大学概率论与数理统计试题库及答案
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计试题及答案

概率论与数理统计试题及答案概率论与数理统计是数学领域中的一个重要分支,它在科学研究、工程技术、经济管理等多个领域都有着广泛的应用。
以下是一套概率论与数理统计的试题及答案,供学习者参考。
一、选择题1. 假设随机变量X服从正态分布N(μ, σ²),下列哪个选项是正确的?A. X的均值是σB. X的中位数是μC. X的众数是σD. X的方差是μ答案:B2. 某事件的概率P(A)为0.3,其补事件的概率P(A')是多少?A. 0.7B. 1.0C. 0.3D. 不能确定答案:A二、填空题1. 假设随机变量X和Y的协方差是-2,X的方差是4,Y的方差是9,那么X和Y的相关系数ρ(X,Y)等于______。
答案:-1/32. 某随机试验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,那么P(A∪B)等于______。
答案:0.7三、简答题1. 什么是大数定律?请简述其主要内容。
答案:大数定律是概率论中的一个重要概念,它描述了随着试验次数的增加,随机变量的样本均值会越来越接近其期望值。
具体来说,如果随机变量X1, X2, ..., Xn是独立同分布的,那么随着n的增大,样本均值(ΣXi/n)趋于X的期望值E(X)。
2. 什么是中心极限定理?它在实际应用中有何意义?答案:中心极限定理是概率论中的另一个重要定理,它指出在一定条件下,大量相互独立的随机变量之和经过标准化后趋近于正态分布,无论这些随机变量本身是否服从正态分布。
这一定理在统计推断、质量控制、风险管理等领域有着重要的应用价值。
四、计算题1. 假设随机变量X服从参数为λ的泊松分布,求P(X=3)。
答案:P(X=3) = e^(-λ) * λ^3 / 3!2. 某工厂生产的零件长度服从均值为50,标准差为2的正态分布。
求长度在48到52之间的零件所占的比例。
答案:使用标准正态分布表或计算器,求Z分数为(48-50)/2和(52-50)/2的正态分布累积分布函数,然后求差值。
《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
中国石油大学090107概率论与数理统计期末复习题及参考答案

《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。
a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。
A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。
〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。
的置信度为的置信区间, 则应有()。
A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。
A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。
A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。
大学概率论与数理统计习题及参考答案

P A P AB1 AB2 P AB1 P AB2 P B1 P A B1 P B2 P A B2
2 1 0.97 0.98 有9个是新的。第一次比赛从中任取3个来用, 比赛后仍放回盒中,第二次比赛再从盒中任取3个,求第二次取出的球都是 新球的概率。 解: 设 Bi 表示事件“第一次取出了 i 个新球”i, =0,1,2,3.
从而P( A B) 1 P( AB) 1 0.012 0.988.
10
三、为防止意外, 在矿内同时设有两种报警系统A与B, 每种系统单独使用时, 其有
效的概率系统A为0.92,系统B为0.93, 在A失灵的条件下, B有效的概率为0.85, 求 (1)发生意外时, 这两个报警系统至少有一个有效的概率; (2) B失灵的条件下, A有效的概率.
解
设事件A表示“报警系统A有效”,事件B表示“报警系统B有效”,由已知
P ( A) 0.92, P ( B) 0.93, P ( B A) 0.85,
则 P ( AB ) P ( A) P ( B A) 0.08 0.85 0.068 , 故 P( AB) P( B) P( AB) 0.93 0.068 0.862,
AB 6 ; A B 1 ,5 .
