2019-2020年九年级数学专题复习:中考数学填空压轴常见类型——几何综合(1)
2020年中考数学选择填空压轴题汇编几何综合结论含解析

几何综合结论1. (2020深圳)如图,矩形纸片個8中,AB=6. 5(7=12.将纸片折叠,使点3落在边"的延长线上的点 G 处,折痕为肪 点E 、尸分别在边血和边證上.连接%,交CD 于点、K, FG 交CD 于点、H.给出以下结 论: ① EF1BG ;② GE=GF :③ 冰和2X00的而积相等;④ 当点尸与点Q 重合时,Z/?£F=75° ,其中正确的结论共有( )【解答】解:如图,连接宓设EFG BG 交于点0,•••将纸片折叠,使点〃落在边〃的延长线上的点G 处,B. 2个 C. 3个D. 4个:.EFIBG, BO=GO. BE=EG, BF= FG,故①正确,AD//BC.:・ZEGO= ZFBO、又T ZEOG= ZBOF,:.、BOZ'GOE (ASA\:・BF=EG,:・BF=EG=GF、故②正确,•: BE=EG=BF=FG、・••四边形购沪是菱形,:•乙BEF= ZGEF,当点尸与点Q重介时,则BF=BC=BE=\2,TsinZ 遊「,•••ZM5=30° ,:・ZDEF=W,故④正确,由题意无法证明△宓和△GAZf的而积相等,故③错误:故选:C.2.(2020贵州铜仁)如图,正方形個力的边长为4,点厅在边曲上,BE=\,ZQLW=45°,点尸在射线刖上,且过点尸作“的平行线交BA的延长线于点H, 67■与初相交于点G,连接EC、EG、EF.下列结论:①尸的而积为S②△庇G的周长为&③必=亦+血:其中正确的是()A.①(D ③B. @@C.①②【解答】解:如图,在正方形個8中,AD//BC. AB=BC=AD=49AZZ£W=90° ,HF//AD.AZ J ^=90° ,VZ2£4F=90° - ZMQ45° >AAFH=AHAF.:.AH=HF=\=BE.:.EH=AE^AH=AB- BE ・AH=4 = BC 、:AEHFg'CBE (SAS'、:・EF=EC, ZHEF= ZBCE,•:乙BCE+乙BEC=9$ ,:・HEHZBEC=9y »:.ZFEC=9Q° ,:■ \ CEF 是等腰直角三角形, 在 R 仏CBE 中,BE=1. BC=A. H 刀D.②③ ZB=ZBAD=9Q Q ,:.EC=BE+BC = 17.=i=g =兰:£g云EF・EC 2EC 2\故①正确;过点尸作FQLBC于0,交.AD于P,•••Z 时=90° = ZH= ZHAD.・••四边形北明是矩形,•: AH=HF,.•・矩形册叨是正方形,:.AP=PH=AH=\,同理:四边形测是矩形,:.PQ=AB=\y BQ=AP1、FQ=FP-PQ=z. CQ=BO BQ=3、•: AD〃BC,•••△/TVs △磁,FP _况. 五一&在RtAEAG 中,根据勾股宦理得,EG°V/i^=4,=空 Is t 2旳工空 Is 产云 :・E C 羊D C+B E,故③错误,・•・正确的有①故选:C.:.AG=AP^PG'AEG 的周长为 AG-E&rAEI r 3=8,敬②正确; 25:.DG^BE 1£7•: EC= ( 3:.DG=AD- AG3. (2020黑龙江鹤岗)如图,正方形 馭7?的边长为⑦ 点&在边月万上运动(不与点川3重合),ADAM= 45°,点尸在射线凡『上,且AF ^^BE,仔■与血相交于点G,连接应'、EF 、EG.则下列结论: ① ZECF= 45° :② △近的周长为(1 <3:③ B »D C=E C ;④△轩的而积的最大值是肚其中正确的结论是( )•:BE=BH, Z 翊=90° ,:・AF=EH,⑤当BE 二;a 时,G 是线段初的中点.A.①②③B.②④⑤C.①®®D.①④⑤ 【解答】解:如图1中, 任BC 上截取BH=庞,连接筋•: ZDAM=ZEHB=45° , Z馳?=90° ,:・ZFAE=ZEHC=\35° ,•: BA=BC, BE= BH,:.AE=HC.:仏FAE^HEHC (SAS)、:・EF=EC, ZAEF= ZECH,•:乙EC出乙CEB=90° ,:.AAEF^ACEB=W y•••Z亦*90° ,:•乙ECF= ZEFC='M ,故①正确,如图2中.延长初到/ 使得BE,则厶CBMHCDH ISAS). :・ZECB= ZDCH、:.2LECH= ABCD=W ,:.ZECG=ZGCH=45° ,•: CG=CG、CE=CH.:.HGCE^HGCH (SAS),:・EG=GH,V GH=D&rDH. DH=BE、:・EG=BE+DG.故③错误,'AEG的周长=AE^EG-AG= AE-AH= AD-DH^AE= AE^E&vAD= A&rAD= 2a.故②错误,二屈 设殆F 贝^AE=a-x. AF 阳=—- 十一■ ■£> 2 W.Y ax解得-Y •:.AG=GD.故⑤正确,故选:D.4. (2020黑龙江绥化)如图,在Rt △磁中,G9为斜边初的中线,过点。
2019-2020届中考数学复习专题四几何变换压轴题课件

几何变换压轴题多以三角形、四边形为主,结合平移、 旋转、翻折、相似等变换,而四边形的问题常要转化成三角 形的问题来解决,通过证明三角形的全等或相似得到相等 的角、相等的边或成比例的边,通过勾股定理计算边长. 要熟练掌握特殊四边形的判定定理和性质定理,灵活选择
解题方法,注意区分各种四边形之间的关系,正确认识特 殊与一般的关系,注意方程思想、对称思想以及转化思想 的相互渗透.
