锅炉给水除氧知识及除氧器工作原理
除氧器的除氧原理

除氧器的除氧原理
除氧器是一种常用的设备,可以去除液体中的溶解氧。
它的除氧原理主要是利用物理或化学方法将氧气从液体中除去。
物理除氧是通过利用氧气在真空条件下的溶解特性来实现的。
当液体进入除氧器后,通过减压操作降低液体中氧气的溶解度,使氧气从液体中脱离出来。
这种方法适用于液体中的氧气溶解度较高的情况。
化学除氧主要是利用一些化学剂或催化剂,将氧气与其发生化学反应,从而将氧气转化为其他物质,使其从液体中除去。
常见的化学除氧剂包括亚硫酸钠、硫酸亚铁等,它们可以与氧气发生还原反应,将氧气转化为无害的氧化物或气体,从而达到除氧的目的。
除氧器在许多工业领域中被广泛应用。
它可以用于锅炉给水、发电厂的冷却系统、制药工艺中的溶氧控制等。
除氧器的使用可以有效减少氧气对设备和管道的腐蚀,提高工业生产的安全性和效率。
除氧器原理

一、除氧器是什么?——除去水中溶解氧的密闭容器。
注解:水——指锅炉给水,即进入锅炉的水;溶解氧——以分子形式存在于水中的氧气,即氧分子O2;密闭容器——压力容器,一般为低压。
二、为什么要对锅炉给水进行除氧?——锅炉水中的溶解氧,和炉体金属铁组成腐蚀电池,铁是阳极,失去电子成为亚铁离子,氧为阴极进行还原,溶解氧的这种阴极去极化的作用,造成对锅炉铁的腐蚀,此外氧还会把溶于水的氢氧化铁沉淀,使亚铁离子浓度降低,从而使腐蚀加剧。
当水中含有溶解氧时,造成对炉体的腐蚀,随着含氧浓度的增加,腐蚀如图,进入锅炉的给水经过加热成为高温高压水蒸汽,高温高压水蒸汽推动汽轮机作功,从而带动发电机发电;作功后的蒸汽(称为乏汽)进入凝汽器被凝结成水(凝结水);凝结水经过低压加热器加热后进入除氧器;经过除氧后的凝结水进入高压加热器,进一步提高水温,然后进入锅炉,从而完成一个工质循环。
这里工质当然是水及水蒸汽。
四、除氧器为什么通常都很大?——当某种原因上述循环中断而锅炉停机时,为了使锅炉有足够的时间冷却,需要继续向锅炉进水,这部分水从何而来呢?只能是存储在某个容器中,高低压加热器作为换热设备不具备存储功能,所以这个储水功能有除氧器承担,这就是为什么除氧器通常都很大的原因之一。
五、如图,进水含氧量50ppb,出水含氧量5ppb,问其余45ppb哪儿去了?显然它只能被排出容器外。
将溶解氧排出容器外的装置称为排汽装置。
由此可见,排汽装置是否正确合理,是决定出水含氧量是否合格的主要因素之一。
简单地说,本来需要除去45ppb的溶解氧,因排汽装置不合理,只排出了30ppb,于是剩下的20ppb重新溶入水中,出水含氧量必然超标。
六、标准排汽装置施托克内置式除氧器标准排汽装置以下为错误的排汽装置。
锅炉除氧的方法

锅炉除氧的方法
1. 机械除氧法:利用静态或动态除氧器通过气体交换的方式将水中的气体去除。
2. 热力除氧法:在锅炉中加热水并减少压力,使水中的气体脱离水变成气态,然后通过冷却和减压的过程将气体排出。
3. 化学除氧法:通过添加化学脱氧剂并加热水,使氧气和其他气体被化学吸附,然后通过过滤和排放将水中的气体去除。
4. 膜分离除氧法:使用专门的膜过滤系统,将水分离成难以穿透的分子和液体,然后排放气体。
5. 超声波除氧法:通过超声波的震动作用,将水中的气泡震散,并通过过滤和排放将气体去除。
除氧器的工作原理

除氧器的工作原理除氧器是一种用于去除水中溶解氧的设备,其工作原理基于氧气和水之间的气体交换过程。
本文将详细介绍除氧器的工作原理,包括其结构和工作过程。
一、除氧器的结构除氧器通常由以下几部份组成:1. 气体进口:用于引入气体,通常是空气或者纯氧气。