1
四、写出下面随机试验的样本空间: (1)袋中有5只球,其中3只白球2只黑球,从袋中 任意取一球,观察其颜色; (2) 从(1)的袋中不放回任意取两次球(每次取出一个)观察其颜色; (3) 从(1)的袋中不放回任意取3只球,记录取到的黑球个数; (4) 生产产品直到有10件正品为止,记录生产产品的总件数; 解 (1)设
i
表示抛掷一颗骰子,出现i点数,i=1,2,3,4,5,6. 则样本空间
2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
概率论与数理统计试题库及答案
2103最新概率论与数理统计试题库及答案<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体),4(~2σN 的简单随机样本,已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为(必须写出分布的参数)。
2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体中抽取的样本,则的矩估计值为。
3.设]1,[~a U X ,n X X ,,1 是从总体中抽取的样本,求的矩估计为。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.和都是参数a 的无偏估计,如果有 成立 ,则称是比有效的估计。
6.设样本的频数分布为X 0 1 2 3 4频数 1 3 2 1 2则样本方差=_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,为样本均值,则D ()=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N μ,且未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则的置信水平为1α-的置信区间公式是;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取____。
西安交通大学概率论与数理统计试题及答案
2(0,)N σ15,)X 是来25215)X X ++++服从的分布是___ _____量X服从参数松分布,且已 。
随机变量X=__________,,)n X 为来(N n μ(200,169)N }180169P -⎧=⎨⎩1.54)=0.93941()xf x dx =⎰1X θθ=+,得1()(nk f θ==∏,),n1,,),n 当0,)nln kx ,求导得似然方程0=其唯一解为,故θ的极大似然估优于旧品1(1,F n -(24,19)=0.429,222.32 1.5071.89≈∈22σ的条件下,进一步检验假设:12μμ<。
选取检验统计量12(t n n +0.05(43)t =-=2.647 1.681≈-<-)B=)1≥=个人在第一层进入十八层楼的电梯,假如每个人以相同的概率从任一层走出电梯(从第二层。
的概率密度为5,,X 都服从参数为分)某汽车销售点每天出售的汽车数服从参数为=λ车销售,且每天出售的汽车数是相互独立的,求一年中售出700⎪⎧-1x θθ三、1exp(),5 X2 (5,)B e-,∴四、设1iX⎧=⎨⎩第2,,n1n-第1 页1,2,,5min {k X 510,e -⎧-⎨⎩0,x >exp(5)λ,365,1(3652,365niX N =⨯∑7003652)3652-⨯=⨯七、()1E X dx θθ==+ 1X θθ=+2; 1)(ni θθ==∏()ln nL θ=(0,1)N 的样本9,)X 是来自正态总体(N μ分)某卡车为乡村小学运送书籍,共装有到目的地时发现丢失一箱,但不知丢失哪一箱. 丢失的一箱也是英语书的概率. ,n .设各部件的状态相互独立,.,)X是来自总体的一组样本nˆμ,它是否是μμ,它是否是的极大似然估计量*机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为n ,则X ,n X 相互独立,1,2,i n = ()E X =()D X : (1)0x y <<<⎰⎰ 10000,X 独立同分布,,10000.设供电站每天要向居民供电的量为N, 居民每天用电量为 Y1,2,n ,因此当,)n x 中最小值时,的极大似然估计量为 ,}n X 2,}n X X 分布函数是1(1(X F z --,分布密度是((Z x f z μμ>≤ ()n x nxe dx μ--=12min{,,}n X X X 不是统计量X T S -=代入数据()P λ,且已知服从{(,G x y =,(Y f x ,…,n X )为来自总体服从参数为 。
概率论与数理统计题库及答案
概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21- (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 41414121(B)161814121(C)1631614121 (D)81834121-3. 设连续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f 则下列等式成立的是( ).(A) X P (≥1)1=- (B) 21)21(==X P (C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ). (A)⎰bax x F d )( (B)⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -6. 下列函数中能够作为连续型随机变量的密度函数的是( ).7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+-)(x Φ1)(=x (C) Φ=-)(a Φ)(a (D) 2)(=<a x P Φ1)(-a9. 