求轨迹方程的常用方法(例题及变式)

合集下载

求轨迹方程方法总结

求轨迹方程方法总结

高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x PB PA =⋅,则点P 的轨迹为〔 〕A .圆B .椭圆C .双曲线D .抛物线解:),3(),,2(y x PB y x PA --=---= ,2)3)(2(y x x PB PA +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.例1已知直角坐标平面上点Q 〔2,0〕和圆C :122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数()0>λλ〔如图〕,求动点M 的轨迹方程,说明它表示什么曲线.【解析】:设M 〔x ,y 〕,直线MN 切圆C 于N ,则有λ=MQMN ,即λ=-MQONMO 22,λ=+--+2222)2(1y x y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程.假设1=λ,方程化为45=x ,它表示过点)0,45(和x 轴垂直的一条直线;假设λ≠1,方程化为2222222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,13122-+λλ为半径的圆.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线〔如圆、椭圆、双曲线、抛物线等〕的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例 2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原Cy点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2,即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 例3 假设动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是 〔A 〕012122=+-x y 〔B 〕012122=-+x y 〔C 〕082=+x y 〔D 〕082=-x y【解析】:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心〔-2,0〕的距离等于它到定直线x =4的距离,故所求轨迹是以〔-2,0〕为焦点,直线x =4为准线的抛物线,并且p =6,顶点是〔1,0〕,开口向左,所以方程是)1(122--=x y .选〔B 〕. 例4 一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为 〔A 〕抛物线 〔B 〕圆 〔C 〕双曲线的一支 〔D 〕椭圆【解析】:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选〔C 〕.三、点差法将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。

轨迹方程的求法.

轨迹方程的求法.

3.定义法:
1.用几何方法论证动点的轨迹是某种圆锥曲线. 2.根据已知坐标判定该曲线的方程是标准方程. 3. 算出标准方程中所需的数据. 4. 写出方程,注意范围.
定义法求轨迹
如图,在△ABC中边BC=a,若三内角满足 sinC- sinB=(1/2) sinA,求点 A的轨迹方程。
解:以BC所在的直线为x轴,BC中 点为坐标原点,建立如图所示的直 角坐标系,则 B(-a/2 , 0) , C(a/2 , 0),设A(x,y)则
轨迹方程的求法
1.直接法
2.代入法
3.定义法 4.参数法
5.点差法
1.直接法
①建立合适的坐标系 ②设轨迹上任一点M(x,y)
③找出M所满足的几何条件 ④将几何条件转化为代数式
⑤化简整理
⑥证明或检验
直接法求轨迹 解:易知已知动直线过定点
y
A(0,1)
C O B
(0,1),该点也在已知圆上, 故A、B中有一点为(0,1), 不妨设A (0,1)
练习:
设定点M(-3,4),动点N在圆x2+y2=4上运动, 以OM、ON为两边做平行四边形MONP,求点 P的轨迹。
已知椭圆b2x2+a2y2=a2b2,直线L:x+2y-2=0交 椭圆于A、B两点, AB 5 ,且弦AB的中 点为(m,1/2),求椭圆的方程。

x
∵OC⊥AC ∴C在以OA为直径的 圆:x2+(y-0.5)2=0.25上
又依题意知直线AB的斜率必存在,故x≠0 ∴ x2+(y-0.5)2=0.25(x≠0)即为所求
2.代入法
当动点M(x,y)的坐标x,y间关系难以建立,
而动点M(从动点)又随着已知方程的曲线上的

求轨迹方程的常用方法

求轨迹方程的常用方法

求轨迹方程的常用方法重点: 掌握常用求轨迹方法难点:轨迹的定型及其纯粹性和完备性的讨论 知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

与圆有关的轨迹方程的求法[精选.]

与圆有关的轨迹方程的求法[精选.]