2019/6/8
最新中小学教学课件8
最新中小学教学课件
6
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
2020年中考数学5.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。
【中考冲刺】2020中考数学题型专项(十二)几何综合题

题型专项(十二)几何综合题几何综合题是近年来中考的热点题型,2019年云南中考(全省统考)第23题,2018年云南中考第23题,2018年昆明中考第23题,2017年云南中考(全省统考)第23题,都是几何综合题作为压轴题.几何综合题通常把三角形、四边形、圆、方程和函数等知识综合起来,辅以平移、旋转、轴对称等变换,或实践操作探究,或类比探究,对有关数学问题进行证明和计算,考查同学们应用所学数学知识解决综合问题的能力.题目往往综合性较强,计算量较大,很容易造成同学们丢分,复习时应予以重视.类型1 与“三点定圆”有关的几何综合题【例1】 (2019·云南T23·12分)如图,AB 是⊙C 的直径,M ,D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB ·DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED =45.(1)求证:△DEB ∽△DAE ;【思路点拨】 由∠D =∠D ,DE 2=DB ·DA ,根据“两边对应成比例且夹角相等,两三角形相似”,证得△DEB ∽△DAE.证明:∵DE 2=DB ·DA , ∴DE DA =DBDE.1分 又∵∠BDE =∠EDA , ∴△DEB ∽△DAE.3分 (2)求DA ,DE 的长;【思路点拨】 先利用圆周角定理的推论、线段垂直平分线的性质、三角函数的概念等,求出AB ,AE ,BE 的长,然后根据△DEB ∽△DAE 得出对应边成比例而列出关于DA ,DE 的方程组求解.解:∵AB 是⊙O 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF.又∵AE =BF ,BF =10,∴AB =BF =10. ∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8, ∴BE =AB 2-AE 2=6.5分 ∵△DEB ∽△DAE , ∴DE DA =DB DE =EB AE =68=34. ∵DB =DA -AB =DA -10,∴⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34,解得⎩⎪⎨⎪⎧DA =1607,DE =1207.经检验,⎩⎪⎨⎪⎧DA =1607,DE =1207是⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34的解.∴⎩⎪⎨⎪⎧DA =1607,DE =1207.8分【一题多解】 解法2:∵AB 是⊙C 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF. 又∵AE =EF ,BF =10, ∴AB =BF =10.∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED.∴cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8,BE =AB 2-AE 2=6.连接CE ,设ED 与BF 交于点G.∵∠DBF =∠A +∠AFB =2∠A ,∠DCE =2∠A , ∴∠DBF =∠DCE.∴BF ∥CE.∵∠CED =∠CEB +∠BED =∠CEB +∠A =∠CEB +∠AEC =90°,∴∠BGE =∠CED =90°. 在Rt △BEG 中,sin ∠BED =sin ∠EAD =BG BE =BE AB =610=35,∴BG =185.∵BF ∥CE ,∴△DBG ∽△DCE.∴BG CE =DB DC ,即1855=DB DB +5.解得DB =907. 经检验,DB =907是1855=DBDB +5的解.∴DA =907+10=1607.∴DE 2=907×1607.∴DE =1207.(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.【思路点拨】 由于点F 在B ,E ,M 三点确定的圆上,所以F ,B ,E ,M 四点共圆,而∠BEF =90°,所以可知B ,E ,F 三点在以BF 为直径的圆上,所以M 也在以BF 为直径的圆上.要求MD 的长,由于MD =AD -AM ,需先求AM ,这可通过解Rt △AMF 得出.解:连接FM.∵BE ⊥AF ,即∠BEF =90°,∴BF 是B ,E ,F 三点确定的圆的直径.∵点F 在B ,E ,M 三点确定的圆上,即四点F ,E ,B ,M 在同一个圆上. ∴点M 在以BF 为直径的圆上. ∴FM ⊥AB.10分在Rt △AMF 中,由cos ∠FAM =AMAF,得AM =AF ·cos ∠FAM =2AE ·cos ∠EAB =2×8×45=645.11分∴MD =DA -AM =1607-645=35235.∴MD =35235.12分(1)求线段长度的方法有:①将线段放到直角三角形中利用勾股定理和三角函数概念求解;②将线段放到相似三角形中求解;③通过设未知量构造方程(组)求解.(2)“三点定圆”问题:①不在同一直线上的三点确定一个圆,圆心为顺次连接三点所形成的三角形三边垂直平分线的交点.锐角三角形外接圆的圆心在三角形内部,直角三角形外接圆的圆心在斜边中点处,钝角三角形外接圆的圆心在三角形外部;②解决“三点定圆”问题,通常先根据已知三点确定圆的圆心和直径(或半径),再由第四点也在该圆上用圆周角定理及其推论,以及其他知识解决问题.1.(2018·云南)如图,在▱ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC ,▱ABCD 的面积为S ,由A ,E ,F 三点确定的圆的周长为l.(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.解:(1)S =60.(2)证明:延长AE 与BC 的延长线交于点H. ∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠ADE =∠HCE ,∠DAE =∠CHE. ∵点E 为CD 的中点,∴CE =ED. ∴△ADE ≌△HCE (AAS ).∴AD =HC ,AE =HE.∴AD +FC =HC +FC ,即AF =FH. ∴∠FAE =∠CHE. 又∵∠DAE =∠CHE ,∴∠DAE =∠FAE.∴AE 平分∠DAF. (3)连接EF. ∵AE =BE ,AE =HE , ∴AE =BE =HE.∴∠BAE =∠ABE ,∠HBE =∠BHE. ∵∠DAE =∠CHE ,∴∠BAE +∠DAE =∠ABE +∠HBE ,即∠DAB =∠CBA. ∵∠DAB +∠CBA =180°.∴∠CBA =90°.∴AB 2+BF 2=AF 2,即16+(5-FC )2=(FC +AD )2=(FC +5)2,解得FC =45.∴AF =FC +AD =45+5=295.∵AE =HE ,AF =FH ,∴FE ⊥AH. ∴AF 是△AEF 的外接圆的直径. ∴△AEF 的外接圆的周长l =29π5. 2.如图,在矩形ABCD 中,AB =4,BC =8,E ,F 分别为AD ,BC 边上的点,将矩形ABCD 沿EF 折叠,使点A 落在BC 边的点G 处,点B 落在点H 处,AG 与EF 交于点O.(1)如图1,求证:以A ,F ,G ,E 为顶点的四边形是菱形;(2)如图2,当△ABG 的外接圆与CD 相切于点P 时,求证:点P 是CD 的中点; (3)如图2,在(2)的条件下,求AGEF的值.