物线的对称性得到:x=0与x=-2时的函数值相等,∵图象与y 轴的交点纵坐标小于-1,∴421a b c -+<-,故②错误;∵对称轴为直线1x =-,∴当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++, ∴2a b am bm -≤+,故④正确;∵对称轴为直线1x =-, ∴12b a-=-,得b=2a , 由图象可得:当x=1时,y>0,∴a+b+c>0,∴3a+c>0,故⑤错误,故答案为:①③④.【点睛】此题考查二次函数的图象,函数图象与x 轴交点问题,利用图象判断式子的正负,函数最值,根据图象得到相关的信息是解题的关键.18.【分析】根据表格中的数据可知抛物线的开口方向对称轴及顶点坐标结合表格及抛物线特征可得当时自变量的取值范围【详解】解:由表格知:抛物线开口向上顶尖坐标为(21)故当x=0时与x=4时函数值相同∴=5当解析:04x <<.【分析】根据表格中的数据可知抛物线的开口方向,对称轴及顶点坐标,结合表格及抛物线特征可得当1y y <时,自变量x 的取值范围.【详解】解:由表格知:抛物线开口向上,顶尖坐标为(2,1),故当x=0时与x=4时函数值相同,∴1y =5,当1y y <时,即当y <5时,由表格得04x <<.故答案为:04x <<.【点睛】本题考查了二次函数数的特征,解题关键是根据表格得出抛物线的开口方向,对称轴及顶点坐标.19.【分析】根据题意先把抛物线的一次项系数和常数项用含的式子表示出来从而表示出点P 的坐标再利用两点间的距离求出MN 的长和点P 到MN 的距离即可求出三角形的面积;再根据点MN 在矩形内部求出的范围进而可求的范 解析:42b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m +抛物线2y x bx c =++的对称轴为:2b x =- 22b m ∴-=+ 24b m ∴=--将点 M (m 、n )代入2y x bx c =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△ 2224424b c m m m n m m n +=--+++=++-②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<<点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围20.【分析】先根据题意得出抛物线与x 轴的交点坐标再由两点坐标关于抛物线的对称轴对称即可得出结论【详解】解:∵方程ax2+bx+c=0的两个根是-3和1∴二次函数y=ax2+bx+c 的图象与x 轴的交点分别解析:1-【分析】先根据题意得出抛物线与x 轴的交点坐标,再由两点坐标关于抛物线的对称轴对称即可得出结论.解:∵方程ax 2+bx+c=0的两个根是-3和1,∴二次函数y=ax 2+bx+c 的图象与x 轴的交点分别为(-3,0),(1,0).∵此两点关于对称轴对称,∴对称轴是直线x=312-+=-1. 故答案为:-1.【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 三、解答题21.(1)212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点,理由:见详解;(3)01a <<或10a <<【分析】(1)将()1,2-代入1y ,解关于m 的方程即可求解; (2)将点()1,1m +代入2y 求出a ,由解析式1y 和2y 联立方程组消去y 得到关于x 的一元二次方程,根据一元二次方程根的情况判断1y 与2y 交点的个数即可;(3)将1,02⎛⎫ ⎪⎝⎭代入1y 求出m 的值,把m 的值代入1y 与2y ,结合图像,根据对任意x ,都有12y y >即可求解.【详解】解:(1)将()1,2-代入1y ,得()()2111m m -=+--,解得,122,1m m =-= , ()()121y x x ∴=-+,即 212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点. 理由如下:2y 经过点()1,1m +,1m a m ∴+=+,1a ,()()121,y x m x m y x m =+--=+∴联立方程组()()1y x m x m y x m ⎧=+--⎨=+⎩,消去y ,得()2202x x m m -+=- ()()222242484410m m m m m =++=++=+≥△∴方程()2202x x m m -+=-有实数根据,当1m =-时,0=, 方程()2202x x m m -+=-有两个相等的实数根,1y 与2y 有一个交点;当1m ≠-时,0>,方程()2202x x m m -+=-有两个不相等的实数根,1y 与2y 有两个交点;综上所术,当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点;(3)1y 经过点1,02⎛⎫ ⎪⎝⎭,∴110122m m =+--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, 解得,12m =-, 2121,122y x y ax ⎛⎫ ⎪⎝⎭∴=-=- 联立方程组2121212y x y ax ⎧⎛⎫=-⎪ ⎪⎪⎝⎭⎨⎪=-⎪⎩,消去y 得,()23014x a x ++=-, 若方程有两个相等的实数根,图像1y 与2y 有一个交点,则()231404a =+-⨯=△, 解,得31a =±-,如图所示,对任意x ,都有12y y >,01a ∴<<或10a <<,【点睛】本题是二次函数与一次函数的综合题,考查了待定系数法求函数的解析式,二次函数与一次函数图像的交点与一元二次方程根的判别式的关系及利用图像求不等式的解集,关键在于正确理解二次函数与一次函数图像的交点与一元二次方程的关系以及数形结合的思想. 22.2y x 2x 3=-++;()1,4;(2)13x【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ,从而得出抛物线的解析式;(2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(-1,0)和(0,3)两点, 得103b c c --+=⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为2y x 2x 3=-++,∵()222314y x x x =-++=--+, ∴抛物线的顶点坐标为(1,4);(2)令0y =,得2230x x -++=,解得13x =,21x =-,∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0),∵抛物线开口向下,∴当13x时,0y >. 