与圆有关的轨迹方程的求法若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:⎩⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α),(),(y x h y x g ②代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0.例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴31||||==OQ OP QA PQ , ∴Q 分P A 的比为31. ∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=y y x x y y y x x x 3413443311031)1(43311313000000即又因202y x +=1,且y 0>0,∴19164391622=+⎪⎭⎫ ⎝⎛-y x .∴Q 的轨迹方程为)0(169)43(22>=+-y y x . 例3、已知圆,422=+yx过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .4)1(22=+-y x B .)10(4)1(22<≤=+-x y x C .4)2(22=+-y x D .)10(4)2(22<≤=+-x y x变式练习1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且MB AM 31=,则点M 的轨迹方程是解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(31),(11y x y y x x --=--,∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=yy x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34()134(22=+-y x ,即169)43(22=+-y x ,∴点M 的轨迹方程是169)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴31==OB OA MB AM , ∴MB AM 31=.由变式1可得点M 的轨迹方程是169)43(22=+-y x .3:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2,2(yx ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .4、圆9)1()2(22=++-y x 的弦长为2,则弦的中点的轨迹方程是5、已知半径为1的动圆与圆16)7()5(22=++-y x 相切,则动圆圆心的轨迹方程是( ) A.25)7()5(22=++-y x B. 17)7()5(22=++-y x 或15)7()5(22=++-y x C. 9)7()5(22=++-y x D. 25)7()5(22=++-y x 或9)7()5(22=++-y x6.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 97:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH , 则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥, 所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.9. 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AMOM =+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+.又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+.这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q , 由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ① βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+. 说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.10、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .解:设),(y x P .∵APB ∠=600,∴OPA ∠=300.∵AP OA ⊥,∴22==OA OP ,∴222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.解:设动点P 的坐标为),(y x P .由)0(>=a a PBPA ,得a yc x y c x =+-++2222)()(,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .当1≠a 时,化简得01)1(222222=+-+++c x a a c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,122-a ac 为半径的圆; 当1=a 时,P 点的轨迹是y 轴.11、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.最新文件 仅供参考 已改成word 文本 。

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。

求曲线轨迹方程的方法

求曲线轨迹方程的方法

四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,

解析几何题型方法归纳(配例题)

解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。

轨迹方程的求法

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法(待定系数法):如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

此方法又称为待定系数法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

6.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求轨迹方程的几种常用方法


4 1


E

i

求 与 定圆 (

,
) 2

+

,

4
外切

解 ①
戈 2 +



③ 便 可 求得 刀
:

,
且 经效点 A (
2
,
) 的 动 圆圆 心 的 轨 迹方 程 0
,
从 而 求 得 圆的方 程是
夕2

解 如 图 设 动 圆圆 心 为 M ( “ 的 : 设条 件
10
由题
4
x 一
10 夕 + 1 6

0
x
2
例 丫4
3
一 双 曲线 和 椭 圆 2 5
,
+
9梦

l
声卜
l母 T I + I T 对 i = 2 + I M 通 l
;
有 为 公共 的焦 点
F 士 10x
=
且 双 曲线 的 渐 近 线 方 程 为
即 召 行二玄江 不 万` 二
2
+
百 万 不叮 牙不百 了七 仍
o
,
求 此 双 曲线 的方程

已 知 曲线 上 运 动 的 动 点 尸 (
x
,

,
,
的 随 另一 在

2
=
(专)


(去 )
2

设 抛 物线 为

\
,
’ .
对 于 双 曲线 应 有

ZP

求点轨迹方程的方法

求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法(相关点法):所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。