解:(1)证明:连接AF.由折叠性质可知,OA =OG ,EA =EG ,FA =FG ,∠AOE =∠GOF =90°. ∵四边形ABCD 是矩形, ∴AD ∥BC.∴∠AEO =∠GFO. 在△AEO 和△GFO 中, ⎩⎪⎨⎪⎧∠AEO =GFO ,∠AOE =∠GOF =90°,OA =OG ,∴△AEO ≌△GFO (AAS ).∴EA =FG. ∴EA =EG =FA =FG.∴四边形AFGE 是菱形. (2)证明:连接OP.∵四边形ABCD 是矩形, ∴∠B =∠D =∠C =90°.∵OA =OG ,∴点O 是Rt △ABG 的外接圆圆心. ∵⊙O 与CD 相切于点P ,∴OP ⊥CD. ∴ED ∥OP ∥FC.∴OE OF =PD PC .∵△AEO ≌△GFO ,∴OE =OF. ∴PD =PC ,即点P 是CD 的中点.(3)延长PO 交AB 于点Q ,则AQ =QB =12AB =2,∠AQO =90°.设⊙O 的半径为x ,则OG =OA =OP =x ,OQ =8-x. 在Rt △AQO 中,AQ 2+OQ 2=OA 2, ∴22+(8-x )2=x 2.解得x =174.∴OA =OG =OP =174,AG =172,OQ =154.∵OP ∥FC ,∴∠AOQ =∠FGO.又∵∠AQO =∠FOG =90°,∴△AQO ∽△FOG.∴AQ OF =OQ OG .∴2OF =154174,解得OF =3415. ∴EF =6815.∴AG EF =158.3.【发现】如图1,∠ACB =∠ADB =90°,那么点D 在经过A ,B ,C 三点的圆上.【思考】如图2,如果∠ACB =∠ADB =α(α≠90°)(点C ,D 在AB 的同侧),那么点D 还在经过A ,B ,C 三点的⊙O 上吗?我们知道,如果点D 不在经过A ,B ,C 三点的圆上,那么点D 要么在⊙O 外,要么在⊙O 内,以下该同学的想法说明了点D 不在⊙O 外.请结合图4证明点D 也不在⊙O 内.【结论】综上可得结论,如果∠ACB =∠ADB =α(点C ,D 在AB 的同侧),那么点D 在经过A ,B ,C 三点的圆上,即A ,B ,C ,D 四点共圆.【应用】利用上述结论解决问题:如图5,已知△ABC 中,∠C =90°,将△ACB 绕点A 顺时针旋转α(α为锐角)得△ADE ,连接BE ,CD ,延长CD 交BE 于点F.(1)用含α的代数式表示∠ACD 的度数; (2)求证:点B ,C ,A ,F 四点共圆; (3)求证:点F 为BE 的中点.解:【思考】证明:如图,假设点D 在⊙O 内,延长AD 交⊙O 于点E ,连接BE ,则∠AEB =∠ACB ,∵∠ADB 是△BDE 的外角,∴∠ADB >∠AEB. ∴∠ADB >∠ACB ,这与条件∠ACB =∠ADB 矛盾.∴点D 也不在⊙O 内.∴点D 即不在⊙O 内,也不在⊙O 外,点D 在⊙O 上. 【应用】(1)由题意可知,AC =AD ,∠CAD =α, ∴∠ACD =90°-12α.(2)证明:∵AB =AE ,∠BAE =α, ∴∠ABE =90°-12α.∴∠ACD =∠ABE.∴B ,C ,A ,F 四点共圆.(3)证明:∵B ,C ,A ,F 四点共圆, ∴∠BFA +∠BCA =180°.又∵∠ACB =90°,∴∠BFA =90°.∴AF ⊥BE. ∵AB =AE ,∴BF =EF ,即点F 为BE 的中点.类型2 与图形变换有关的几何综合题【例2】 (2019·昆明模拟)在矩形ABCD 中,AB =8,P 是AB 边上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,CG 交AD 于点E ,且BE ∥PG ,BE 交PC 于点F.(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;【思路点拨】 由AB =DC ,∠A =∠D =90°,AE =DE ,即可证明△AEB ≌△DEC. 【自主解答】 证明:∵四边形ABCD 为矩形, ∴AB =DC ,∠A =∠D. 又∵E 为AD 的中点, ∴AE =DE.∴△AEB ≌△DEC (SAS ).(2)如图2,请判断△PBF 的形状,并说明理由;【思路点拨】 结论:△PBF 为等腰三角形,证明∠BPF =∠BFP. 【自主解答】 解:△PBF 为等腰三角形.理由如下: 在矩形ABCD 中,∠ABC =90°, ∵△BPC 沿PC 折叠得到△GPC , ∴∠BPF =∠GPF .∵BE ∥PG , ∴∠GPF =∠BFP. ∴∠BPF =∠BFP. ∴BP =BF.∴△PBF 为等腰三角形.(3)如图2,①当AD =20时,求BP 的长;②当BP =5时,求BE ·EF 的值.【思路点拨】 ①根据△ABE ∽△DEC 得出比例式,列方程求出AE ,DE 的长,继而求出CE ,BE 的长,再由△ECF ∽△GCP 得出比例式,列方程求出BP 的长.②连接FG ,证出△GEF ∽△EAB ,得出比例式EF GF =ABBE ,从而把求BE ·EF转化为求AB ·GF.【自主解答】 解:①∵BE ∥PG ,∴∠BEC =∠PGC =90°. ∴∠AEB +∠CED =90°.∵∠AEB +∠ABE =90°,∴∠CED =∠ABE. 又∵∠A =∠D =90°,∴△ABE ∽△DEC. ∴AB AE =DE DC. 设AE =x ,则DE =20-x.∴8x =20-x8.解得x 1=4,x 2=16.经检验,x 1=4和x 2=16是原方程的解. ∵P 在AB 上,当P 与A 重合时AE 最大为11.6. 当G 在AD 上时,G 与E 重合,AE 最小为20-421, ∴AE =4,DE =16. ∴CE =85,BE =4 5. 由折叠的性质得,BP =PG , ∴BP =BF =PG.∵BE ∥PG ,∴△ECF ∽△GCP. ∴EF PG =ECGC. 设BP =BF =PG =y ,∴45-y y =8520.∴y =205-40.∴BP =205-40. ②连接FG ,∵BF ∥PG ,BF =PG ,∴四边形BFGP 为平行四边形. ∴BP =GF ,BP ∥GF. ∴∠GFE =∠ABE.又∵∠GEF =∠BAE =90, ∴△GEF ∽△EAB.∴EF GF =ABBE.∴BE ·EF =AB ·GF =AB ·BP =8×5=40.与图形变换有关的几何综合题,常涉及特殊三角形和特殊四边形的判定,线段之间的数量关系和位置关系探究,图形之间的关系探究等,解决这类问题,首先应熟练掌握图形的平移、旋转及轴对称的性质,明确图形变换前后哪些是不变的量,哪些是变化的量,然后用全等、相似、解直角三角形、方程和函数等数学模型求解.1.(2018·昆明T23·12分)如图1,在矩形ABCD 中,P 为CD 边上一点(DP<CP ),∠APB =90°.将△ADP 沿AP 翻折得到△AD ′P ,PD ′的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N.(1)求证:AD 2=DP ·PC ;(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC ,分别交PM ,PB 于点E ,F.若DP AD =12,求EFAE的值.解:(1)证明:在矩形ABCD 中, ∵AD =BC ,∠C =∠D =90°, ∴∠DAP +∠APD =90°. ∵∠APB =90°, ∴∠CPB +∠APD =90°. ∴∠DAP =∠CPB.∴△ADP ∽△PCB.∴AD PC =DPCB .∴AD ·CB =DP ·PC. ∵AD =BC ,∴AD 2=DP ·PC.(2)四边形PMBN 为菱形,理由如下: 在矩形ABCD 中,CD ∥AB. ∵BN ∥PM ,∴四边形PMBN 为平行四边形. ∵△ADP 沿AP 翻折得到△AD ′P.