【点睛】本题考查待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练掌握待定系数法求二次函数解析式及抛物线与坐标轴的交点.23.(1)1m =-;(2)x <1或x >3【分析】(1)将点A 坐标代入y=x+m 可得m 的值;(2)由函数图象中双曲线在直线上方时x 的范围可得.【详解】解:(1)将点A(1,0)代入y=x+m 可得1+m=0,解得:m=-1;(2)由函数图象可知不等式的解集为x <1或x >3.【点睛】本题主要考查了待定系数法求一次函数解析式,二次函数与一元二次不等式的关系,解题的关键是熟练掌握待定系数法求函数解析式.24.(1)22y x x =-++;(2)(12,-3)或(12,2) 【分析】(1)利用旋转的性质得出A′(-1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)分AQ 是斜边、BQ 是斜边两种情况,利用勾股定理分别求解即可.【详解】解:(1)线段AB 绕原点O 逆时针旋转90°,得到线段A B '',又A (0,1),B (2,0),∴A′(-1,0),B′(0,2),∵A′(-1,0),B′(0,2),B (2,0),设抛物线的解析式为:y=a (x+1)(x-2)将B′(0,2)代入得出:2=a (0+1)(0-2),解得:a=-1,故满足条件的抛物线的解析式为y=-(x+1)(x-2)=-x 2+x+2;(2)由抛物线的表达式知,函数的对称轴为x=12,故设点Q (12,m ), 则()222112AQ m ⎛⎫=+- ⎪⎝⎭,222122BQ m ⎛⎫=-+ ⎪⎝⎭,AB 2=22+1=5, 当AQ 是斜边时, 则()22221112522m m ⎛⎫⎛⎫+-=-++ ⎪ ⎪⎝⎭⎝⎭, 解得m=-3,当BQ 是斜边时,()22221115222m m ⎛⎫⎛⎫+-+=-+ ⎪ ⎪⎝⎭⎝⎭, 解得m=2,故点Q 的坐标为(12,-3)或(12,2). 【点睛】本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换-旋转,其中(2),利用勾股定理得出方程求出m 是解题关键.25.(1)-1;(2)若a >0,则y 1<y 2;若a <0,则y 1>y 2;(3)32a =【分析】(1)把A (4,0),B (-1,0)代入二次函数关系式求出a ,b 的值即可得到结果; (2)由点Q ,点N 的纵坐标相同,根据抛物线的对称性可得抛物线的对称轴,确定点P距对称轴更近,分a >0和a <0两种情况讨论即可;(3)分别求出a +b =1,a-b-2=0,联立方程组求解即可.【详解】解:(1)∵二次函数y =ax 2+bx ﹣2(a≠0)的图像过A (4,0),B (-1,0)∴1642020a b a b +-=⎧⎨--=⎩解得,1=23=2a b ⎧⎪⎪⎨⎪-⎪⎩∴13122a b +=-=- (2)∵Q (m ,n ),N (3﹣m ,n ),∴二次函数图象的对称轴为3322m m +-= ∵P (1,y 1),M (3,y 2),∴点P 距离对称轴更近若a >0,则y 1<y 2;若a <0,则y 1>y 2; (3)由题意知,∵图像的顶点在第四象限,∴对称轴2b x a=->0 ∵B (﹣1,0),∴A 点横坐标大于1当x=1时,y=a+b-2<0∴0<a+b <2∵a +b 为整数∴a +b =1又∵B (﹣1,0),∴a-b-2=0 联立120a b a b +=⎧⎨--=⎩解得,32a = 【点睛】本题为二次函数综合题,主要考查了待定系数法求函数的解析式,以及二次函数的性质. 26.(1)商品的售价32元,进价为24元;(2)每件商品应涨价4元;(3)按照方案要求,涨价17元时的销售利润最大,最大利润为2875元.【分析】(1)根据题目,设出未知数,列出二元一次方程组即可解答;(2)根据题目:利润=每件利润×销售数量,列出一元二次方程求解;(3)利用二次函数的性质,以及一元一次不等式,即可求出答案.【详解】解:(1)该商品的售价x 元,进价为y 元,由题意得:868x y x y =+⎧⎨=⎩,解得:3224x y =⎧⎨=⎩, ∴商品的售价32元,进价为24元.(2)设每件商品涨价m 元,由题意得:(3224)(2005)2160m m +--=.25(16)28802160m ∴--+=,解得:128m =,24m =.使销量尽可能大,128m ∴=不合题意,舍去,答:每件商品应涨价4元.(3)设销售该商品获得的利润为w 元,涨价m 元,25(16)2880w m ∴=--+每件商品的利润至少为25元,即每件的售价应涨价:322425m +-≥,解得:17m ≥,50a =-<,∴当17m =时,利润最大,最大利润为25(1716)28802875w =--+=元. ∴按照方案要求,涨价17元时的销售利润最大,最大利润为2875元.【点睛】本题主要考查了二次函数的应用,二次函数的性质,二元一次方程组的应用,一元二次方程的应用,熟练掌握实际问题模型是解答此题的关键.。
(必考题)初中数学九年级数学下册第二单元《二次函数》检测(含答案解析)
一、选择题1.如图,抛物线y =ax 2+bx +c 的顶点坐标为(1,﹣4a ),点A (4,y 1)是该抛物线上一点,若点B (x 2,y 2)是该抛物线上任意一点,有下列结论:①4a ﹣2b +c >0;②抛物线y =ax 2+bx +c 与x 轴交于点(﹣1,0),(3,0);③若y 2>y 1,则x 2>4;④若0≤x 2≤4,则﹣3a ≤y 2≤5a .其中,正确结论的个数是( )A .0B .1C .2D .32.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x -2 -1 0 1 2 3 4 y72-1-2m27A .1B .-1C .2D .-23.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .4 4.抛物线222=++y x x 与y 轴的交点坐标为( ) A .(1,0) B .(0,1) C .(0,0) D .(0,2) 5.抛物线y =x 2﹣2x ﹣1的对称轴是( )A .直线x =﹣2B .直线x =﹣1C .直线x =1D .直线x =26.