常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p 。

若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程。

【题型一】直接法求轨迹【典例分析】设点(A,B ,M 为动点,已知直线AM 与直线BM 的斜率之积为定值13,点M 的轨迹是()A .()22109x y y -=≠B .()22109y x y -=≠C .()22103x y y -=≠D .()22103y x y -=≠【详解】解:设动点(),M x y,则x ≠,则MA k =MB k =,(x ≠,直线AM 与直线BM 的斜率之积为定值13,13=,化简可得,()22103x y y -=≠,故点M 的轨迹方程为()22103x y y -=≠.故选:C.例1:设一动点P 到直线:3l x =的距离到它到点()1,0A的距离之比为3,则动点P 的轨迹方程是()A.22132x y +=B.22132x y -= C.()224136x y --= D.22123x y +=解:设(),P x y33P ld PA-∴=33x ∴-=()()222331x x y ⇒-=-+2221626x x y ⇒--=-()()22224246136x y x y -⇒--=⇒-=答案:C 【变式演练】1.若两定点A ,B 的距离为3,动点M 满足2MA MB =,则M 点的轨迹围成区域的面积为()A .πB .2πC .3πD .4π【答案】D 【详解】以点A 为坐标原点,射线AB 为x 轴的非负半轴建立直角坐标系,如图,设点(,)Mx y=22(4)4x y -+=,于是得点M 的轨迹是以点(4,0)为圆心,2为半径的圆,其面积为4π,所以M 点的轨迹围成区域的面积为4π.2.已知点(0,1)F ,直线:1l y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP PQ ⋅=⋅,则动点P 的轨迹C 的方程为()A .24x y=B .23y x=C .22x y=D .24y x=【答案】A 【详解】设点(,)P x y ,则(,1)Q x -,因为(0,1)F 且QP QF FP PQ ⋅=⋅,所以(0,1)(,2)(,1)(,2)y x x y x +⋅-=-⋅-,即22(1)2(1)y x y +=--,整理得24x y =,所以动点P 的轨迹C 的方程为24x y =.故选:A 3.已知M (4,0),N (1,0),若动点P 满足MN →·MP →=6|NP →|.(1)求动点P 的轨迹C 的方程;解(1)设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ),由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,即x 24+y 23=1.∴点P 的轨迹方程是椭圆C :x 24+y 23=1.【题型二】相关点代入法【典例分析】已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.【解析】解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴.③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.例3:已知F 是抛物线24x y =的焦点,P 是该抛物线上的动点,则线段PF 中点M 的轨迹方程是()A.212x y =-B.21216x y =-C.222x y =- D.221x y =-思路:依题意可得()0,1F ,(),M x y ,()00,P x y ,则有0000221212x x x x y y y y ⎧=⎪=⎧⎪⇒⎨⎨+=-⎩⎪=⎪⎩,因为()00,P x y 自身有轨迹方程,为:204x y =,将00221x xy y =⎧⎨=-⎩代入可得关于,x y 的方程,即M 的轨迹方程:()()22242121x y x y =-⇒=-答案:D例4:已知F 是抛物线24y x =上的焦点,P 是抛物线上的一个动点,若动点M 满足2FP FM =,则M 的轨迹方程是__________解:由抛物线24y x =可得:()1,0F 设()()00,,,M x y P x y ()()001,,1,FP x y FM x y ∴=-=-2FP FM = ()00002112122x x x x y y y y =--=-⎧⎧∴⇒⎨⎨==⎩⎩①P 在24y x =上2004y x ∴=,将①代入可得:()()22421y x =-,即221y x =-【变式演练】1.已知抛物线24C y x =:的焦点为F .(1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,,由2AP FA =- 得( )2(1 )A A A A x x y y x y --=--,,.即2(1)2A A A Ax x x y y y -=--⎧⎨-=-⎩解得2A A x x y y=-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.2.已知圆()2221:0C x y r r +=>与直线01:2l y x =+相切,点A 为圆1C 上一动点,AN x ⊥轴于点N ,且动点M满足()22OM AM ON +=-,设动点M 的轨迹为曲线C .(1)求动点M 的轨迹曲线C 的方程;【答案】(1)试题解析:(I)设动点,由于轴于点又圆与直线即相切,∴圆由题意,,得即将代入,得曲线的方程为3.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.【解析】解设M (x 0,0),P (0,y 0),N (x ,y ),∵PM →⊥PF →,PM →=(x 0,-y 0),PF →=(1,-y 0),∴(x 0,-y 0)·(1,-y 0)=0,∴x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),-x 0=-2x 0=2y 0,0=-x 0=12y.∴-x +y 24=0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .【题型三】定义法【典例分析】已知动圆M 过定点(4,0)P -,且与圆2280C x y x +-=:相外切,求动圆圆心M 的轨迹方程.【解析】依题意,4MC MP -=,说明点M 到定点C P 、的距离的差为定值,∴动点M 的轨迹是双曲线的一支,∵24a =,∴2a =.∵4c =,∴22212b c a =-=∴动圆圆心M 的轨迹方程是221(2)412x y x -=≤-.例6:若动圆过定点()3,0A -且和定圆()22:34C x y -+=外切,则动圆圆心P 的轨迹方程是___________思路:定圆的圆心为()3,0C ,观察到恰好与()3,0A -关于原点对称,所以考虑P 点轨迹是否为椭圆或双曲线,设动圆P 的半径为r ,则有PA r =,由两圆外切可得2PC r =+,所以2PC PA -=,即距离差为定值,所以判断出P 的轨迹为双曲线的左支,则1,3a c ==,解得2228b c a =-=,所以轨迹方程为()22118y x x -=≤-【变式演练】已知两个定圆O1:(x+2)2+y 2=1:和O 2(x-2)2+y 2=4,它们的半径分别是1和2,.动圆M 与圆O 1内切,又与圆O 2外切,求动圆圆心M 的轨迹方程,【解析】解由|O1O2|=4,得O1(-2,0)、O2(2,0).设动圆M 的半径为r,则由动圆M 与圆O1内切,有|MO1|=r-1;由动圆M 与圆O2外切,有|MO2|=r+2.∴|MO2|-|MO1|=3.∴点M 的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支.∴a=32,c=2,∴b2=c2-a2=74.∴点M 的轨迹方程为4x29-4y27=1(x≤-32).2、已知点⎪⎭⎫⎝⎛0,41F ,直线41:-=x l ,点B 是直线l 上动点,若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是()A 、双曲线B 、抛物线C 、椭圆D 、圆【答案】B【解析】由题意知MF MB =,点M 的轨迹为抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求轨迹方程的常用方法:
题型一 直接法
此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。