下列数组中,不能作为随机变量分布列的是( ).(A )61,61,31,31 (B) 104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23-=X Y ( ).(A) )3,2(-N (B) )3,4(-N (C) )3,4(2-N (D) )3,2(2-N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p (C) 1- p (D)p-1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E(C) E X D X ().,()==033 (D) E X D X ().,().==032113. 设),(~p n B X ,2.1)(,2)(==X D X E ,则p n ,分别是( ).(A) 4.0,5 (B) 2.0,10 (C) 5.0,4 (D) 25.0,814. 设),(~p n B X ,且6.3)(,6)(==X D X E ,则=n ( ).(A) 30 (B) 20(C) 15 (D) 1015. 设)10,50(~2N X ,则随机变量( )~)1,0(N .(A)10050-X (B) 1050-X (C) 50100-X (D) 5010-X16. 对于随机事件A B ,,下列运算公式( )成立.(A) )()()(B P A P B A P +=+ (B) )()()(B P A P AB P =(C) )()()(A B P B P AB P = (D) )()()()(AB P B P A P B A P -+=+17. 下列事件运算关系正确的是( ).(A) A B BA B += (B) A B BA B += (C) A B BA B += (D) B B -=118. 设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B19. 设A B ,为随机事件,A 与B 不同时发生用事件的运算表示为( ).(A) A B + (B) A B + (C) AB AB + (D) A B20. 若随机事件A ,B 满足AB =∅,则结论( )成立. (A) A 与B 是对立事件 (B) A 与B 相互独立(C) A 与B 互不相容 (D) A 与B 互不相容21. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件.(A) 二人都没射中 (B) 至少有一人没射中 (C) 两人都射中 (D) 至少有一人射中22. 若事件A B ,的概率为6.0)(=A P ,5.0)(=B P ,则A 与B 一定( ).(A) 相互对立 (B) 相互独立 (C) 互不相容 (D) 相容23. 设A ,B 为两个任意事件,则P (A +B ) =( ).(A) P (A ) + P (B ) (B) P (A ) + P (B ) - P (A )P (B ) (C) P (A ) + P (B ) - P (AB ) (D) P (AB ) – [P (A ) + P (B ) ]24. 对任意两个任意事件A B ,,等式( )成立.(A) P AB P A P B ()()()= (B) P A B P A P B ()()()+=+ (C) P A B P A P B ()()(())=≠0 (D) P AB P A P B A P A ()()()(())=≠025. 设A ,B 是两个任意事件,则下列等式中( )是不正确的.(A) )()()(B P A P AB P =,其中A ,B 相互独立 (B) )()()(B A P B P AB P =,其中0)(≠B P (C) )()()(B P A P AB P =,其中A ,B 互不相容 (D) )()()(A B P A P AB P =,其中0)(≠A P26. 若事件A 与B 互斥,则下列等式中正确的是( ). (A) P AB P A P B ()()()= (B) P B P A ()()=-1(C) P A P A B ()()= (D) P A B P A P B ()()()+=+27. 设A ,B 为两个任意事件,则下列等式成立的是( ).(A) B A B A +=+ (B) B A AB ⋅= (C) B A B B A +=+ (D) B A B B A +=+28. 设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-29. 甲、乙两人各自考上大学的概率分别为0.7,0.8,则甲、乙两人同时考上大学的概率为( ).(A) 0.56 (B) 0.50 (C) 0.75 (D) 0.9430. 若A B ,满足( ),则A 与B 是对立事件.(A) 1)(=+B A P (B) A B U AB +==∅, (C) P A B P A P B ()()()+=+ (D) P AB P A P B ()()()=31. 若A 与B 相互独立,则等式( )成立.(A) P A B P A P B ()()()+=+ (B) P AB P A ()()=(C) P A B P A ()()= (D) P AB P A P B ()()()=32. 设n x x x ,,,21 是正态总体),(2σμN (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关. (A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α33. 假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小34. 从正态总体),(2σμN 中随机抽取容量为n 的样本,检验假设0H :,0μμ=1H :0μμ≠.