数控机床故障诊断与维修实例
数控机床接口状态诊断维修实例

成激光功率选择。根据输入到激光 源的 P C的信号 L 线可知该激光有 6 组功率选择。通过诊断信号 Q . 4 72 77可知 N . C有信号输出 , P C模块无信号输入 , 但 L
~
据此判断可能是信号 电缆断线或接 口板有故障。对信
号 电缆进 行通 断测试 没发 现断线 , C输 入到接 口板 的 N
个档是低速档 , 8个档是高速档。它是通过数控系 后
统发出 7 信号 , 个 对变速组合 电路进行 控制 , 转换成
1 个动作 , 6 分别操纵 8 个电磁阀并通过油缸推动齿轮 变换 主轴速 度, 当齿 轮 啮合好 后 , 行程 开关 ( X 1 K~ 8 K 压合相应继 电器 , X ) 继电器节点接通 FN继 电器 , I 向数控系统发出变速完毕信号。通过手动和程序换档 发现主轴变速的 8 电磁阀控制信号 8 . 8. 个 00~ 07中 8. 05始终为“ ” 0 。该信号是控制电磁 阀 6的, 且根据 主轴变速的电磁阀动作循环表 ( 1 进行分析 , 表 ) 发现 该故障也是因为电磁 阀 6 T没动作引起。电磁 阀没 C 动作的原因可能是电磁阀坏或变速组合电路故障或控 制中间继电器的驱动集成块 742损坏。它们三者之 56 间相应 的控制原理如图 1 。经过逐一排除发现接 口板
信号是有的, 而接 口板无输 出信号 , 因此判断是接 口板 故障。通 过 对 接 口板 仔 细 观 察 发 现 一 集 成 块 U N 92 ( 通道信号源 ) D 28 A 8 崩裂 , 集成块的静态参数
完全 发生 改变 , 而该 集成 块 恰 好 是 完成 激 光 功 率选 组
转速
3 2 4 0 5 0 6 3 8 0 10 0 15 2 10 6
第7章 数控机床机械装置故障诊断与维修

2)用顺序选刀方式选刀时,必须注意刀具放置在 刀库上的顺序要正确。其他选刀方式也要注意所 换刀具号是否与所需刀具一致,防止换错刀具导 致事故发生。
3)用手动方式往刀库上装刀时,要确保装刀到位、 装牢靠。检查刀座上的锁紧是否可靠。
4)经常检查刀库的回零位置是否正确,检查机床 主轴回换刀点位置是否到位,并及时调整,否则 不能完成换刀动作。 5)要注意保持刀具刀柄和刀套的清洁。 6)开机时,应先使刀库和机械手空运行,检查各 部分工作是否正常,特别是各行程开关和电磁阀 能否正常动作。检查机械手液压系统的压力是否 正常,刀具在机械手上锁紧是否可靠,发现不正 常及时处理。
在操作过程中会出现不正常现象
二、机械部件故障常见类型
1.按照故障发生的原因分 1)磨损性故障:正常磨损而引发的故障; 2)错用性故障:使用不当而引发的故障; 3)先天性故障:由于设计或制造不当而造成机械系统 中存在某种薄弱环节而引发的故障。 2.按照故障的性质分 1)间歇性故障:只是短期内丧失某些功能,稍加修理 调试就能恢复,不需要更换零件; 2)永久性故障:某些零件已损坏,需要更换或修理才 能恢复。
1)突发性故障:不能靠早期测试检测出来的故障; 2)渐发性故障:故障发展有一个过程,可以对其进行 预测和监视。
机械部件故障常见类型
6.按照故障发生的频次 1)偶发性故障:发生频率很低的故障;
2)多发性故障:经常发生的故障。
7.按照故障发生、发展的规律分 1)随机性故障:故障发生的时间是随机的; 2)有规则故障:故障发生比较有规则。
15)经常检查压缩空气气压,并调整到标准要求值。足够 的气压能使主轴锥孔中的切屑和灰尘清理彻底。
七、主轴常见故障诊断与维修
(1)主轴发热 (2)主轴在强力切削时停转
数控机床典型故障诊断与维修

数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。
通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。
这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。
2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。
电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。
3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。
传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。
4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。
润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。
5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。
硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。
比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。
3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。
综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。
硬件故障维修是数控机床故障维修的重要内容之一。
硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。
数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。
数控机床常见故障的诊断与排除范文

数控机床常见故障的诊断与排除范文数控机床在工业生产中扮演着重要的角色,但由于各种原因,常会出现故障现象。
正确和及时地诊断和排除数控机床的故障对于保证生产效率和质量至关重要。
本文将从机床电气系统、液压系统和机床传动系统三个方面介绍数控机床常见故障的诊断与排除方法。
一、机床电气系统故障的诊断与排除1. 确认电气设备是否正常工作:首先检查主控电源是否通电,然后检查伺服电机、电源模块和电气控制柜的指示灯是否正常亮起。
如果没有亮起,可以首先检查电源插头是否插紧,保险丝是否烧断等。
2. 检查电气接线是否正确:检查机床各个电气元件之间的接线是否正确,包括电机的接线、开关和按钮的接线等。
如果发现接线松脱或接错,应及时重新接线并固定好。
3. 检查伺服电机是否正常工作:在机床上选择一个工作轴,将伺服电机的转动方向以及电机的位置控制进行调试。
如果发现伺服电机无法正常运动或位置偏差过大,可以通过检查电机的供电电压是否稳定、编码器信号是否正常等来判断故障原因,并进行相应的维修和调整。
4. 检查PLC程序是否正常:使用编程软件连接数控机床的PLC,检查程序是否正确加载和运行。
如若发现程序错误或异常,可以通过修改程序或重新下载程序的方法进行排除。
二、液压系统故障的诊断与排除1. 检查液压系统是否漏油:检查液压系统的油箱和管路是否有泄漏现象,如果有漏油情况,可以检查液压管路是否松动、密封件是否老化破裂等,并及时更换和修理。
2. 检查液压系统的油压是否正常:通过液压系统的压力表检测液压油的压力是否在正常工作范围内。
如果压力过高或过低,可以检查液压阀门是否正常、油泵是否工作正常等。
3. 检查液压系统的油温是否过高:液压系统油温过高会影响液压系统的正常工作。
通过使用温度计检测液压油的温度是否超过规定范围,如若超过,可以检查液压油冷却装置是否正常工作、油散热器是否堵塞等。
4. 检查液压系统的操作阀门是否正常:液压系统的操作阀门控制着液压缸、驱动装置等的运动。
典型数控机床的故障诊断与维修实例

散热器温度 较高 ,怀疑因散热不好导致故 障出现 。首 先增 加电源的散热 面积 ,其次将显示器及操作面板的
因高频发生器 中集 成 电路 7 5 5 5和 N 55损 坏导 E5 致没有 高频输 出,以及 轴驱 动 电路 中的 光 电耦 合
2 2 解 决 办 法 .
高频发生器 中的场效应管损坏导致钼丝带电 ,更
换 I F 20 R P 5 N型效应管 ,故障排除 ,设备正 常工作 。 3 某铣 削 中心 某铣削 中心在工作过程 中显示器屏幕跳动 ,使设
备无法正常工作 。 3 1 故 障判 断 .
1 1 诊 断过程 . 首先设备在工 作过 程 中 轴 的步进 电动 机声 音 特别大 ,怀疑步进电动机有 问题 ,但是 ,经单独检测
过程中 轴丢步 ,加 工完 零件 后机 床不 能 回到 坐标
原点。
检查控制线路板 ,没有发现线路板及元器件可能 因为 散热不好或元 件老化 引起 的短路等 现象 ,但故障依然 没有排除。经 与厂家 沟通 ,怀疑此故障 由可能 由高频 发生器引起 ,经检 测高频发 生器 ,发现 场效应 管 I — R F 20 P 5 N损坏 ,更换后 ,钼丝带电现象消失 。
文章编号 :10 — 8 1 (0 0 0 1 3 8 2 1 )3—17— 3 2
数控机床是一种昂贵 、高效 的 自动化机床 ,在许
器 T P 2 - 元件 损 坏 ,更 换 这 些 元件 ,故 障排 除 , L5 1 4
多行业 中,这些设 备均处 于关 键 岗位 的关 键工序 上 , 若 出现故障后不能及 时找到原 因和故 障的部位 ,迅速 修复设备 ,将会给企业造成很大 的损失 。尽管现在的 数控机床的可靠性不 断提高 ,但在设备运行过程 中因 操作失误 、外 部环 境变 化 等原 因 ,出现 故 障在 所难 免 。因此 ,在借助数控机床 的 自诊断功能的同时 ,采
数控车床电动刀架故障诊断与维修

数控车床电动刀架故障诊断与维修摘要:电刀支架失效是数控车床中最常见的一种故障。
以FANUC0i数控机床为实例,对LDB4四工位电动刀架的机械结构、电动刀架的操作次序进行了分析;本文对电动刀架的电控原理和 PLC编程进行了深入的探讨,并以电动刀架的故障诊断为例,对同类产品的分析、诊断和维修方法进行了归纳,为同类产品的诊断和维修工作提供了依据。