如图,二次函数2y ax bx c =++的图象经过点(1,0),则下列结论正确的是( )A .0c >B .0ab >C .0a b c ++>D .0a b +>7.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+ B .23(-5)1y x =- C .23(5)1y x =+- D .23(5)1y x =++8.当函数21(1)23a y a x x +=-++ 是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-9.如图,抛物线2y ax bx c =++的对称轴是直线1x =-,下列结论:①0abc >;②240b ac -≥;③80a c +<;④5320a b c -+<,正确的有( )A .1个B .2个C .3个D .4个10.已知二次函数223y x x =--+,下列叙述中正确的是( ) A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.如图,抛物线2y ax bx c =++与x 轴交于,A B 两点,与y 轴交于点(0,1)C -,点A 在(4,0)-与(3,0)-之间(不包含这两点),抛物线的顶点为,D 对称轴是直线2x =-.有下列结论:①0abc <;②若点()1283,;,3M y N y ⎛--⎫ ⎪⎝⎭是抛物线上两点,则12y y >;③13a >-;④若1,a =-则ABD △是等边三角形.其中正确的个数是( )A .1B .2C .3D .412.将抛物线()2214y x =--+向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为( ) A .()2241y x =-++ B .()2221y x =--+ C .()2246y x =--+D .()2242y x =--+二、填空题13.函数y =ax 2+bx +c (a ≠0)图像如图所示,过点(﹣1,0),对称轴为x =2,下列结论正确的是_____. ①4a +b =0; ②24a +2b +3c <0;③若A (﹣3,y 1),B (﹣0.5,y 2),C (3.5,y 3)三点都在抛物线上,y 1<y 2<y 3; ④当y 1>﹣1时,y 随x 增大而增大.14.将二次函数y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y =2x +1上,则k 的值为_____. 15.若点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上,则y 1_____y 2.16.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x轴有n 个交点,则所有可能的数对(,)m n 是__________. 17.已知二次函数2(0)y ax bx c a =++≠的自变量x 与函数值y 之间满足下列数量关系:x0 1 2 3 y75713则代数式(42)()a b c a b c ++-+的值为_______.18.将二次函数245y x x =-+化为()2y x h k =-+的形式,则y =________________. 19.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.20.已知y 是x 的二次函数,y 与x 的部分对应值如表:该二次函数图象向左平移____________个单位,图象经过原点. x … ﹣2 ﹣1 0 1 2 … y…4664…三、解答题21.如图,抛物线y =a (x ﹣1)2+4与x 轴交于点A ,B ,与y 轴交于点C ,过点C 作CD//x 轴交抛物线的对称轴于点D ,连接BD ,已知点A 的坐标为(﹣1,0) (1)求该抛物线的解析式; (2)求梯形COBD 的面积.(3)直线BC 上方的抛物线上是否存在一点P ,使△PBC 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.22.如图,抛物线223y x x =--与x 轴交于A 、B 两点.(1)抛物线与x 轴的交点坐标为______; (2)求抛物线与坐标轴围成的ABC 的面积;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.23.2020年12月12日零时,某电商平台“双十二”购物狂欢节预售付尾款活动正式开启,如图是织里童装某产品每小时的成交量y (万件)与时间x (时)的函数图象,y 与x 的关系正好可用两段二次函数12,y y 的图象来表示,点A 是两段函数的顶点,其中01x 时,图象的解析式为213y x mx =-+;17x 时,图象的解析式为2y .(1)根据函数图象,求几时成交量达到最大值?最大值为多少?(2)系统平台显示,当成交量达到2.25万件以上时(包括2.25万件),需要专门安排后台技术人员做维护,请问:需要维护多少时间才能保证系统全程正常运行?24.已知二次函数223(0)y mx mx m m =-->的图像与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C .(1)求A ,B 两点的坐标;(2)连接,BC AC ,若ABC 为等边三角形,求m 的值. 25.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式. ()2在所给坐标系中画出该函数的图象. ()3当x 取什么值时,函数值小于0?26.如图①,抛物线23y x bx c =++与x 轴交于()()1,0,3,0A B -两点,点C 是抛物线顶点.(1)求抛物线的解析式;(2)如图②,连接,AC BC .若点,P D 分别是抛物线对称轴和BC 上动点,求PB PD +的最小值;(3)在(2)的条件下,点M 是x 轴上方抛物线上一点,点N 是x 轴上一点,当以,,,M N B D 为顶点的四边形为平行四边形时,直接写出点N 坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用对称轴公式和顶点坐标得出﹣4a =a +b +c ,b =﹣2a ,c =﹣3a ,则可对①进行判断;抛物线解析式为y =ax 2﹣2ax ﹣3a ,配成交点式得y =a (x ﹣3)(x +1),可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算x =4时,y =5a ,则根据二次函数的性质可对④进行判断. 