∴∠APD =∠APM.∵CD ∥AB ,∴∠APD =∠PAM. ∴∠APM =∠PAM.∵∠APB =90°,∴∠PAM +∠PBA =90°, ∠APM +∠BPM =90°. ∴∠PBA =∠BPM. ∴PM =MB.∴四边形PMBN 为菱形. (3)解法一: ∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB. ∵四边形ABCD 为矩形, ∴CD ∥AB 且CD =AB. 设DP =a ,则AD =2DP =2a , 由AD 2=DP ·PC ,得PC =4a , ∴DC =AB =5a.∴MA =MB =5a2.∵CD ∥AB ,∴∠ABF =∠CPF ,∠BAF =∠PCF. ∴△BFA ∽△PFC. ∴AF CF =AB CP =5a 4a =54.∴AF AC =59. 同理△MEA ∽△PEC. ∴AE CE =AM CP =5a24a =58. ∴AE AC =513. ∴EF AC =AF AC -AE AC =59-513=20117. ∵EF AC ∶AE AC =EF AE , ∴EF AE =20117∶513=49. 解法二:图3如图3,过点F 作FG ∥PM 交MB 于点G.∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB.∵四边形ABCD 为矩形,∴CD ∥AB 且CD =AB.设DP =a ,则AD =2DP =2a ,由AD 2=DP ·PC ,得PC =4a ,∴DC =AB =5a.∴MA =MB =5a 2. ∵CD ∥AB ,∴∠CPF =∠ABF ,∠PCF =∠BAF.∴△PFC ∽△BFA.∴PF BF =CP AB =4a 5a =45. ∵FG ∥PM ,∴MG BG =PF BF =45. ∴MG MB =49. ∵AM =MB ,∴MG AM =49. ∵FG ∥PM ,∴EF AE =MG AM =49.2.(2019·曲靖麒麟区模拟)已知,正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点M ,N ,AH ⊥MN 于点H.(1)如图1,当∠MAN 绕点A 旋转到BM =DN 时,请你直接写出AH 与AB 的数量关系:AH =AB ;(2)如图2,当∠MAN 绕点A 旋转到BM ≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立,请写出理由,如果成立,请证明;(3)如图3,已知∠MAN =45°,AH ⊥MN 于点H ,且MH =2,NH =3,求AH 的长.(可利用(2)得到的结论)解:(2)数量关系成立.理由如下:延长CB 至E ,使BE =DN.∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABE =90°.在Rt △AEB 和Rt △AND 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADN ,BE =DN ,∴Rt △AEB ≌Rt △AND (SAS ).∴AE =AN ,∠EAB =∠NAD.∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =∠EAM =45°.∴∠EAM =∠NAM.在△AEM 和△ANM 中,⎩⎪⎨⎪⎧AE =AN ,∠EAM =∠NAM ,AM =AM ,∴△AEM ≌△ANM (SAS ).∴S △AEM =S △ANM ,EM =MN.∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH.(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴BM =2,DN =3,AB =AH =AD ,∠B =∠D =90°.∵∠BAM =∠MAH ,∠HAN =∠DAN ,∴∠BAD =2∠MAH +2∠HAN =2∠MAN =90°.分别延长BM 和DN 相交于点C ,可得正方形ABCD ,∴AH =AB =BC =CD =AD.设AH =x ,则MC =x -2,NC =x -3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴52=(x -2)2+(x -3)2.解得x 1=6,x 2=-1(不符合题意,舍去).∴AH =6.3.(2019·天津)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.(1)如图1,求点E 的坐标;(2)将矩形CODE 沿x 轴向右平移,得到矩形C ′O ′D ′E ′,点C ,O ,D ,E 的对应点分别为C ′,O ′,D ′,E ′.设OO ′=t ,矩形C ′O ′D ′E ′与△ABO 重叠部分的面积为S.①如图2,当矩形C ′O ′D ′E ′与△ABO 重叠部分为五边形时,C ′E ′,E ′D ′分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当3≤S ≤53时,求t 的取值范围(直接写出结果即可).解:(1)∵点A (6,0),∴OA =6.∵OD =2,∴AD =OA -OD =6-2=4.∵四边形CODE 是矩形,∴CE ∥OD ,CE =OD =2,DE ∥OC.∴∠AED =∠ABO =30°.在Rt △AED 中,AE =2AD =8,ED =AE 2-AD 2=82-42=4 3.∴点E 的坐标为(2,43).(2)①由平移的性质得O ′D ′=2,E ′D ′=43,ME ′=OO ′=t ,D ′E ′∥O ′C ′∥OB ,∴∠E ′FM =∠ABO =30°.∴在Rt △MFE ′中,MF =2ME ′=2t ,FE ′=MF 2-ME ′2=(2t )2-t 2=3t.∴S △MFE ′=12ME ′·FE ′=12×t ×3t =3t 22. ∵S 矩形C ′O ′D ′E ′=O ′D ′·E ′D ′=2×43=83,∴S =S 矩形C ′O ′D ′E ′-S △MFE ′=83-3t 22. ∴S =-32t 2+83,其中t 的取值范围是0<t <2. ②当2≤t<4时,如图3所示,O ′A =6-t ,D ′A =6-t -2=4-t.∴O ′G =3(6-t ),D ′F =3(4-t ).∴S =12[3(6-t )+3(4-t )]×2=-23t +10 3. ∵-23<0,∴S 随t 增大而减小,∴23<S ≤6 3.∴令S =53,即-23t +103=5 3.解得t =52. ∴当52≤t<4时,23<S ≤53;当4≤t<6时,如图4所示,O ′A =OA -OO ′=6-t.∵∠AO ′F =90°,∠AFO ′=∠ABO =30°,∴O ′F =3O ′A =3(6-t ).∴S =12(6-t )×3(6-t )=32(t -6)2(4≤t<6). 又∵当4≤t<6时,S 随t 增大而减小,∴0<S ≤2 3. ∴令S =3,即32(t -6)2= 3. 解得t 1=6-2,t 2=6+2(舍去).∴t =6- 2.∴当4≤t ≤6-2时,3≤S ≤2 3.综上所述,当3≤S ≤53时,t 的取值范围为52≤t ≤6- 2.拓展类型 其他问题1.(2019·眉山)如图,正方形ABCD 中,AE 平分∠CAB ,交BC 于点E ,过点C 作CF ⊥AE ,交AE 的延长线于点G ,交AB 的延长线于点F.(1)求证:BE =BF ;(2)如图2,连接BG ,BD ,求证:BG 平分∠DBF ;(3)如图3,连接DG 交AC 于点M ,求AE DM的值.