关键字:数控车床;电动刀架;故障诊断与维修;1.引言数控车床分为刀架、系统、进给型等几种故障,其中电动刀架是 CNC机床的重要组成部分,它能促进机床的高效运转。
如果电动刀片出现问题,将会造成很大的损伤,甚至会造成刀片与卡头的碰撞,造成不可预见的意外。
目前,电动刀架的故障问题时有发生,严重地影响着机床的工作,因此,对其进行及时的诊断和修理是非常必要的。
2.数控车床电动刀架的工作原理作为一个例子,LDB4的电动刀架。
这种电动刀架是一种四工位刀架,它包括电动机、蜗轮、螺杆、螺帽、螺杆等部件,在这种电动刀架的正向旋转时,电机将传动传递到螺杆上,用一个键槽把螺丝帽与转动的刀座连接起来,使螺丝和刀架总是能保持上下滑动,而不能相互转动,用齿轮啮合实现螺帽和电机的紧固,螺母在这一对齿轮没有脱离之前,不能旋转,刀架也不能旋转,一开始,丝杠就会随着螺旋轴的顺时针方向旋转,从而带动刀柄和螺帽的相反方向向上运动,直到啮合齿真正脱离,才能充分发挥螺杆与止推槽的作用,按照规范的程序:螺杆转动一螺帽,刀座一转一进行切刀,到达所需工位后,使用霍尔单元定位系统将信号输入 CNC设备,实现旋转,通过霍尔元件的定位和辅助定位销,精确定位;因为推进器和销子的影响,螺帽和刀座都不允许出现倒退的现象,所以,螺母系统会不断地向下运动,直至两对啮合的牙齿再次咬合,如此,整个替换程序就完成了。
3.数控车床电动刀架的故障诊断和维护(一)电动刀架换刀时不动作(1)刀座被机械卡住。
刀架机械卡住会导致刀架马达卡住,产生超负荷报警,并且,在排除机械卡住的情况下,可以将刀架从马达上拆下来,用扳手盘动蜗杆,如果不能旋转,说明机械有问题。
数控机床的故障诊疗和维修技术课件
纳法和演绎法。归纳法是从故障原因出发寻找其功能联系,调查原因对结果的影响, 即根据可能产生该故障的原因分析,看其最后是否与故障现象相符来确定故障点。演 绎法是从所发生的故障现象出发,对故障原因进行分割式的分析方法。即从故障现象 开始,根据故障机理,列出可能产生该故障的原因;然后对这些原因逐点进行分析, 排除不正确的原因,最后确定故障点。
第六章 数控机床的故障诊断及维修技术
T数控机床的故障检测
5.2.1 与PLC有关的故障的特点
5.2.2 与PLC有关故障检测的思路和方法
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
第六章 数控机床的故障诊断及维修技术
TIANJIN 中德培训中心
按故障发生时有无破坏性来分,可分为破坏性故障和非破坏性故障; 按故障发生的部位分,可分为数控装置故障,进给伺服系统故障,主轴 系统故障,刀架、刀库、工作台故障等。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
第六章 数控机床的故障诊断及维修技术
第一节 概述
TIANJIN 中德培训中心
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
第六章 数控机床的故障诊断及维修技术
第一节 概述
5.1.4 故障的诊断方法
TIANJIN 中德培训中心
1.观察检查法:它指检查机床的硬件的外观,特性连接等直观及易测的 部分,检查软件的参数数据等。
2.PLC程序法:借助PLC程序分析机床故障,这要求维修人员必须掌握 数控机床的PLC程序的基本指令和功能指令及接口信号的含义。
3.接口信号法:要求维修人员掌握数控系统的接口信号含义及功能, PLC和NC信号交换的知识。
FANUC数控机床主轴不转故障的维修方法_楚雪平
2013年第3期主轴是数控机床的重要零件之一,主轴旋转产生切削的主运动是形成切削的重要条件。
主轴不转故障是主轴驱动系统最常见的故障类型之一,可以分为有报警的故障和无报警的故障两大类。
本文主要论述无报警的串行主轴不转故障的维修方法。
1FANUC数控机床主轴不转故障的维修方法分析FANUC数控机床的主轴控制分两种形式:串行主轴和模拟主轴。
不管采用何种控制方式,主轴旋转必须具备三个条件:CNC发出主轴控制信号、主轴驱动系统连接正确以及硬件和机械部分正常。
与普通机床相比,数控机床的机械部分大大简化,很大程度上降低了机械部分的故障率,所以出现故障时应将维修的重点放在数控系统和电气部分。
按照“先系统、再电气、最后机械”的思路进行维修,即出现故障时,首先考虑数控系统和PMC部分,其次考虑电气部分,最后再考虑机械传动部分和主轴组件本身。
维修步骤如下:第一步:看。
观察有无报警,观察机床状态信息栏的显示和主轴驱动放大器的LED状态显示。
有报警时,先排除报警。
第二步:问。
了解故障是在什么时候、进行什么操作时出现的以及机床的负载大小、加工工艺等情况。
这两步的重点是理解故障现象。
第三步:思。
前两步已经理解了故障现象,然后根据FANUC主轴控制的原理思考故障的原因并进行确认。