若用t 检验法,选用统计量t ,则在显著性水平α下的拒绝域为( ). (A) )1(-<n t t α (B) t ≥)1(1--n t α (C) )1(->n t t α (D) )1(1--<-n t t α35. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差36. 对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差37. 设n x x x ,,,21 是正态总体),(2σμN 的一个样本,2σ是已知参数,μ是未知参数,记∑==ni i x n x 11,函数)(x Φ表示标准正态分布)1,0(N 的分布函数,975.0)96.1(=Φ,900.0)28.1(=Φ,则μ的置信水平为0.95的置信区间为( ).(A) (x -0.975n σ,x +0.975nσ) (B) (x -1.96n σ,x +1.96n σ)(C) (x -1.28nσ,x +1.28nσ) (D) (x -0.90nσ,x +0.90nσ)38. 设321,,x x x 是来自正态总体N (,)μσ2的样本,则μ的无偏估计是( ).(A)3321x x x -+ (B) 321x x x -+(C) 321x x x ++ (D) 321x x x --39. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321x x x ++ (B)321525252x x x ++ (C) 321515151x x x ++ (D) 321535151x x x ++40. 设21,x x 是取自正态总体)1,(μN 的容量为2的样本,其中μ为未知参数,以下关于μ的估计中,只有( )才是μ的无偏估计.(A) 213432x x + (B) 214241x x + (C) 214143x x - (D)215352x x +41. 设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n x x x ,,,21 是该总体的一个样本,记∑==ni i x n x 11,则总体方差2σ的矩估计为( ).(A) x (B) ∑=-ni i x n 12)(1μ(C) ∑=-n i i x x n 12)(1 (D) ∑=n i i x n 12142. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( )是统计量.(A) 1x (B) μ+x (C)221σx (D)1x μ43. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量. (A ) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X44. 设X 是连续型随机变量,其密度函数为⎩⎨⎧∉∈=],,1(,0],,1(,ln )(b x b x x x f 则常数b =( ).(A) e (B) e + 1 (C) e – 1 (D) e 245. 随机变量)21,3(~B X ,则X P (≤=)2( ).(A) 0 (B) 81(C)21 (D) 8746. 设),2(~2σN X ,已知2(P ≤X ≤4.0)4=,则X P (≤=)0( ).(A) 0.4 (B) 0.3 (C) 0.2 (D) 0.147. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ).(A) 2,2-==b a (B) 1,2-=-=b a (C) 1,21-==b a (D) 2,21==b a48. 设随机变量X 的密度函数为f x (),则E X ()2=( ).(A) xf x x ()-∞+∞⎰d (B)x x f x d )(2⎰∞+∞-(C)x x xf d )(2⎰∞+∞- (D)(())()x E X f x x --∞+∞⎰2d49. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( )成立.(A) )]([)(X E X E X D -= (B) 22)]([)()(X E X E X D += (C) )()(2X E X D = (D) 22)]([)()(X E X E X D -=50. 设随机变量X 服从二项分布B (n , p ),已知E (X )=2.4, D (X )=1.44,则( ). (A) n = 8, p =0.3 (B) n = 6, p =0.6 (C) n = 6, p =0.4 (D) n = 24, p =0.1二、证明题1. 试证:已知事件A ,B 的概率分别为P (A ) = 0.3,P (B ) = 0.6,P (B A +) = 0.1,则P (AB ) =0.2. 试证:已知事件A ,B 相互独立,则)()(1)(B P A P B A P -=+.3. 已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.4. 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证:A 与B 是相容的.5. 设随机事件A ,B 相互独立,试证:B A ,也相互独立.6. 设A ,B 为随机事件,试证:)()()(AB P A P B A P -=-.7. 设随机事件A ,B 满足AB =∅,试证:P A B P B ()()+=-1.8. 设A ,B 为随机事件,试证:P A P A B P AB ()()()=-+.9. 设B A ,是随机事件,试证:)()()()(AB P B A P B A P B A P ++=+.10. 已知随机事件A ,B 满足A B ⊃,试证:)()()(B P A P B A P -=-.三、计算题1. 设B A ,是两个随机事件,已知5.0)(=A P , 4.0)(=A B P ,求)(B A P .2. 