解:(1)证明:在正方形ABCD 中,∠ABC =90°,AB =BC ,∴∠EAB +∠AEB =90°.∵AG ⊥CF ,∴∠BCF +∠CEG =90°.又∵∠AEB =∠CEG ,∴∠EAB =∠BCF.在△ABE 和△CBF 中,⎩⎪⎨⎪⎧∠EAB =∠BCF ,AB =CB ,∠ABE =∠CBF ,∴△ABE ≌△CBF (ASA ).∴BE =BF.(2)∵AE 平分∠CAB ,CF ⊥AE 于G ,∴∠CAG =∠FAG =22.5°,∠AGC =∠AGF.在△AGC 和△AGF 中,⎩⎪⎨⎪⎧∠CAG =∠FAG ,AG =AG ,∠AGC =∠AGF ,∴△AGC ≌△AGF (ASA ).∴CG =GF ,∠ACG =∠AFG.又∵∠CBF =90°,∴GB =GC =GF ,∠GBF =∠GFB =90°-∠GAF =90°-22.5°=67.5°.∴∠DBG =180°-67.5°-45°=67.5°,即∠GBF =∠DBG.∴BG平分∠DBF.(3)连接BG.∵∠DCG=90°+22.5°=112.5°,∠ABG=180°-67.5°=112.5°,∴∠DCG=∠ABG.又∵DC=AB,CG=BG,∴△DCG≌△ABG(SAS).∴∠CDG=∠GAB=22.5°.∴∠CDG=∠CAE.又∵∠DCM=∠ACE=45°,∴△DCM∽△ACE.∴AEDM=ACDC= 2.2.(2019·红河弥勒市二模)问题背景:折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B′E的位置,得到折痕MN,B′E与AB交于点P,则P即为AB的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)设正方形边长为1,求线段MC的长度;(3)利用线段MC的长度,证明P点是AB的三等分点(即证明AP∶PB=2∶1).发现感悟若改变E点在正方形纸片ABCD的边AD上的位置,重复“问题背景”中操作2的折纸过程,请你根据上面得到的结论,思考并解决如下问题:(不写过程,直接回答)(4)如图2.若DE∶AE=2∶1,则AP∶PB=4∶1;(5)如图3,若DE∶AE=3∶1,则AP∶PB=6∶1;解:(1)证明:由折叠可得,CM=EM,CQ=EQ,∠CMQ=∠EMQ,四边形CDEF是矩形,∴CD ∥EF.∴∠CMQ =∠EQM.∴∠EQM =∠EMQ.∴ME =EQ.∴CM =ME =EQ =CQ.∴四边形EQCM 是菱形.(2)设CM =x ,则EM =x ,DM =1-x ,在Rt △DEM 中,由勾股定理得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x )2.解得x =58.∴MC =58. (3)设正方形边长为1,由(2)得CM =58,则DM =38. ∵∠PEM =∠D =90°,∴∠AEP +∠DEM =90°,∠DEM +∠EMD =90°.∴∠AEP =∠DME.又∵∠A =∠D =90°,∴△AEP ∽△DME.∴AP AE =DE DM ,即AP 12=1238.解得AP =23. ∴PB =13.∴AP ∶PB =2∶1.3.(2019·昆明西山区二模)如图1,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,如果点P 由B 出发沿PA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4),解答下列问题:(1)当t 为何值时,PQ ∥BC?(2)设△APQ 面积为S (单位:cm 2),当t 为何值时,S 取得最大值?并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)如图2,把△AQP 沿AP 翻折,得到四边形AQPQ ′,那么是否存在某时刻t ,使四边形AQPQ ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.解:∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角.(1)BP =AQ =2t ,则AP =10-2t.∵PQ ∥BC ,∴AP AB =AQ AC ,即10-2t 10=2t 8,解得t =209. ∴当t =209s 时,PQ ∥BC.答图1(2)如答图1所示,过点P 作PD ⊥AC 于点D.∴PD ∥BC.∴AP AB =PD BC ,即10-2t 10=PD 6,解得PD =6-65t. S =12×AQ ·PD =12×2t ×(6-65t ) =-65t 2+6t =-65(t -52)2+152. ∴当t =52 s 时,S 取得最大值,最大值为152cm 2. (3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP =12S △ABC ,而S △ABC =12AC ·BC =24, ∴此时S △AQP =12.由(2)可知,S △AQP =-65t 2+6t , ∴-65t 2+6t =12,化简得t 2-5t +10=0. ∵Δ=(-5)2-4×1×10=-15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.答图2(4)方法1,假设存在时刻t ,使四边形AQPQ ′为菱形,则有AQ =PQ =BP =2t.如答图2所示,过P 点作PD ⊥AC 于点D ,则有PD ∥BC ,∴AP AB =PD BC =AD AC ,即10-2t 10=PD 6=AD 8. 解得PD =6-65t ,AD =8-85t.∴QD =AD -AQ =8-85t -2t =8-185t. 在Rt △PQD 中,由勾股定理得QD 2+PD 2=PQ 2,即(8-185t )2+(6-65t )2=(2t )2, 化简得13t 2-90t +125=0,解得t 1=5,t 2=2513. ∵t =5 s 时,AQ =10 cm>AC ,不符合题意,舍去,∴t =2513s. 由(2)可知,S AQP =-65t 2+6t , ∴S 菱形AQPQ ′=2S △AQP =2×(-65t 2+6t )=2×[-65×(2513)2+6×2513]=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2. (或连接QQ ′交AB 于N ,利用相似三角形的性质,求出QN ,菱形的面积等于△AQN 面积的4倍)答图3方法2,如答图3.过点Q 作QH ⊥AB 于H ,∵四边形AQPQ ′是菱形,∴AQ =PQ =2t.∴AH =12AP =12(10-2t )=5-t. ∵∠AHQ =∠ACB =90°,∠HAQ =∠CAB ,∴△AHQ ∽△ACB.∴AH AC =AQ AB =QH BC. ∴5-t 8=2t 10=QH 6. ∴t =2513,QH =3013. ∴S 菱形AQPQ ′=2S △AQP =2×12(10-2×2513)×3013=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2.。
中考数学解答题压轴题突破 重难点突破十 几何综合题

(1)证明:∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠A=90°.
∵点 E,F 分别是 AB,CD 的中点,
1
1
∴AE=2AB,DF=2CD,∴AE=DF.
∵AE∥DF,∴四边形 AEFD 是平行四边形,
∵∠A=90°,∴四边形 AEFD 是矩形.
(2)解:如解图①,连接 OA,AM, ∵点 A 关于 BP 的对称点为点 M, ∴BP 垂直平分 AM, ∴OA=OM. ∵四边形 AEFD 是矩形, ∴EF⊥AB. ∵点 E 是 AB 的中点, ∴EF 垂直平分 AB, ∴OA=OB,∴OB=OM.