【详解】解:①∵二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(1,﹣4a ),∴x =﹣2ba=1,且﹣4a =a +b +c , ∴b =﹣2a ,c =﹣3a ,∵抛物线开口向上,则a >0,∴4a ﹣2b +c =4a +4a ﹣3a =5a >0,故结论①正确; ②∵b =﹣2a ,c =﹣3a ,∴y =ax 2﹣2ax ﹣3a =a (x ﹣3)(x +1),∴抛物线y =ax 2+bx +c 与x 轴交于点(﹣1,0),(3,0),故结论②正确; ③∵点A (4,y 1)关于直线x =1的对称点为(﹣2,y 1), ∴当y 2>y 1,则x 2>4或x 2<﹣2,故结论③错误; ④当x =4时,y 1=16a +4b +c =16a ﹣8a ﹣3c =5a , ∴当0≤x 2≤4,则﹣4a ≤y 2≤5a ,故结论④错误. 故选:C . 【点睛】本题考查了二次函数的图象与性质,掌握二次函数图象与性质的相关知识并能灵活运用所学知识求解是解题的关键.2.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案. 【详解】根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩ ∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.3.D解析:D 【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0, ∴ac<0,∵b²≥0,∴20ac b -<,∴①正确; ∵把x=1代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0,∵-2ba -=-1, ∴b=2a ,∴3b+2c <0,∴②正确; ∵抛物线的对称轴是直线x=-1, ∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c , ∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确; ∵a+b+c <0,a-b+c >0,∴(a+c+b )(a+c-b )<0, 则(a+c )2-b 2<0, 即(a+c )2<b 2,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.4.D解析:D 【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2) 【详解】 令x=0,则y=2,∴抛物线与y 轴的交点为(0,2), 故选:D . 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;5.C解析:C 【分析】先将抛物线化为顶点式,即可解决问题. 【详解】解:因为抛物线y =x 2﹣2x ﹣1=x 2﹣2x +1﹣2=(x ﹣1)2﹣2, 所以对称轴是直线x =1. 故选:C . 【点睛】本题考查了二次函数的性质,解题的关键是能将抛物线化为顶点式.6.A解析:A 【分析】根据二次函数的图象与解析式中字母系数之间关系解答即可. 【详解】解:A 、图像与y 轴交于正半轴,则0c >,A 正确; B 、图象的开口向下,则0a <; 对称轴在y 轴右边且0a <,根据对称轴=0ba->,得 0b >; a 、b 异号,B 错误;C 、将(1,0)代入函数表达式,得0a b c ++=,C 错误;D 、A 中结论0c >,C 中结论0a b c ++=,所以 0a b +<,D 错误; 故选A . 【点睛】本题考查二次函数的图象与各项系数间的关系,熟知二次函数的图象与各项字母系数之间关系是解答的关键.7.C解析:C 【分析】根据“左加右减、上加下减”的原则进行解答即可. 【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2; 再向下平移1个单位为:y=3(x+5)2-1. 故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8.D解析:D 【分析】根据二次函数的定义去列式求解计算即可. 【详解】 ∵函数21(1)23ay a x x +=-++ 是二次函数,∴a-1≠0,2a 1+=2, ∴a≠1,21a =, ∴1a =-, 故选D . 【点睛】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.9.B解析:B 【分析】首先根据函数图像分别判断出a 、b 、c 的符号判断结论①;再利用与x 轴交点的个数得出24b ac -的正负判断结论②;利用对称轴以及当2x =时函数值的正负判断结论③;利用当1x =-和2x =-时的函数值的正负来判断结论④. 【详解】结论①由抛物线开口方向向上可得0a >;对称轴在y 轴左侧可得a 、b 符号相同,即0b >;函数图像与y 轴交于负半轴,可得0c <;由此可知0abc <,故①错误.结论②由函数图像与x 轴有两个交点可得240b ac ->,故②正确.结论③由函数图像可知抛物线对称轴为1x =-,所以12b a-=-,整理可得2b a =;当2x =时,420a b c ++>,将2b a =代入420a b c ++>可得,80a c +>,故③错误. 结论④由函数图像可知当2x =-时,420a b c -+<,当1x =-时,0a b c -+<,所以532(42)()0a b c a b c a b c -+=-++-+<,故④正确.综上所述,本题正确结论为②④,共2个.故选B.【点睛】本题主要考查二次函数的系数与图像的关系,关键在利用函数中当1x =-、2x =-和1x =-时的函数值的大小来判断③④结论的对错.10.D解析:D【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误;B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误;C.2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误;D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确;故选:D .