2. 水进口:用于引入水,通常是含有溶解氧的水。
3. 气液接触器:用于将气体和水进行接触,以实现气体交换。
4. 气体出口:用于排出含有溶解氧的气体。
5. 水出口:用于排出去除了溶解氧的水。
二、除氧器的工作过程除氧器的工作过程可以分为以下几个步骤:1. 气体进入:气体进口通常连接到一个气体供应系统,将气体引入除氧器中。
气体可以是空气或者纯氧气,取决于具体的应用需求。
2. 水进入:水进口通常连接到一个水源,将含有溶解氧的水引入除氧器中。
水通过进入除氧器的气液接触器与气体进行接触。
3. 气液接触:在气液接触器中,气体和水进行接触,并发生气体交换。
气体中的氧气会从气体相转移到水相中,从而降低水中的溶解氧浓度。
4. 气体排出:经过气液接触后,含有较低溶解氧浓度的气体通过气体出口排出除氧器。
5. 水排出:经过气液接触后,除去了溶解氧的水通过水出口排出除氧器。
三、除氧器的原理除氧器的工作原理基于气体和水之间的气体交换过程。
当气体与水接触时,氧气份子会从气体相转移到水相中。
这是由于氧气份子在气体和水中的溶解度不同,氧气份子在水中的溶解度较高。
气体与水之间的气体交换过程遵循亨利定律,即溶解度与气体分压成正比。
当气体与水接触时,氧气份子会从气体相向水相扩散,直到氧气在两相之间达到平衡。
在这个过程中,氧气份子会从气体相向水相转移,从而降低水中的溶解氧浓度。
除氧器通过增大气液接触面积,提高气体与水之间的接触效率,从而加速气体交换过程。
常见的气液接触器结构包括气泡塔、喷淋塔和膜接触器等。
这些结构能够将气体和水进行充分的接触,使氧气份子更容易从气体相向水相转移。
除氧器的工作原理使得溶解氧的浓度在水中逐渐降低,从而实现了去除水中溶解氧的目的。
除氧给水系统

1100t/h蝶型stork喷嘴
喷嘴的作用
喷嘴的作用在于使凝结水形成适当的水膜,以获得最佳的水滴,既增大水与蒸汽的接触表面积,又缩短了气体离析的路径。
除氧器布置有喷头,由于喷头弧形圆盘的调节作用,当机组负荷大时,喷头内外压差增大,弧形圆盘开度亦增大,流量随之增大。当机组负荷小时,喷头压差降低,弧形圆盘开度亦减少,流量随之减少。使喷出的水膜始终保持稳定的形态,以适应机组滑压运行。
过热蒸汽冷却段是利用从汽轮机抽出的过热蒸汽的一部分显热来提高给水温度的;它位于给水出口流程侧,并有包壳板密闭。采用过热蒸汽冷却段可提高离开加热器的给水温度,使它接近或略超过该抽汽压力下的饱和温度。
01
从进口接管进入的过热蒸汽在一组隔板的导向下以适当的线速度和质量速度均匀地流过管子,并使蒸汽保留有足够的过热度以保证蒸汽离开该段时呈干燥状态,这样,当蒸汽离开该段进入凝结段时,可防止湿蒸汽冲蚀和水蚀的损害。
给水泵的出口母管通过高加组的进口三通阀进入高加组,高加组出口设有出口电动门,出口电动门与进口三通阀一起控制高加组的投切。高加组进口三通阀上设有注水门 。
高加组由三台高压加热器组成,各高加之间只有给水管道相连,中间不设阀门 。
每台高加的水侧出口管道上设有安全门 。
各高加的水侧进口管道以及高加组出口电动门前后都设有放水门 。
STEP5
STEP4
STEP3
STEP2
STEP1
按高加投入检查卡恢复系统完毕,确认各阀门位置正确。
开启高加注水门,以不大于55℃/h的温升率向高加注水,加热器水侧放气阀见连续水后关闭。
高加全压后关闭注水门,检查水压不下降;关闭高加疏水门检查高加水位计无水位指示,确认高加水侧无泄漏。
缓慢开启高加出口电动门至全开。
除氧器原理

含氧量
喷嘴压降
安全门动作值
制造厂家
单位
t/h
MPa
℃
MPa
℃
μg/l