例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。

解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈
AN AM ⊥
∴1-=⋅AN AM k k ∴12
0322230-=--⋅--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2
3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。

变式1
已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。

(1) 求动点M 的轨迹C 的方程;
(2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。

若A 是PB 的中点,求直线m 的斜
率。

题型二 定义法
圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。

例2 动圆M 过定点)0,4(-P ,且与圆08:2
2=-+x y x C 相切,求动圆圆心M 的轨迹方程。

解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。

42=a
∴2=a ,4=c ∴1222=-=a c b 故动圆圆心M 的轨迹方程为112
42
2=-y x 变式2
在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,
求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为
重心,则有239263
BM CM +=⨯=. M ∴点的轨迹是以B C ,为焦点的椭圆,
其中1213c a ==,.225b a c =-=∴.
∴所求ABC △的重心的轨迹方程为22
1(0)16925
x y y +=≠ 题型三 相关点法
此法的特点是动点),(y x M 的坐标取决于已知曲线C 上的点)','(y x 的坐标,可先用y x ,来表示','y x ,再代入曲线C 的方程0),(=y x f ,即得点M 的轨迹方程。

例3 如图,从双曲线122=-y x 上一点Q 引直线2=+y x 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程
分析:从题意看动点P 的相关点是Q ,Q 在双曲线上运动,所以本题适合用相关点法。