(3)证明:如解图,连接 AC,过点 B 作 BP∥AC 交 AF 的延长线于点 P, ∴△BFP∽△CFA, ∴BCFF=BCPA, ∵四边形 ABCD 是平行四边形,AB=AD, ∴四边形 ABCD 是菱形, ∵∠ABC=60°, ∴∠PBC=∠ACB=60°. ∴∠ABP=120°,∴∠DAE=∠ABP,
在△ADE 与△BAP 中, ∠DAE=∠ABP, AD=AB, ∠ADE=∠BAF, ∴△ADE≌△BAP(ASA),
∴AE=BP,
又∵AC=AD, BF AE
∴CF=AD.
类型二:动点问题
(省卷:2017T23;昆明:2020T23)
(2020·岳阳)如图 1,在矩形 ABCD 中,AB=6,BC=8,动点 P,Q 分別从 C 点,A 点同时以每秒 1 个单位长度的速度出发,且分别在边 CA, AB 上沿 C→A,A→B 的方向运动,当点 Q 运动到点 B 时,P,Q 两点同时 停止运动.设点 P 运动的时间为 t(s),连接 PQ,过点 P 作 PE⊥PQ,PE 与边 BC 相交于点 E,连接 QE.
2019-2020年九年级中考数学总复习测试卷(专题1数与式)

A. 分钟
B. 分钟
பைடு நூலகம்
C.分钟
D.分钟
解析 :8 元中减去第 1 分钟的话费 a 元,剩下的是之后的话费 ,将其除以 b,得到之后打电话的时
间,再加上第 1 分钟就是总时间 ,即总时间为 +1=.
答案 :C
2
9.已知 P=m-1,Q=m -m,m 为任意实数 ,则 P 与 Q 的大小关系是 ( )
A.P>Q
B.P=Q
C.P<Q
D.无法确定
解析 :Q-P=m2-m+1=>0,
∴Q>P,即 P<Q.
答案 :C
10.任何一个正整数 n 都可以进行这样的分 解 :n=s ×t(s,t 是正整数 ,且 s≤ t),如果 p×q 在 n 的所 有这种分解中两因数之差的绝对值最小 ,我们就称 p×q 是 n 的最佳分解 ,并规定 :F(n)=. 例如 18 可 以 分 解 成 1×18,2 ×9,3 ×6 这 三 种 , 这 时 就 有 F(18)=. 给 出 下 列 关 于 F(n) 的 说 法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4) 若 n 是一个完全平方数 ,则 F(n)=1. 其中正确说法的个数是
个数 1,2,1 恰好对应 (a+b)2=a2+2ab+b2 展开式中的系数 ;第四行的四个数
(a+b)
33 2
=a +3a b+3ab
2
+b
3
展开式中的系数
……
1,3,3,1 恰好对应
(1) 根据上面的规律 ,写出 (a+b) 5 的展开式 ; (2) 利用上面的规律计算 :25-5 ×24+10 ×23-10 ×22+5×2-1. 解: (1)(a+b) 5=a5 +5a4b+10a3 b2 +10a2 b3+5ab4+b5 .
2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)
中考数学专题几何函数压轴题专题1.如图,抛物线y=ax2-bx+3 交x 轴于B(1,0),C(3,0)两点,交y 轴于点A,连接AB,点P 为抛物线上一动点.(1)求抛物线的解析式;(2)当点P 到直线AB 的距离为7 10时,求点P 的横坐标;9(3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图2.如图1,在平面直角坐标系中,直线y=x+4 与抛物线y =-1x2 +bx +c (b,c 2是常数)交于A,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.(1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A,B 重合).①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D,求PD的最大值;OD②如图3,若点P 在x 轴上方,连接PC,以PC 为一边作正方形CPEF.随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.23. 如图,抛物线y=ax2+bx+4(a≠0)交x 轴于点A(4,0),B(-2,0),交y 轴于点C.(1)求抛物线的解析式.(2)点Q 是x 轴上位于点A,B 之间的一个动点,点E 为线段BC 上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE 的面积为S,点Q 的横坐标为m,求出S 关于m 的函数关系式,并求出当S 取最大值时点Q 的坐标.(3)点P 为抛物线上位于AC 上方的一个动点,过点P 作PF⊥y 轴,交直线AC 于点F,点D 的坐标为(2,0),若O,D,F 三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =-3x2 +bx +c 与x 轴交于A,B 两点,与y 轴交于点C,直4线y =3x + 3 经过点A,C.4(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM∥y 轴交直线AC 于点M,设点P 的横坐标为t.①若以点C,O,M,P 为顶点的四边形是平行四边形,求t 的值.②当射线MP,MC,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2 与x 轴交于A,B 两点,与y 轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH⊥EO,垂足为H.设PH 的长为a,点P 的横坐标为m,求a 关于m 的函数关系式(不必写出m 的取值范围),并求出a 的最大值.(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值.(2)点E 是直角三角形ABC 斜边AB 上一动点(点A,B 除外),过点E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E 的坐标.(3)在(2)的条件下:①求以点E,B,F,D 为顶点的四边形的面积;② 在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,直接写出所有点P 的坐标;若不存在,说明理由.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x 轴于A,C 两点,与直线y=x-1 交于A,B 两点,直线AB 与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P 在直线AB 上方的抛物线上运动,若△ABP 的面积最大,求此时点P 的坐标;(3)在平面直角坐标系中,以点B,E,C,D 为顶点的四边形是平行四边形,请直接写出符合条件点D 的坐标.8.如图,已知抛物线y =ax2 +3x + 4 的对称轴是直线x=3,且与x 轴相交于A,2B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A,B 两点的坐标.(2)若点P 是抛物线上B,C 两点之间的一个动点(不与B,C 重合),则是否存在一点P,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N,当MN=3 时,求点N 的坐标.9.如图,抛物线y=1x2 +bx +c 经过点A( 2 3(1)求该抛物线的解析式;,0)和点B(0,-2).(2)若△OAB 以每秒2 个单位长度的速度沿射线BA 方向运动,设运动时间为t,点O,A,B 的对应点分别为D,E,C,直线DE 交抛物线于点M.①当点M 为DE 的中点时,求t 的值;②连接AD,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图310.如图,抛物线y=ax2+bx-2 的对称轴是直线x=1,与x 轴交于A,B 两点,与y 轴交于点C,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD⊥x 轴于点D,交直线BC 于点E.(1)求抛物线解析式.(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N,使得以点B,D,M,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0),抛物线y=-x2+bx+c 经过A,B 两点.(1)求抛物线的解析式.(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D,交线段AB 于点E,使PE 1DE .2①求点P 的坐标和△PAB 的面积.②在直线PD 上是否存在点M,使△ABM 为直角三角形?若存在,直接写出符合条件的所有点M 的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+2 与直线y=-x 交第二象限于点E,与x 轴交于A(-3,0),B 两点,与y 轴交于点C,EC∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y=-x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.13. 如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4 交于B,D 两点.(1)求抛物线的解析式及点D 的坐标;(2)点P 为直线BD 下方抛物线上的一个动点,求△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B,D 的动点,过点Q 作QF⊥x 轴于点F,交抛物线于点G,当△QDG 为直角三角形时,直接写出点Q 的坐标.1314.如图,抛物线y=ax2+bx+c 交x 轴于点A(1,0)和点B(3,0),交y 轴于点C,抛物线上一点D 的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,PE∥x 轴,PF∥y 轴,求线段EF 的最大值;(3)如图2,点M 是线段CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M 的坐标.15.如图,已知抛物线y=ax2+4x+c 与x 轴交于点M,与y 轴交于点N,抛物线的对称轴与x 轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO 为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM 中有一边的长等于MP 时,请直接写出点 A 的坐标.16.