MPa
MPa
上海电站
辅机厂
除氧器
GC-440
440
0.713
167.2
0.912
386
≤7
0.118
0.813
水箱
容积
m3
100
直径
mm
3500
本除氧器为高压喷雾填料式,主凝结水分三路进入除氧器,分别占全流量的25%、25%、50%。启动和正常运行时,可通过上水泵向除氧器进水和补水。加热蒸汽由本机三级抽汽供,分二路进入除氧器上、下部,备用汽源由备用汽母管供给,给水箱内设有再沸腾装置。
②滑压运行-除氧器运行压力随着机组负荷与抽汽压力的变化而变化。抽汽管道不设压力调节器。但在启动初期、机组甩负荷和低负荷工况下使用辅助蒸汽加热,可以通过辅助蒸汽管道上的压力调节装置来维持低压定压运行状态。
缺点:①除氧器内给水温度的变化总是滞后与其压力的变化。负荷增大时除氧水不能及时达到饱和状态,致使除氧效果恶化,采取措施:设置再沸腾管;②负荷减小时,虽然除氧效果较好,但安装于除氧器下面的给水泵容易发生汽蚀,采取措施提高除氧器的安装高度、给水泵前设置前置泵。
②气体在水面上的分压力越高,其溶解度就越大。
除氧原理依据亨利定律、道尔顿定律、传热传质定律。
①亨利定律:在一定温度下,当溶于水中的气体与自水中离析的气体处于动态平衡时,溶于单位容积液体中该气体的质量b,与液面上该气体的分压力Pb成正比,即
b=KPb/Po(mg/L)
K—该气体的质量溶解度系数
Po—液面上的全压力
除氧器工作原理
除氧器的工作原理一、概述除氧器的主要作用是除去给水中的氧气,保证给水的品质。
水中溶解了氧气,就会使与水接触的金属腐蚀;在热交换器中若有气体聚集就会妨碍传热过程的进行,降低设备的传热效果。
因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。
除氧器本身又是给水回热系统中的一个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的疏水、排气等均可通入除氧器汇总并加以利用,减少发电厂的汽水损失。
当水和某种气体混合物接触时,就会有一部分气体融解到水中去。
气体的溶解度就是表示气体溶解于水中的数量,以毫克/升计值,它和气体的种类以及它在水面的分压力、和水的温度有关。
在一定的压力下,水的温度越高,气体的溶解度就越小;反之,气体的溶解度就越大。
同时气体在水面的分压力越高,其溶解度就越大,反之,其溶解度也越低。
天然水中常含有大量溶解的氧气,可达10 毫克/升。
汽轮机的凝结水可能融有大量氧气,因为空气能通过处于真空状态下的设备不严密部分渗入进去. 此外,补充水中也含有氧气及二氧化碳等其他气体。
液面上气体混合物的全压力中,包括有液体蒸汽的分压力. 将水加热时,液面附近水蒸气的分压力就会增加,相应的液面附近其他气体的分压力就会降低. 当水加热到沸点时,蒸汽的分压力就会接近液面上的全压力,此时液面上其他气体的分压力几乎接近于零,于是这些气体将完全自水中清除出去。
要达到这一点,不仅要将水加热到沸点,还要使液面上没有这些气体存在,即将逸出的气体随时排走。
除氧器的工作原理即利用蒸汽对水进行加热,使水达到一定压力下的饱和温度,即沸点。
这时除氧器的空间充满着水蒸汽,而氧气的分压力逐渐降低为零,溶解于水的氧气将全部逸出,以保证给水含氧量合格。
在高参数的电厂,一般采用0.59 兆帕的除氧器. 这样可以减少价格昂贵而运行不十分可靠的高压加热器的数目, 至少可以减少一台。
高参数的锅炉给水温度一般为230~250 摄氏度。
除氧器除氧原理
除氧器除氧原理一、给水除氧的任务和方法除氧器的主要作用:除去锅炉给水中的氧气和其他不凝结气体,防止热力设备腐蚀和传热恶化。