解:设动点P 的坐标为),(y x ,点Q 的坐标为),(11y x ,则点N 的坐标为)2,2(11y y x x -- N 在直线2=+y x 上,
∴22211=-+-y y x x …①
又 P Q 垂直于直线2=+y x ,
∴11
1=--x x y y ,即011=-+-x y y x …② 由①②解得⎪⎪⎩
⎪⎪⎨⎧-+=-+=123211212311y x y y x x …③ 又点Q 在双曲线122=-y x 上,∴12
121=-y x …④
③代入④,得动点P 的轨迹方程为01222222=-+--y x y x
变式3已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.
解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩
,,00323x x y y =+⎧⎨=⎩, ①∴. ②
又00()A x y ,∵在抛物线2y x =上,200
y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠, 即所求曲线方程是2434(0)3
y x x y =++≠.
题型四 参数法
选取适当的参数,分别用参数表示动点坐标y x ,,得出轨迹的参数方程,消去参数,即得其普通方程,选参数时必须首先充分考虑到制约动点的各种因素,然后在选取合适的参数,因为参数不同,会导致运算量的不同,常见的参数有截距、角度、斜率、线段长度等。

例4已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',
满足4OP
OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系. 设点(0)(0)P t t ≠,,
则由题意,得40P t ⎛⎫' ⎪⎝⎭
,. 由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta
=+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.
这就是所求点M 的轨迹方程.
变式4设椭圆方程为142
2
=+y x ,过点)1,0(M 的直线l 交椭圆于点B A ,,O 是坐标原点,l 上的动点P 满足)(21+=,点N 的坐标为)2
1,21(,当l 绕点N 旋转时,求: (1)动点P 的轨迹方程;(2)||的最小值与最大值.
分析:(1)设出直线l 的方程,与椭圆方程联立,求出2121,y y x x ++,进而表示出点P 坐
标,用消参法求轨迹方程;(2)将||表示成变量x 的二次函数。

解:(1)法一:直线l 过点)1,0(M ,当l 的斜率存在时,设其斜率为k ,则l 的方程为1+=kx y 。

设),(11y x A ,),(22y x B ,由题设可列方程为
⎪⎩
⎪⎨⎧=++=1412
2y x kx y 将①代入②并化简得:032)4(2
2=-++kx x k , 所以⎪⎪⎩
⎪⎪⎨⎧+=++-=+2212
2148
42k y y k k x x 于是)(21+=)2,2(2121y y x x ++=)44,4(22k
k k ++-= 设点P 的坐标为),(y x ,则
⎪⎪⎩
⎪⎪⎨⎧+=+-=22
444k y k k x 消去参数k 得042
2=-+y y x …③
当直线l 的斜率不存在时,B A ,的中点坐标为原点)0,0(,也满足方程③,
所以点P 的轨迹方程为0422=-+y y x 。

法二:设点P 的坐标为),(y x ,因),(11y x A ,),(22y x B 在椭圆上,所以 ⎪⎪⎩
⎪⎪⎨⎧=+=+141422222121y x y x ④—⑤得:0)(4
122212
221=-+-y y x x 所以0))((41))((21212121=-++-+y y y y x x x x ① ② ④ ⑤
当21x x ≠时,有0)(412
1212121=--+++x x y y y y x x …⑥ 并且⎪⎪⎪⎩
⎪⎪⎪⎨⎧--=-+=+=21212121122x x y y x y y y y x x x …⑦ 将⑦代入⑥并整理得042
2=-+y y x …⑧
当21x x =时,点B A ,的坐标分别为)2,0(、)2,0(-, 这时点P 的坐标为)0,0(,也满足⑧,所以点P 的轨迹方程为14
1
)21(1612
2
=-+y x 。

(2)由点P 的轨迹方程知1612≤x ,即4
141≤≤-x 所以222)21()21(||-+-=y x NP 22441)21(x x -+-=12
7)61(32++-=x , 故当41=x 时,||NP 取得最小值,最小值为41; 故当6
1-
=x 时,||NP 取得最小值,最小值为621;。

相关文档
最新文档