【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.B解析:B【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】解:①由开口可知:a <0,∴对称轴22b x a=-=-, ∴b<0,由抛物线与y 轴的交点可知:c<0,∴abc <0,故①正确;②∵对称轴22b x a =-=-,a <0, 在对称轴左边,y 随x 的增大而增大,∵8323-<-<-, ∴12y y <,故②错误;③当1x =-,20y ax bx c a b c =++=-+>,∵对称轴22b x a=-=-,抛物线与y 轴的交点C(0,-1), ∴4b a =,1c =-,∴410a a -->,解得:13a <-,故③错误;④∵1a =-,1c =-,∴44b a ==-,∴抛物线的解析式为()224123y x x x =---=-++, ∴顶点D 的坐标为(-2,3),解方程()2230x -++=得:23x =-±,∴23AB =,根据抛物线的对称性,BE=3,DE=3,∴DB=()223323+=,∴DB=AD=AB=23,∴ABD △是等边三角形.故④正确;故选:B .【点睛】本题考查了二次函数的图象与性质、二次函数解析式的求法、等边三角形的判定等知识,解题的关键是熟练掌握二次函数的图象与性质,属于中考常考题型.12.D解析:D【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-2(x-1)2+4向右平移3个单位,再向下平移2个单位长度后得到抛物线的解析式为:y=-2(x-1-3)2+4-2,即y=-2(x-4)2+2;故选:D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题13.①②③【分析】由抛物线的对称轴可判断①;由①可得出过点(﹣10)代入可得出c =﹣5a 代入化简即可判断②;根据二次函数的增减性知抛物线上点离对称轴水平距离越小函数值越大据此可判断③;由抛物线的图像的增 解析:①②③【分析】由抛物线的对称轴可判断①;由①可得出=4b a -,过点(﹣1,0),代入可得出c =﹣5a ,代入化简即可判断②;根据二次函数的增减性知抛物线上点离对称轴水平距离越小,函数值越大,据此可判断③;由抛物线的图像的增减性直接判断④.【详解】函数y =ax 2+bx +c (a ≠0)的对称轴2b x a =-, ∵ 对称轴2x =, ∴=22b a-, ∴=4b a -,∴ 4+=0a b ,故①正确;有图可知,a <0,∴=4b a -,∴ 2=8b a -,过点(﹣1,0),∴ a-b+c =0,∴ b=a+c ,即a+c=﹣4a ,∴ c =﹣5a ,∴24a +2b +3c =24a -8a -15a =a <0,故②正确;当x =0时,y =c ,∵A (﹣3,y 1),B (﹣0.5,y 2),C (3.5,y 3)三点都在抛物线上,点A 与2x =的水平距离为5,点B 与2x =的水平距离为2.5,点C 与2x =的水平距离为1.5,∵5>2.5>1.5,∴ 123y y y <<,故③正确;有图可知,当11y >-,y 随x 增大先增大后减小,故④不正确;综上,正确的有:①②③.故答案为:①②③.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.14.0【分析】先求出二次函数y =﹣(x ﹣k )2+k+1的图象平移后的顶点坐标再将它代入y =2x+1即可求出k 的值【详解】解:∵二次函数y =﹣(x ﹣k )2+k+1的顶点坐标为(kk+1)∴将y =﹣(x ﹣k解析:0【分析】先求出二次函数y =﹣(x ﹣k )2+k +1的图象平移后的顶点坐标,再将它代入y =2x +1,即可求出k 的值.【详解】解:∵二次函数y =﹣(x ﹣k )2+k +1的顶点坐标为(k ,k +1),∴将y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k +1,k +3).根据题意,得k +3=2(k +1)+1,解得k =0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y =−(x−k )2+k +1的图象平移后的顶点坐标是解题的关键.15.<【分析】把AB 两点坐标代入函数关系式再根据已知条件求出的值最后求出答案即可【详解】解:∵点A (﹣y1)B (y2)都在二次函数y =﹣x2+2x+m 的图像上∴====∴故答案为:<【点睛】本题考查了二【分析】把A ,B 两点坐标代入函数关系式,再根据已知条件求出21y y -的值,最后求出答案即可.【详解】解:∵点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上, ∴21y y -=224041404111()2[()2()]2021202120212021m m -+⨯+---+⨯-+ =2111(2)2(2)()202120212021--+⨯-+-222021+ =22412124()4()20212021202120212021-+-+-++ =402021> ∴12y y <故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,能选择适当的方法求解是解答此题的关键. 16.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2)【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解.【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-;对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =;② 当a b 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =;②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =;③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当a b 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即综上所述,当a b =时,1n =或0n =;当a b 时,1n =或2n =.∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2).