给水系统中的溶解于水的气体来源:一是补充水带进;二是处于真空状态下的热力设备(凝汽器和部分低压加热器)及管道附件不严密漏入。
给水溶解气体的危害:①腐蚀热力设备及管道。
水中溶解的氧气会对金属材料产生腐蚀;二氧化碳会加快氧腐蚀。
给水中溶解0.03mg/L的氧,高温下工作的给水管道及省煤器在短期内会出现穿孔的点状腐蚀。
②阻碍传热。
不凝结气体附在传热面上,以及氧化物沉积形成的盐垢会增大传热热阻。
给水溶氧量指标:①压力在6Mpa以下的锅炉给水,含氧量小于15μg/L②压力在6Mpa以上的锅炉给水,含氧量小于7μg/L二、热力除氧原理气体在水中的溶解度与气体的种类及该气体在水面的分压力和水的温度有关。
①在一定压力下,水的温度越高,气体的溶解度越小。
②气体在水面上的分压力越高,其溶解度就越大。
除氧原理依据亨利定律、道尔顿定律、传热传质定律。
①亨利定律:在一定温度下,当溶于水中的气体与自水中离析的气体处于动态平衡时,溶于单位容积液体中该气体的质量b,与液面上该气体的分压力Pb成正比,即b=KPb/Po(mg/L)K—该气体的质量溶解度系数 Po—液面上的全压力当水面上气体的分压力小于溶解该气体所对应的平衡压力时,该气体就会在不平衡压差ΔP作用下,自水中离析出水面,直到新的平衡状态为止。
关键是如何使水面上不凝结气体的分压力近似为0。
②道尔顿定律:混合气体的全压力等于各组成气体的分压力之和。
P=∑Pi +Ps(MPa)随着水流被蒸汽不断加热,水逐渐蒸发,水表面的水蒸汽压力就逐步增大,其他气体的分压力就逐步减小,水中的气体分子逐渐脱出,并随余汽排出;当水被加热到除氧器工作压力下的饱和温度时,水表面的水蒸汽分压力等于除氧头的压力,也即蒸汽分压力等于总压力,其他气体的分压力近似为0,就可以让水中的各气体完全脱出,水中气体的溶解量接近0。
除氧器的工作原理
除氧器的工作原理除氧器的工作原理:除氧器是一种用于去除水中溶解氧的设备,其工作原理基于物理和化学原理。
下面将详细介绍除氧器的工作原理及其应用。
一、工作原理:1. 物理原理:除氧器通常采用膜分离技术,其中最常见的是膜式除氧器。
膜式除氧器内部包含一个半透膜,该膜具有选择性通透性,能够让水分子通过,但阻止氧气分子的通过。
2. 化学原理:除氧器中的水与空气接触时,氧气会从水中溶解到气相中,这是一种物理过程。
除氧器通过提供一种化学剂,如亚硫酸钠或亚硫酸氢钠溶液,使溶解氧与化学剂发生反应,生成不溶于水的化合物。
这个化学过程称为还原反应。
二、应用领域:1. 污水处理:除氧器在污水处理过程中起到关键作用。
通过去除水中的溶解氧,可以防止污水处理过程中的氧化反应,从而提高污水处理效率。
2. 锅炉系统:在锅炉系统中,溶解氧会引起腐蚀和锈蚀,降低锅炉的寿命。
除氧器的应用可以有效地去除水中的溶解氧,保护锅炉系统的正常运行。
3. 饮用水处理:除氧器也常用于饮用水处理过程中。
去除水中的溶解氧可以提高饮用水的品质和口感。
4. 医疗设备:在一些医疗设备中,如人工心脏和人工肺等,需要使用无氧环境。
除氧器可以去除水中的溶解氧,确保这些医疗设备的正常运行。
5. 食品加工:在一些食品加工过程中,如饮料和啤酒的生产,溶解氧会对产品的质量产生负面影响。
除氧器的应用可以有效去除水中的溶解氧,提高产品的质量。
三、除氧器的类型:1. 膜式除氧器:膜式除氧器是最常见的一种类型,通过膜的选择性通透性来实现溶解氧的去除。
2. 热除氧器:热除氧器利用热量将水中的溶解氧转化为气态氧,从而实现去除的目的。