某种产品有80%是正品,用某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示一产品确为正品,求P (A ).3. 某单位同时装有两种报警系统A 与B ,每种系统独立使用时,其有效概率9.0)(=A P ,95.0)(=B P ,在A 有效的条件下B 有效的概率为97.0)(=A B P ,求)(B A P +.4. 设A , B 是两个独立的随机事件,已知P (A ) = 0.4,P (B ) = 0.7,求A 与B 只有一个发生的概率.5. 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.6. 假设B A ,为两事件,已知4.0)(,6.0)(,5.0)(===A B P B P A P ,求)(B A P +.7. 设随机变量)2,3(~2N X ,求概率X P <-3(≤)5 (已知Φ3841.0)1(=,Φ7998.0)3(=φ).8. 设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求)(B A P .9. 从大批发芽率为8.0的种子中,任取4粒,问(1)4粒中恰有一粒发芽的概率是多少?(2)至少有1粒种子发芽的概率是多少?10. 已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P +.11. 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().12. 已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .13. 已知P (B ) = 0.6,)(B A P =0.2,求)(AB P .14. 设随机变量X ~ N (3,4).求 P (1< X < 7)(Φ3841.0)1(=,Φ2977.0)2(=).15. 设)5.0,3(~2N X ,求2(P ≤X ≤)6.3.已知Φ9884.0)2.1(=,2977.0)2(=Φ.16. 设B A ,是两个随机事件,已知4.0)(=A P ,5.0)(=B P ,45.0)(=A B P ,求)(B A P +.17.已知某批零件的加工由两道工序完成,第一道工序的次品率为0.03,第二道工序的次品率为0.01,两道工序的次品率彼此无关,求这批零件的合格率.18.已知袋中有3个白球7个黑球,从中有放回地抽取3次,每次取1个,试求⑴恰有2个白球的概率;⑵有白球的概率.19. 268-16.某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.20.某篮球运动员一次投篮投中篮框的概率为0.9,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.21.某气象站天气预报的准确率为70%,在4次预报中,求⑴恰有3次准确的概率;⑵至少1次准确的概率.22.已知某批产品的次品率为0.1,在这批产品中有放回地抽取4次,每次抽取一件,试求⑴有次品的概率;⑵恰有两件次品的概率.23.某射手射击一次命中靶心的概率是08.,该射手连续射击5次,求:⑴命中靶心的概率;⑵至少4次命中靶心的概率.24.设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到黑球的概率.25.一袋中有10个球,其中3个黑球7个白球.今从中有放回地抽取,每次取1个,共取5次.求⑴恰有2次取到黑球的概率;⑵至少有1次取到白球的概率.26.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.27.机械零件的加工由甲、乙两道工序完成,甲工序的次品率是0.01,乙工序的次品率是0.02,两道工序的生产彼此无关,求生产的产品是合格品的概率.28.一袋中有10个球,其中3个黑球7个白球.今从中依次无放回地抽取两个,求第2次抽取出的是黑球的概率.29. 两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
大学概率论与数理统计试题库及答案a
< 概率论> 试题、填空题1. 设A、B C是三个随机事件。
试用A、B C分别表示事件1) A、B、C至少有一个发生2) A、B、C中恰有一个发生3) A、B、C不多于一个发生2•设A、B 为随机事件,P (A)=0.5 , P(B)=0.6 , P(B A)=0.8。
则P(B U A)=3.若事件A和事件B相互独立「 P(A)= , P(B)=0.3 , P(A U B)=0.7,则4•将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词中,则它是甲射中的概率为设X 〜N(2, 2),且P{2 x 4} 0.3 ,则P{x 0} SCIENCE勺概率5.甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6 和0.5 ,现已知目标被命6.设离散型随机变量X 分布律为P{X k} 5A(1/2)k(k 1,2,)则A=7. 已知随机变量X的密度为f(x)ax b,0 :0,其它1,且P{x1/2} 5/8 ,则8.9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80,则该射手的命81中率为10.若随机变量在(1, 6)上服从均匀分布,则方程x+仁0有实根的概率是311.设P{X 0,Y 0} , P{X 0} P{Y 0} 则P{max{ X,Y} 0}12.用(X,Y )的联合分布函数F (x,y )表示P{a b,Y c}13.用(X,Y )的联合分布函数F (x,y )表示P{X a,Y b}14. 设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y )关于X的边缘概率密度在x = 1 处的值为____________________ 。