【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式. 17.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022+=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 18.【分析】利用配方法将原抛物线解析式化为顶点式【详解】解:y=x2-4x+5=x2-4x+4+1∴y=(x-2)2+1故答案是:【点睛】此题主要考查了配方法将二次函数一般式化为顶点式掌握配方法是关键解析:()221x -+【分析】利用配方法将原抛物线解析式化为顶点式,【详解】解: y=x 2-4x+5=x 2-4x+4+1,∴y=(x-2)2+1,故答案是: ()221x -+.【点睛】此题主要考查了配方法将二次函数一般式化为顶点式,掌握配方法是关键.19.2【分析】设正方形的边长为a 则CFEC 均可用a 表示证明△ABE ∽△ECF 写出比例式找到y 与x 之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值.【详解】设正方形的边长为a ,则CF=a-y .∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF .又∠B=∠C ,∴△ABE ∽ECF , ∴BE FC AB EC =,x a y a a x-=-, 整理得:21y x x a a =-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3, ∴334a =, 解得:4a =, ∴22a x m ===. 故答案为:2.【点睛】 本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.20.3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(30)可得结论【详解】解:由表格得:二次函数的对称轴是直线x ==∵抛物线与x 轴一个交点为(−20)∴抛物线与x 轴另一个交点为(30)∴该二次解析:3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(3,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x =012+=12, ∵抛物线与x 轴一个交点为(−2,0),∴抛物线与x 轴另一个交点为(3,0), ∴该二次函数图象向左平移3个单位,图象经过原点;或该二次函数图象向右平移2个单位,图象经过原点.故答案为:3.【点睛】本题考查了二次函数图象与几何变换−平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.三、解答题21.(1)y =﹣(x ﹣1)2+4;(2)6;(3)存在,当P 31524⎛⎫ ⎪⎝⎭,时,△PBC 的面积最大,最大值为278. 【分析】(1)把A 的坐标代入抛物线解析式求得a 的值即可得解;(2)根据抛物线的性质可以得到CD 、OC 、OB 的值,再根据梯形面积的计算公式可以得到答案;(3)过点P 作y 轴的平行线,交直线BC 于点F ,交AB 于点E ,设P (m ,﹣2m +2m+3),则△PBC 的面积可以表示为m 的二次函数,最后根据二次函数的性质即可得到解答.【详解】解:(1)将A (﹣1,0)代入y =()214a x -+中,解得:a =﹣1,则抛物线解析式为y =()214x --+;(2)对于抛物线解析式y =()214x --+,令x =0,得到y =3,即OC =3,∵抛物线解析式为y =()214x --+的对称轴为直线x =1, ∴CD =1,∵A (﹣1,0),∴B (3,0),即OB =3则COBD S 梯形=1332+⨯()=6; (3)y =()221423x x x --+++=﹣.设直线BC 为(0)y px q p =+≠将B (3,0),C (0,3)代入直线BC 得:直线BC 的解析式为:y =﹣x+3.如图,过点P 作y 轴的平行线,交直线BC 于点F ,交AB 于点E ,设P (m ,﹣2m +2m+3),则F (m ,﹣m+3),∴PF =﹣2m +2m+3+m ﹣3=﹣2m +3m .∴PBC S =12PF•OB =12(﹣2m +3m )×3 =23327m 228--+() ∴当m=32时,△PBC 的面积最大,此时﹣2m +2m+3=2332322-+⨯+()=154, 即当P 31524(,)时,△PBC 的面积最大,最大值为278. 【点睛】 本题考查二次函数的综合应用,熟练掌握二次函数与一次函数解析式的求法、抛物线的性质及梯形和三角形面积的求法是解题关键.22.(1)()1,0-或()3,0;(2)6;(3)点P 的坐标为()17,3、()17,3、()0,3-、()2,3-.【分析】(1)令y=0,转化为一元二次方程,方程的根就是与x 轴交点的横坐标;(2)求出AB 的长度,OC 的长度,按公式计算即可;(3)利用面积公式,抛物线的解析式转化成一元二次方程求解即可.【详解】解:(1)当0y =时,2230x x --=,解得 11x =-,23x =,∴抛物线与x 轴的交点坐标为()1,0-或()3,0,故答案为:()1,0-或()3,0.(2)由(1)点()1,0A -,()3,0B ,()0,3C-, ∴()314AB =--=,3OC =, ∴14362ABC S =⨯⨯=△. (3)∵点()1,0A -,点()3,0B ,()222314y x x x =--=--,∴此抛物线有最小值,此时4y =-,()314AB =--=,∵6PAB S =△,抛物线上有一个动点P ,∴点P 的纵坐标的绝对值为6234⨯=, ∴2233x x --=或2233x x --=-, 解得,117x =,217x =,30x =,42x =,∴点P 的坐标为()17,3、()17,3-、()0,3-、()2,3-.【点睛】本题考查了二次函数与坐标轴的交点,抛物线上的内接三角形的面积,动点问题,熟练掌握性质,并能灵活运用是解题的关键.23.(1)当x=1时,y 1有最大值,最大值为3;(2)需要维护3.5小时才能保证系统全程正常运行.【分析】(1)根据函数图象,点A 是两段函数的顶点,其中01x 时,图象的解析式为213y x mx =-+,可知对称轴,从而根据122(3)b m x a =-=-=⨯-,可求得m 的值,则可得1y 的解析式,根据二次函数的性质可得答案.