3. 化学除氧器:化学除氧器通过添加化学剂与溶解氧发生反应,生成不溶于水的化合物,从而去除溶解氧。
四、除氧器的性能指标:1. 去除率:除氧器的性能通常通过去除率来评估,即除氧器去除水中溶解氧的效果。
一般要求除氧器的去除率达到99%以上。
2. 流量:除氧器的流量指的是单位时间内处理的水量。
除氧器知识大讲解
一、概述凝结水在流经负压系统时,从密闭不严密处会有空气漏入凝结水中,加之凝补水中也含有一定量的空气,这部分气体在满足一定条件下,不仅会腐蚀系统中的设备,而且使加热器及锅炉的换热能力下降,降低机组的经济性。
为了减少给水系统和省煤器、水冷壁管的腐蚀,主要的方法是减少给水中的溶解氧,或在一定条件下适当增加溶解氧,缓解氧腐蚀,并适当提高给水PH值,消除CO2腐蚀。
除氧方法分为化学除氧和热力除氧两种,电厂常用以热力除氧为主,化学除氧为辅的方法进行除氧。
化学除氧法时利用某些易与氧发生化学反应的互学药剂,使之与水中溶解的氧发生化学反应,生成对金属不产生腐蚀的物质而达到除氧的目的。
化学除氧只能彻底除去水中的氧,而不能除去其它气体,同时生成的氧化物将增加给水中可溶性盐类的含量,且药剂价格昂贵,故化学除氧只作为辅助除氧手段。
除氧器是利用热力除氧原理进行工作的混合式加热器,既能解析除去给水中的溶解气体;又能储存一定量给水,缓解凝结水与给水的流量不平衡;还能利用回热抽汽加热给水,提高机组热效率。
在热力系统设计时,也用除氧器回收高品质的疏水和门杆漏汽。
机组正常运行时,采用加氨、加氧联合水处理方式(即CWT工况),这时除氧器完成加热器的作用,并除去其它水融性气体;而在启动阶段或水质异常的情况下,采用给水加氨、加联胺处理(即AVT工况),降低水中的氧含量,减缓氧腐蚀,这时除氧器既完成加热给水的功能,又起到除氧的作用。
我公司采用无头喷雾式除氧器(见下图)。
除氧器的设计应满足以下几点要求:除氧能力满足锅炉最大负荷的要求,水容积足够大且有一定裕量,设有防止超压和水位过高的措施。
无头喷雾式除氧器结构简图除氧器的加热汽源设计由除氧器系统的运行方式决定。
当除氧器以带基本负荷为主时,多采用定压运行方式,供汽汽源管路上设有压力调节阀,要求汽源的压力略高于定压运行压力值,并设有更高一级压力的汽源作为备用。
这种方式节流损失大,效率较低。
而以滑压运行为主的除氧器,供汽管路上不设调节阀,除氧器的压力随机组负荷而改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉给水是火力发电厂能量置换的重要介质,而锅炉给水的品质直接决定着蒸汽的品质,保证良好的汽水品质则是汽水监督的根本目的,而对给水进行除氧是其中最重要的一环。
本文从给水除氧知识及方法来探讨除氧过程。
一、为什么要对给水进行除氧
为保证锅炉安全运行,对锅炉给水进行有效的除氧是非常重要的在国家标准《工业锅炉水质》(GB1576-2001)中,对锅炉水质提出了严格要求,要求蒸发量大于2t/h的蒸汽锅炉和额定功率24.2MW的热水锅炉,都必须除氧。
在锅炉房设置适用的除氧设施,除去锅炉给水中的溶解氧,是保护热力系统设备经济运行的必不可少的手段。
溶解在水中的氧是造成锅炉腐蚀的重要因素。
试验证实,腐蚀速度与溶液中氧的浓度成正比,氧是很活泼的气体,它能跟绝大多数金属直接化合,当其与金属化合后,往往形成沉淀或稳定的化合物,这些氧化物不再与金属化合,起腐蚀作用的是水中的溶解氧。
防止锅炉氧腐蚀最有效的方法就是加强锅炉给水的除氧,使给水中的含氧量达到水质标准的要求。
二、锅炉给水中氧量合格标准
1、对于小于5.83Mpa的锅炉给水溶解氧的合格标准是V15ug/L.