15. ___________________________________________________ 已知X ~ N( 2,0.42),贝yE(X 3)2 = ________________________________________16. 设X ~ N(10,0.6),Y ~N(1,2),且X 与Y 相互独立,则D(3X Y) ______________17.设X的概率密度为f(x) -^e x V2,则D(X)=18.设随机变量X1, X2, X3相互独立,其中X在[0 , 6]上服从均匀分布,X2服从正态分布N(0, 22) , X3服从参数为=3的泊松分布,记Y=X —2X2+3X3,则D( Y) = ________________19.设D(X) 25,D Y 36, xy0.4,则D(X Y) ____________________________ 20.设X1,X2, ,X n,是独立同分布的随机变量序列,且均值为,方差为2,那么当n充分大时,近似有X〜_________ 或—--------- 〜 ___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题 一、填空题 1.设 A、B、C是三个随机事件。试用 A、B、C分别表示事件 1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生 3)A、B、C不多于一个发生 2.设 A、B为随机事件, P (A)=0.5,P(B)=0.6,P(BA)=0.8。则P(B)A=
3.若事件A和事件B相互独立, P()=,AP(B)=0.3,P(AB)=0.7,则 4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X分布律为{}5(1/2)(1,2,)kPXkAk则A=______________
7. 已知随机变量X的密度为()fx其它,010,xbax,且{1/2}5/8Px,则a________ b________
8. 设X~2(2,)N,且{24}0.3Px,则{0}Px _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________ 10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是 11.设3{0,0}7PXY,4{0}{0}7PXPY,则{max{,}0}PXY 12.用(,XY)的联合分布函数F(x,y)表示P{ab,c}XY 13.用(,XY)的联合分布函数F(x,y)表示P{Xa,b}Y 14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2NX,则2(3)EX= 16.设)2,1(~),6.0,10(~NYNX,且X与Y相互独立,则(3)DXY
17.设X的概率密度为21()xfxe,则()DX= 18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 19.设()25,36,0.4xyDXDY,则()DXY
20.设12,,,,nXXX是独立同分布的随机变量序列,且均值为,方差为2,那么当n充
分大时,近似有X~ 或 Xn~ 。特别是,当同为正态分布时,对于任意的n,都精确有X~ 或Xn~ . 21.设12,,,,nXXX是独立同分布的随机变量序列,且iEX,2iDX(1,2,)i 那么211niiXn依概率收敛于 . 22.设1234,,,XXXX是来自正态总体2(0,2)N的样本,令221234()(),YXXXX 则当C 时CY~2(2)。 23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差= 24.设X1,X2,…Xn为来自正态总体2(,)N的一个简单随机样本,则样本均值
11niin服从 二、选择题 1. 设A,B为两随机事件,且BA,则下列式子正确的是 (A)P (A+B) = P (A); (B)()P(A);PAB
(C)(|A)P(B);PB (D)(A)PB()P(A)PB 2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销” (C)“甲种产品滞销”; (D)“甲种产品滞销或乙种产品畅销”。 3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。则第二人取到黄球的概率是 (A)1/5 (B)2/5 (C)3/5 (D)4/5 4. 对于事件A,B,下列命题正确的是
(A)若A,B互不相容,则A与B也互不相容。 (B)若A,B相容,那么A与B也相容。 (C)若A,B互不相容,且概率都大于零,则A,B也相互独立。 (D)若A,B相互独立,那么A与B也相互独立。 5. 若()1PBA,那么下列命题中正确的是 (A)AB (B)BA (C)AB (D)()0PAB 6. 设X~2(,)N,那么当增大时,{}PX A)增大 B)减少 C)不变 D)增减不定。 7.设X的密度函数为)(xf,分布函数为)(xF,且)()(xfxf。那么对任意给定的a都有 A)0()1()afafxdx B) 01()()2aFafxdx C))()(aFaF D) 1)(2)(aFaF 8.下列函数中,可作为某一随机变量的分布函数是 A)21()1Fxx B) xxFarctan121)( C))(xF1(1),020,0xexx D) ()()xFxftdt,其中()1ftdt 9. 假设随机变量X的分布函数为F(x),密度函数为f(x).若X与-X有相同的分布函数,则下列各式中正确的是 A)F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x).