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1 过A,B 两点,并与过点A 的直线y =-1x -1 交于点C.2(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C 为顶点的三角形与△AOC 相似?若存在,求出点N 的坐标;若不存在,请说明理由.17.如图,直线l:y =1x +m 与x 轴交于点A(4,0),与y 轴交于点B,抛物线2y=ax2+bx+c(a≠0)经过A,B 两点,且与x 轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P 是抛物线上一动点,当点P 在直线l 下方的抛物线上运动时,过点P 作PM∥x 轴交l 于点M,过点P 作PN∥y 轴交l 于点N,求PM+PN 的最大值;(3)在(2)的条件下,当PM+PN 的值最大时,将△PMN 绕点N 旋转,当点M 落在x 轴上时,直接写出此时点P 的坐标.18.如图,已知抛物线y=ax2+x+c 与y 轴交于点C(0,3),与x 轴交于点A 和点B(3,0),点P 是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P 是点B 与点C 之间的抛物线上的一个动点,过点P 向x 轴作垂线,交BC 于点D,求线段PD 长度的最大值;(3)当点P 移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.19.在平面直角坐标系内,直线y =1x + 2 分别与x 轴、y 轴交于点A,C.抛物2线y =-1x2 +bx +c 经过点A 与点C,且与x 轴的另一个交点为点B.点D2在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D 到直线AC 的最大距离以及此时△ADC 的面积;(3)过点D 作DF⊥AC,垂足为点F,连接CD.若△CFD 与△AOC 相似,求点D 的坐标.20.如图,抛物线y=ax2+bx-3 过A(1,0),B(-3,0),直线AD 交抛物线于点D,点D 的横坐标为-2,点P(m,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式.(2)过点P 的直线垂直于x 轴,交抛物线于点Q,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.21.如图,抛物线y=-x2+bx+c 交x 轴于A,B 两点,交y 轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上的一动点,求△BCP 面积S 的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M 的坐标.21参考答案:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。
2020年数学中考复习:压轴几何证明题的解法(含答案)
2020年数学中考复习:压轴几何证明题的解法1.(2019.葫芦岛)如图,△ABC 是等腰直角三角形,∠ACB =900,D 是射线CB 上一点(点D 不与点B 重合),以AD 为斜边作等腰直角三角形ADE (点E 和点C 在AB 的同侧),连接CE 。
(1)如图①,当点D 与点C 重合时,直接写出CE 与AB 的位置关系;(2)如图②,当点D 与点C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC =150时,请直接写出AB CE 的值。
解析:(1)由∠ECA =∠CAB =450,可得EC ∥AB 。
(2)由22=AB AC =AD AE ,且∠EAC =∠DAB ,可得△EAC ∽△DAB 进而得出∠ECA =∠DBA =450=∠CAB ,所以CE ∥AB .(3)此问分两种情况点D 在BC 上,点D 在CB 延长线上。
①当点D 在BC 上时,如图(2),此时∠CAB =150能得出∠CAD =300,这样就有33=AC CD ,也就是BC -DB =33AC ,BC =AC ,所以BD =333-AC 。
又由△EAC ∽△DAB 得21=BD CE ,因此有BD =2CE ,所以可得CE =6623-AC ,又AB =2AC ,因此ABCE =63-3.当D 点在CB 延长线上时,∠CDA =300,解三角形得3AC =3CD 。
CD =BC +BD ,由△AEC ∽△ABD ,可得BD =2AC ,就能得到CE =AC2-13,AB =2AC ,所以2-13=AB CE . 2.(2019.沈阳)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是_200_米。
2020中考数学压轴题:9种题型5种策略
2020中考数学压轴题:9种题型+5种策略数学压轴题不会做,没思路,怎么破?中高考的设立是为了高一级学校选拔优秀人才提供依据,其中中高考压轴题更是为了考查学生综合运用知识的能力而设计的题型,具有知识点多、覆盖面广、条件隐蔽、关系复杂、思路难觅、解法灵活等特点。
因此,如何解中高考数学压轴题成了很多同学关心话题。
下面介绍几种常用的压轴题的九种形式和解题策略,供大家参考学习!九种题型1线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
2020年中考数学专题 几何综合(含答案)
2020年中考数学专题 几何综合(含答案)一、单选题1.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6B .8C .10D .2.已知∠A =55°,则它的余角是( )A .25°B .35°C .45°D .55°3.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为 A. B .2 C .1D .24.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点,若AB=10 cm,BC=4cm,则AD 的长为( )A.2 cmB.3 cmC.4 cmD.6 cm5.如图,OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线。
如果∠AOB=40°,∠COE=60°,则∠BOD 的度数为( )A. 50B. 60C. 65D. 70MD AB C E6.如图,点(,1)A a 、(1,)B b -都在双曲线3(0)y x x=-<上,点P 、Q 分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是( )A .y x =B .1y x =+C .2y x =+D .3y x =+7.如图,在Rt△ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( ) A .2 B .3 C .4 D .58.如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( )A. 3≤OM ≤5B. 4≤OM ≤5C. 3<OM <5D. 4<OM <59.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm ,30 cm ,10 cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只壁虎,它想到B 点去吃可口的食物,请你想一想,这只壁虎从A 点出发,沿着台阶面爬到B 点,至少需爬( )A .13 cmB .40 cmC .130 cmD .169 cm10.下列说法错误..的是( ) A .抛物线2y x x =-+的开口向下 B .两点之间线段最短C .角平分线上的点到角两边的距离相等D .一次函数1y x =-+的函数值随自变量的增大而增大 二、填空题11.如图,已知圆柱体底面圆的半径为2π,高为2,AB ,CD 分别是两底面的直径.若一只小虫从A 点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是________(结果保留根号).12.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若AB=4cm ,AC=10cm ,则CD= cm.13.α∠的补角为127°33′,则α∠=14.如图,已知直线AB 和CD 交于点O ,ON 平分∠DOB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学专题复习:中考数学填空压轴常见类型——几何综合(1) 一、综述 中考数学填空题既考查基本知识、技能、方法,也对考生的思维能力有一定要求.与选择题类似,填空题也不要求写出求解过程,只要结果;不同的是,填空题没有选项,不能利用选项的提示,但是同时也避免了受到选项的误导.一般而言,第14,15题难度较高 1. 几何综合 常与平移、旋转、折叠(轴对称)等操作结合起来,在动态背景下考查;当题目无图或以存在性问题的形式出现时,往往需要分类讨论. 解题方法: ①标注条件,合理转化 合理标注长度、角度信息,借助图形性质进行转化. ②组合特征,分析结构 在熟悉的背景、结构下研究特征间的关系,如三角形,四边形,圆等. ③由因导果,执果索因 2. 函数综合 主要考查函数与几何综合问题以及数形结合思想在函数问题中的应用. 解题方法: ①研究坐标,表达式,分析背景图形 ②梳理条件,整合信息 从关键点坐标切入,探究点的坐标,函数图象,几何图形三者间的关系. ③设计方案求解 利用数形结合思想,将函数问题转化为方程、不等式问题 求解. 由几何特征表达点坐标,代入函数表达式求解. 由函数表达式设出点坐标,借助几何特征求解. 3. 规律探究 规律探究是一类由简单、局部、特殊情形猜想、验证一般性规律的问题.主要考查学生归纳推理能力. 解题方法: ①明确探究目标 ②通过列举简单、局部、特殊的几种情形来猜测一般规律 往往将序列号与目标对应起来,从首个开始列举,常列举3-5组数据.数字规律常考虑和、差、积、商、乘方等关系,式子规律常考虑结构关系,图形规律常用方法是分类、补形、去重,或转化为数字规律、式子规律. ③验证 几何综合 1. 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处.若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是__________.