2、于小额定压力大于5.88Mpa的高压锅炉和亚临界锅炉给水溶解氧的合格标准是V7ug/L
3、超临界及以上压力的锅炉给水溶解氧要求V5ug/L.
三、电厂常见的除氧方法
发电厂给水除氧一般使用热力除氧和化学除氧两种方法。
1、热力除氧
热力除氧原理是将水加热至相应压力下的饱和温度(一般达到沸点),蒸汽分压力接近水面上的全压力,溶解于水中氧的分压力接近于零,使氧析出,再将水面上产生的氧气排除,从而保证给水含氧量达到水质标准的要求。
热力除氧有以下特点:
(1)不仅能除02,还能除C02及其他气体;
(2)除氧水中不增加含盐量,也不增加其它气体的溶解量;
用来对给水进行热力除氧的设备叫做除氧器,除氧器按照其工作原理可以分为真空除氧器,交高压除氧器和高压除氧器,目前大型火力发电厂一般使用高压除氧器做为热力除氧设备。
2、化学除氧。
化学除氧作为在火电厂热力除氧后的一种辅助除氧方式,其方法是在给水泵入口管理中加入联氨的方式对经过除氧器除氧后的给水进行再次除氧,除去热力除氧未完成排尽的溶氧,达到保护给水管道不受氧腐蚀的目的。
四、热力除氧的工作原理
亨利定律指出:当液体和气体处于同一平衡状态时,在温度一定的情况下,单位体积液体内溶解的气体量与液面上该气体分压力成正比。
当水温升高时,水的蒸发量增大,水面上水蒸汽的分压力升高,气体分压力相对下降,导致水中的气体不断析出,达到新的动平衡状
态,除氧器就是利用这种原理进行除氧的。
道尔顿定律指出:混合气体的全压力等于各组分气体分压力之和。
对于给水而言,水面上混合气体的全压力,等于气体的分压力与蒸汽的分压力之和。
可见当增加水面上混合气体中水蒸汽的量时,就可降低氧气的分压力,为除氧创造条件。
水达到饱和温度时,水面上蒸汽的分压力接近于其混合气体的总压力,而不凝结气体的分压力接近于零,这样水中溶解的气体就会不断的排出水面,直至达到此温度和压力下的平衡状态。
热力除氧过程是个传热和传质的过程,传热过程是把水加热到除氧器压力下的饱和温度,传质过程是将水中的气体分离析出。
气体的析出方式大致有两种:
一种是在除氧的初始阶段,气体以小气泡的形式从水中逸出。
此时水中气体的含量较多,其分压力大于水面以上气体的分压力,气体会以气泡的形式克服水的粘滞力和表面张力析出,如此除去水中80%-90%的气体。
另一种是气体以扩散形式从水中逸出。
经过初级除氧的给水中仍含有少量气体,这部分气体的不平衡压差很小,气体离析的能力较弱,为达到深度除氧目的,可适当增加水的表面积,缩短气体析出路径,强化水中气体的析出。
为达到良好的热力除氧效果,必须满足以下条件:第一:有足够量的蒸汽将水加热到除氧器压力下的饱和温度;第二:及时排走
析出的气体,防止水面的气体分压力增加,影响
析出;
第三:增大水与蒸汽接触的表面积,增加水与蒸汽接触的时间,蒸汽与水采用逆向流动,以维持足够大的传热面积和足够长的传热、传质时间。