10.已知随机变量X的密度函数f(x)=xxAe,x0,(>0,A为常数),则概率P{X<+a}(a>0)的值 A)与a无关,随的增大而增大 B)与a无关,随的增大而减小 C)与无关,随a的增大而增大 D)与无关,随a的增大而减小 11.1X,2X独立,且分布率为 (1,2)i,那么下列结论正确的是
A)21XX B)1}{21XXP C)21}{21XXPD)以上都不正确 12.设离散型随机变量(,)XY的联合分布律为 且YX,相互独立,则 A) 9/1,9/2 B) 9/2,9/1 C) 6/1,6/1 D) 18/1,15/8 13.若X~211(,),Y~222(,)那么),(YX的联合分布为 A) 二维正态,且0 B)二维正态,且不定 C) 未必是二维正态 D)以上都不对 14.设X,Y是相互独立的两个随机变量,它们的分布函数分别为FX(x),FY(y),则Z = max {X,Y} 的分布函数是 A)FZ(z)= max { FX(x),FY(y)}; B) FZ(z)= max { |FX(x)|,|FY(y)|} C) FZ(z)= FX(x)·FY(y) D)都不是 15.下列二无函数中, 可以作为连续型随机变量的联合概率密度。
(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3XYP A)f(x,y)=cosx,0,x,0y122其他 B) g(x,y)=cosx,0,1x,0y222其他 C) (x,y)=cosx,0,0x,0y1其他 D) h(x,y)=cosx,0,10x,0y2其他 16.掷一颗均匀的骰子600次,那么出现“一点”次数的均值为 A) 50 B) 100 C)120 D) 150 17. 设123,,XXX相互独立同服从参数3的泊松分布,令1231()3YXXX,则 2()EY
A)1. B)9. C)10. D)6. 18.对于任意两个随机变量X和Y,若()()()EXYEXEY,则 A)()()()DXYDXDY B)()()()DXYDXDY C)X和Y独立 D)X和Y不独立 19.设()(PPoission分布),且(1)21EXX,则= A)1, B)2, C)3, D)0 20. 设随机变量X和Y的方差存在且不等于0,则()DXYDXDY是X和Y的 A)不相关的充分条件,但不是必要条件; B)独立的必要条件,但不是充分条件; C)不相关的充分必要条件; D)独立的充分必要条件 21.设X~2(,)N其中已知,2未知,123,,XXX样本,则下列选项中不是统计量的是
A)123XXX B)123max{,,}XXX C)2321iiX D)1X 22.设X~(1,)p 12,,,,,nXXX是来自X的样本,那么下列选项中不正确的是 A)当n充分大时,近似有X~(1),ppNpn B){}(1),kknknPXkCpp0,1,2,,kn C){}(1),kknknkPXCppn0,1,2,,kn D){}(1),1kknkinPXkCppin 23.若X~()tn那么2~ A)(1,)Fn B)(,1)Fn C)2()n D)()tn 24.设nXXX,,21为来自正态总体),(2N简单随机样本,X是样本均值,记2121)(11XXnSnii,2122)(1XXnSnii,2123)(11niiXnS,
22411()niiSXn
,则服从自由度为1n的t分布的随机变量是
A) 1/1nSXt B) 1/2nSXt C) nSXt/3 D) nSXt/4 25.设X1,X2,…Xn,Xn+1, …,Xn+m是来自正态总体2(0,)N的容量为n+m的样本,则统计量2121niinmiinmVn
服从的分布是
A) (,)Fmn B) (1,1)Fnm C) (,)Fnm D) (1,1)Fmn 三、解答题 1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。 2.任意将10本书放在书架上。其中有两套书,一套3本,另一套4本。求下列事件的概率。 1) 3本一套放在一起。 2)两套各自放在一起。