B'A'
FED
CBA
BC
FAENMD
第1题图 第2题图 2. 如图,将长为4cm,宽为2cm的矩形纸片ABCD折叠,使点B落在CD边的中点E处,压平后得到折痕MN,则线段AM的长为__________. 3. 如图,在矩形ABCD中,E是CD边的中点,将△ADE沿AE折叠后得到△AFE,
且点F在矩形ABCD内部,延长AF交BC边于点G.若1CGGBk,则ADAB__________.(用含k的代数式表示)
BCFAEGD
BCAO 第3题图 第4题图 4. 如图,AB是半圆O的直径,且8AB,C为半圆O上的一点.将此半圆沿BC所在
的直线折叠,若折叠后的圆弧BC恰好过圆心O,则图中阴影部分的面积是__________.(结果保留π)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG. 若△ADG和△ADE的面积分别为50和39,则△DEF的面积为__________. GBCFAED BCMAEND
第5题图 第6题图
5. 如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE.点M,N分别在边BC,DE上,当△AMN的周长最小时,∠AMN+∠ANM的度数为__________. 6. 如图,在6×4的方格纸中,每个小正方形的顶点称为格点,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是图中的__________.
乙甲QPN
M BCFAEGD
第7题图 第8题图
7. 如图,菱形ABCD和菱形AEFG开始时互相重合,现将菱形AEFG绕点A顺时针旋转,设旋转角∠BAE=α(0°< α <360°),则当α=___________时,菱形AEFG的顶点F会落在菱形ABCD的对角线AC或BD所在的直线上. 8. 如图,∠ABC=90°,点B在⊙O上,∠ABC的两边分别交⊙O于点D,E,BD=4,BE=8.将∠ABC绕点B顺时针旋转30°,旋转后的对应边分别交⊙O于点F,G,则点D到FG的距离为__________.
9. 如图,Rt△ABC的边BC位于直线l上,AC=3,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地翻转,则当点A第3次落在直线l上时,点A所经过的路线长为__________.(结果保留π)
lBAC
OB
CFAE
GD10. 如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中阴影部分)的面积为_________cm2.
A1
B1
BAC
G
BACFDE
第11题图 第12题图 11. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,则在旋转过程中,DG长度的最大值是__________. 12. 如图,P是等腰直角三角形ABC外一点,将BP绕点B顺时针旋转90°到BP′,若∠AP′B=135°,且P′A:P′C=1:3,则P′A:PB=__________.
13. 劳技课上小敏拿出了一个腰长为8厘米,底边长为6厘米的等腰三角形,她想用这个等腰三角形加工成一个邻边之比为1:2的平行四边形,且该平行四边形的一个内角恰好是这个等腰三角形的底角,其他顶点均在三角形的边上,则这个平行四边形较短边的长为__________. 14. 已知等边三角形ABC的高为4,P为这个三角形所在的平面内一点,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离是________,最大距离是________. 15. 如图,在矩形ABCD中,AB=3,BC=4,E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为__________.
B'EDBC
A
FPACBDEQ
P'PCB
A第16题图 第17题图 16. 如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE,DF分别交AC,BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为__________. 17. 如图,射线QN与等边三角形ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=BM=2cm,QM=4cm.动点P从点Q出发,沿射线QN以1cm/s的速度向右移动,经过t s,以点P为圆心,3cm为半径的圆与△ABC的边相切(切点在边上),则t的值为_______________.
MNB
AC
Q
函数综合 18. 在平面直角坐标系中,一次函数123yx与反比例函数50yxx()的图象交点的横坐标为0x.若01kxk,则整数k的值是___________. 19. 如图,抛物线292yxbx与y轴相交于点A,与过点A且平行于x轴的直线相交于点B(点B在第一象限),抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移该抛物线,使其经过点A,D,则平移后的抛物线的解析式为__________________.
ABCDx
yO -1x=1
xyO 第20题图 第21题图 20. 已知二次函数2yaxbxc(a≠0)的图象如图所示,有下列5个结论:①0abc;②cab;③024cba;
④bc32;⑤)(bammba(1m).其中正确结论的序号是___________________. 21. 如图,Rt△ABC在第一象限,∠BAC=90°,AB=AC=2,点A在直线y=x上,且点A的横坐
标为1,AB∥x轴,AC∥y轴.若双曲线kyx(k≠0)与△ABC有交点,则k的取值范围是__________.
22. 如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平
面直角坐标系,点B的坐标为(2,0).若抛物线212yxk与扇形OAB的边界总有两个公共点,则实数k的取值范围是__________.
xOB
yA
45° EMOxByA
第23题图 第24题图 23. 如图,在平面直角坐标系xOy中,点B的坐标为(0,3),点A在第一象限,且AB⊥OB,E是线段OA的中点,点M在线段AB上.若点B与点E关于直线OM对称,则点M的坐标是___________. 24. 如图,在平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,将线段PC绕点P顺时针旋转90°至线段PD,过点D作x轴的垂线,交直线y=x于点A,交x轴于点B,且BD=2AD.若直线CD与直线y=x交于点Q,则点Q的坐标为___________.
QPD
BxACyO
y
xDEACOB 第25题图 第26题图 25. 如图,△ABO为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线
CE交AO于点D,交AB于点E,且使S△ADE=S△OCD.若点E在双曲线kyx
(x<0)上,则k的值为___________.
ABCO1xy