在初级除氧阶段,凝结水经过高压喷嘴形成发散的锥形水膜向下进入初级除氧区,在初级除氧区水膜与上行的蒸汽充分接触,迅速将水加热到除氧器压力下的饱和温度,大部分氧气从水中析出,聚集在喷嘴附近。
为防止氧气积聚过多,在每个喷嘴的周围设有排气口,以及时排出析出的氧气;经初级除氧的水在水箱下部汇集,深度除氧在水面以下进行的,利用引入水面以下的蒸汽将水加热、沸腾,实现深度除氧。
除氧过程析出的气体经排气管排出,除氧后的水则在水箱内与回收的疏水等混合。
这种喷雾除氧的优点在于其除氧效率几乎不受水温的影响。
四、典型高压除氧器结构
a
4j
©
EE
S安全门2、进水■口3、排气口4.再循环接口'、四抽供洱接口仏辅汽供汽接口人高加疏水接口8.就地水位计九.溢流口lh放水口LU岀水口12.人孔13x压力测点
1、喷嘴
除氧器的两侧分别安装有一个蝶型喷嘴,凝结水分两路引入这两个喷嘴。
喷嘴使凝结水形成适当的水膜,以获得最佳直径的水滴,达到既增大水与蒸汽的接触表面积,又缩短了气体离析路径的效果。
2、蒸汽平衡管与逆止阀
除氧器的两路汽源四抽和辅汽均引入底部,任一路均能满足除氧和加热的要求。
为避免蒸汽管内返水,在每个加热蒸汽管路上均设一路蒸汽平衡管,平衡管上装有逆止阀,正常运行时供汽管内的压力大于除氧器内部压力,逆止阀关闭,蒸汽经供汽管引入水面以下;当供汽压力突降使除氧器内部压力高于供汽管道内压力时,在此压差的作用下逆止阀打开,使除氧器内部压力降至供汽管内的压力,防止因除氧器的压力过高,使水箱内的给水返入蒸汽管内。
3、安全阀
为防止除氧器超压,除氧器装有安全阀。
4、溢流管
除氧器水位过高可能引起除氧器超压,当除氧器水位失控甚至满水时可能使汽轮机进水,造成恶性事故。
因此除氧器内设有除氧器溢流与放水口,并在顺序控制中设有高水位限制。
当水位上升至较高值时,先打开放水阀放掉部分给水;在除氧器水位上升至溢流水位时,水经溢流口排掉。
1、除氧器的“返氧”和“再生沸腾”
无论采用定压还是滑压运行的除氧器,在负荷发生变化时,均有
可能产生“返氧”或“再沸腾”现象,尤其滑压运行的除氧器发生的可能性更大。
当负荷上升时,除氧器内压力随之上升,而除氧器内的水温变化滞后于压力的变化,不能立即升高,而变成欠饱和水。
由于气体在不饱和水中的溶解度大于在饱和水中的溶解度,于是已经析出的气体又重新返回到给水中,使除氧效率下降,此即“返氧”现象。
返氧的发生不会造成给水泵发生汽蚀。
在运行中除氧器的压力激增的可能性较小,而压力突降则经常发生,这时易发生除氧器的“再沸腾”现象。
2、除氧器排汽量的调节
除氧器排汽量的多少直接与除氧效果和经济性相关,其排氧门的开度过大,排汽损失加大;过小则降低除氧能力,其开度必须经过现场运行调整后确定。
五、除氧器运行中主要监视参数
1、除氧器水位在正常范围,一般为2/3-3/4之间
2、除氧器的压
力。
定压运行为固定值,滑压则根据负荷变化。
3、除氧器入口及出口溶解氧。