(2)由(1)可知,顶点(1,3)A ,设22(1)3y n x =-+,把(7,0)代入,求得n 的值,则可知2y 的解析式,分别令1 2.25y =,2 2.25y =,得到关于x 的方程,求得方程的解,再结合相应的取值范围即可得出答案.【详解】解:(1)122(3)b m x a =-=-=⨯-, 6m ∴=,2136y x x ∴=-+,∴当1x =时,1y 有最大值,最大值为:363-+=.(2)由(1)可知,顶点(1,3)A ,设22(1)3y n x =-+, 把(7,0)代入得:20(71)3n =-+,解得:112n =-, 221(1)312y x ∴=--+, 当1 2.25y =时,22.2536x x =-+,解得:1 1.5x =(舍),20.5x =;当2 2.25y =时,212.25(1)312x =--+, 解得:32x =-(舍),44x =.40.5 3.5-=(小时).∴需要维护3.5小时才能保证系统全程正常运行.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.24.(1)(1,0)A -,(3,0)B ;(2)2m =【分析】(1)把y=0代入,解方程即可;(2)求出顶点坐标,过C 作CD AB ⊥于D ,求出CD 即可.【详解】解:(1)2230mx mx m --=,∵0m >,方程两边同时除以m 得, 2230x x --=解得,13x =,21x =-∴A ,B 两点的坐标分别为:(1,0)A -,(3,0)B .(2)抛物线223(0)y mx mx m m =-->的顶点横坐标为:212m x m-=-=, 把x=1代入223y mx mx m =--得,y=-4m ,抛物线的顶点C 的坐标为:(1,4)C m -由(1)得,AB=4,过C 作CD AB ⊥于D ,∵ABC 为等边三角形,∴AD=2,AC=4, ∴22224223CD AC AD =-=-=∵点C 在第四象限, ∴43m =∴3m =. 【点睛】 本题考查求二次函数与x 轴交点,等边三角形的性质,解题关键是熟练的解一元二次方程,根据已知条件,找到坐标与线段的关系.25.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++; (2)列表:x… -3 -2 -1 0 1 … y… 0 3 4 3 0 … 0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键. 26.(1)23333y x x =++;(2)33)()122,0N +,()222,0N ,()342,0N -,()442,0N【分析】(1)直接将()()1,0,3,0A B -代入解析式,运用待定系数法求解即可;(2)由题意可知ABC 为等腰三角形,即:AC BC =,作BE AC ⊥于E 点,交对称轴于P 点,将E 点关于对称轴对称至BC 上D 点,此时PB PD +最小,即为BE 的长,然后利用等面积法求解BE 即可; (3)设2333,322M m m ⎛-++ ⎝⎭,(),0N n ,当BM 和BD 分别为对角线时,进行分类讨论即可.【详解】(1)将()()1,0,3,0A B -代入解析式得: 3029330b c b c ⎧--+=⎪⎪⎨⎪-++=⎪⎩,解得:333b c ⎧=⎪⎨=⎪⎩,∴抛物线的解析式为:2333322y x x =-++; (2)由抛物线的对称性可知,ABC 为等腰三角形,即:AC BC =,如图所示,作BE AC ⊥于E 点,交对称轴于P 点,此时,将E 点关于对称轴对称至BC 上D 点,∴此时PB PD +最小,即为:BE 的长,∵()()1,0,3,0A B -,∴4AB =,由抛物线解析式可得:顶点()1,23C , ∴114234322ABC C S AB y ==⨯⨯=△, 由A 、C 坐标可得4AC =, ∴由1·2ABC S AC BE =,解得:23BE =, ∴PB PD +的最小值为23;(3)设2333,322M m m ⎛-++ ⎝⎭,(),0N n ,由(2)可知,4AB =,4AC BC ==,∴△ABC 为等边三角形,在(2)的条件下,D 为BC 的中点,则D 的坐标为(23,,①当BM 为对角线时,如图所示,根据平行四边形四个顶点的相对位置关系有:2323333322m n m m +=+⎧⎪⎨-++=⎪⎩,解得:1222m n ⎧=+⎪⎨=+⎪⎩或1222m n ⎧=-⎪⎨=-⎪⎩, 即:()122,0N +,()222,0N -;②当BD 为对角线时,如图所示,根据平行四边形四个顶点的相对位置关系有:2533333m n m m +=⎧⎪⎨-++=⎪⎩,解得:1242m n ⎧=+⎪⎨=-⎪⎩或1242m n ⎧=-⎪⎨=+⎪⎩, 即:()342,0N -,()442,0N +;综上所述,N 的坐标为()122,0N +,()222,0N -,()342,0N ,()442,0N +.【点睛】本题考查二次函数与几何综合,准确求取解析式并熟练运用平行四边形的性质进行合理的分类讨论是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配套K12学习(小初高) 配套K12学习(小初高) 第二章二次函数(1) 一、夯实基础 1.已知抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,-2),那么该抛物线有( ) A.最小值-2 B.最大值-2 C.最小值3 D.最大值3 2.将二次函数y=x2-2x+3,化为y=(x-h)2+k的形式,结果为( ) A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( ) A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3 4.二次函数y=ax2+bx+c的图象如图所示,则下列结论中,错误的是( ) A.a<0 B.b>0 C.c>0 D.b2-4ac>0
5.对于二次函数y=ax2+bx+c(a≠0),我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数y=x2-2x+99的零点的个数为( ) A.0 B.1 C.2 D.无法确定 6.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 配套K12学习(小初高) 配套K12学习(小初高) 7.若抛物线y=-mx2+3mx+6m+2经过点(1,0),那么m的值为__ __. 8.抛物线y=2x2-bx+3的对称轴是直线x=1,则b的值为__ __.
9.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=1100v2,一辆小汽车速度为100 km/h,在前方80 m处停放一辆故障车,此时刹车__ __有危险.(填“会”或“不会”)
二、能力提升 10.对于抛物线y=-13(x+2)2-5,下列结论:①抛物线的开口向下;②对称轴为直线x=2;③顶点坐标为(-2,-5);④x>2时,y随x的增大而减小.其中正确结论的个数为( ) A.1 B.2 C.3 D.4 11.(2015·南昌)已知抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴( ) A.只能是x=-1 B.可能是y轴 C.可能在y轴右侧且在直线x=2的左侧 D.可能在y轴左侧且在直线x=-2的右侧 12.某幢建筑物,从10 m高的窗口A处用水管向外喷水,喷出的水成抛物线形状(抛物
线所在平面与地面垂直),如果抛物线的最高点M离墙1 m,离地面403 m(如图),则水流落地点B离墙的距离OB是( ) A.2 m B.3 m C.4 m D.5 m
13.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )
14.(2015·龙东地区)抛物线y =ax2+bx+2经过点(-2,3),则3b-6a=__ _. 配套K12学习(小初高) 配套K12学习(小初高) 15.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是__ _. 16.某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表: x 0 1 2 3 4
y 3 0 -2 0 3 经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:__ __.
三、课外拓展 17.已知二次函数的图象的顶点是(-1,2),且经过点(0,1). (1)求这个二次函数的关系式,并画出它的图象; (2)判断点(-3,-2)是否在这个二次函数的图象上.
18.已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). (1)求二次函数的解析式; (2)要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移____个单位.
19.如图,已知二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点. (1)求这个二次函数的解析式; (2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积. 配套K12学习(小初高)
配套K12学习(小初高) 20.(1)抛物线m1:y1=a1x2+b1x+c1中,函数y1与自变量x之间的部分对应值如表: x … -2 -1 1 2 4 5 … y1 … -5 0 4 3 -5 -12 …
设抛物线m1的顶点为P,与y轴的交点为C,则点P的坐标为___,点C的坐标为____. (2)将抛物线m1沿x轴翻折,得到抛物线m2:y2=a2x2+b2x+c2,则当x=-3时,y2=_ _. (3)在(1)的条件下,将抛物线m1沿水平方向平移,得到抛物线m3.设抛物线m1与x轴交于A,B两点(点A在点B的左侧),抛物线m3与x轴交于M,N两点(点M在点N的左侧).过点C作平行于x轴的直线,交抛物线m3于点K.问:是否存在以A,C,K,M为顶点的四边形是菱形的情形?若存在,请求出点K的坐标;若不存在,请说明理由.
四、中考链接 1.(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= . 配套K12学习(小初高)
配套K12学习(小初高) 2.(2016·黑龙江哈尔滨·3分)二次函数y=2(x﹣3)2﹣4的最小值为 . 3.(2016河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是 . 10. (2016·四川泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点. (1)求出抛物线的解析式; (2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由; (3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
【答案】 1.A 2.D 3.C 4.A 6.D 配套K12学习(小初高) 配套K12学习(小初高) 7. __-14__. 8. __4__. 9. _会__ 10. C 11. D 12. B 13. B
14. _-32__. 15. __-3<x<1__. 16.__y=x2-4x+3__. 17.解:(1)y=-(x+1)2+2,画图象略 (2)将x=-3代入,得y=-(-3+1)2+2=-2,∴点(-3,-2)在抛物线y=-(x+1)2+2上 18.解:(1)y=x2-2x-3 (2)4
19.解:(1)y=-12x2+4x-6 (2)配方得y=-12(x-4)2+2,∴对称轴为x=4,C(4,
0),∴AC=2,OB=6,S△ABC=12AC·OB=6 20.点P的坐标为__(1,4)__,点C的坐标为__(0,3)__. (2) __12__. (3)解:存在.理由:当y1=0时,-x2+2x+3=0,解得x1=-1,x2=3,则A(-1,0),B(3,0),∵抛物线m1沿水平方向平移,得到抛物线m3,∴CK∥AM,CK=AM,∴四边形AMKC为平行四边形,当CA=CK时,四边形AMKC为菱形,而AC=12+32=10,则CK=10.当抛物线m1沿水平方向向右平移10个单位,此时K(10,3);当抛物线m1沿水平方向向左平移10个单位,此时K(-10,3) 中考链接: 1.解:∵y=﹣x(x﹣2)(0≤x≤2), ∴配方可得y=﹣(x﹣1)2+1(0≤x≤2), ∴顶点坐标为(1,1), ∴A1坐标为(2,0) ∵C2由C1旋转得到, ∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0); 照此类推可得,C3顶点坐标为(5,1),A3(6,0); 配套K12学习(小初高) 配套K12学习(小初高) C4顶点坐标为(7,﹣1),A4(8,0); C5顶点坐标为(9,1),A5(10,0); C6顶点坐标为(11,﹣1),A6(12,0); ∴m=﹣1. 故答案为:﹣1. 2.解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4), 所以最小值为﹣4. 故答案为:﹣4. 3.解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点, ∴代入得:, 解得:b=2,c=3, ∴y=﹣x2+2x+3 =﹣(x﹣1)2+4, 顶点坐标为(1,4), 故答案为:(1,4). 4.解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,
∴,解得, ∴抛物线解析式为y=﹣x2+4x; (2)存在三个点满足题意,理由如下: 当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,
∵A(1,3), ∴D坐标为(1,0);