2FANUC数控机床主轴不转故障的维修实例2.1某F A NU C 0I D 三轴加工中心,指令发出后,主轴不能旋转观察到系统无报警,主轴放大器LED状态显示[01],黄灯亮;了解到在“MDI”工作方式下,输入加工指令:“M03S500;”,按下机床操作面板上的“循环启动”按键后,该程序段底色为黄色,松开“循环启动”按键后,“循环启动”按键指示灯点亮,状态信息栏上显示“FIN”,机床操作面板上的主轴正转按键指示灯也点亮。
故障分析:由循环启动有效判断该程序段已经被执行,再由状态信息栏出现“FIN”判断该程序段的执行不能结束;由主轴正转按键指示灯点亮,判断主轴正转信号已经输出到PMC;进入信号状态显示栏观察到转速信号已经送入PMC。
数控机床故障诊断与调试几例
看 出爬 行 问题 宜先从 判 断机 械 防护 方面人 手 。
于利用 系统 自身 的报 警 信息 和 诊 断 画 面。一 般
只 要 遵 从 以 上 原 则 , 心 谨 慎 , 般 的 数 控 故 障 小 一
都 可 以及 时 排 除 。
电元件 和 机械 防护 等 出现 问题 而 引起 的 。
2 实例
设 备调 试 和维修 是数 控设 备故 障 的两 个多 发 阶 段 。设 备调 试 阶段 是 对 数 控 机 床 控 制 系统 的设 计 、 P C编 制 、 L 系统参 数 的设置 、 整和优 化 阶段 。设 备 调 维修 服务 阶 段 , 对 强 电元 件 、 服 电 机 和 驱 动单 是 伺 元 、 械 防护 的进 一 步 考 核 。 以下 是 数 控 机 床 调 试 机
取消 , 用 G 4后 , 行 现 象 消 除 。 爬 行 现 象 应从 改 6 爬
指令操 作 方式 ( 数设 置 ) 导 轨 不平 ( 械 防 护 ) 参 与 机
一
21 — Leabharlann 维普资讯 上海大 中型 电机
两方面着手 。本例中, 立铣爬行没有共性 , 故先排除
和维修 的几个例 子 :
轴机 械故 障 。遂将 z轴 电机 引 线 换 到 x轴 电机 上 ,
x轴 电机运 行正 常 , 明 z轴 电动 机 引 线 正 常 。又 说
将 x轴 电机 引线换 到 z轴 电机上 , 障依 旧。可 以 故
断 定是 z轴 电 动 机故 障 或 z轴 机 械 故 障 。测 量 电 动 机引线 , 现 一相 开路 。修 复步 进 电动机 , 障排 发 故 除 。本 例无 报警 , z向进 给振 动 大 , 先从 步进 电机 应
数控机床常见故障诊断及维修
数控机床常见故障诊断及维修数控机床是一种集自动控制、计算机、微电子、伺服驱动、精密机械等技术于一身的高技术产物。
一旦系统的某些部分出现故障,就势必使机床停机,影响生产。
所以,如何正确维护设备和出现故障时迅速诊断,确定故障部位,及时排除解决,保证正常使用,是保障生产正常进行的必不可少的工作。
1 数控机床故障诊断原则1.1 先外部后内部数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。
维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。
1.2 先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。
在运行工况下,进行动态的观察、检验和测试,查找故障。
而对破坏性故障,必须先排除危险后,方可通电。
1.3 先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。
往往简单问题解决后,难度大的问题也可能变得容易。
1.4 先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。
在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。
2 数控机床常见故障分析根据数控机床的构成,工作原理和特点,将常见的故障部位及故障现象分析如下。
2.1 数控系统故障2.1.1 位置环这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。
它具有很高的工作频度,并与外部设备相联接,容易发生故障。
常见的故障有:①位控环报警:可能是测量回路开路;测量系统损坏,位控单元内部损坏。
②不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。
③测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警的可能原因是光栅或读头脏了;光栅坏了。
2.1.2 电源部分电源是维持系统正常工作的能源支持部分,它失效或故障的直接结果是造成系统的停机或毁坏整个系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 6 章数控机床故障诊断与维修实例 数控机床的故障现象是多种多样的,其表现形式也没有简单的规律可遵循。对数控机床故障进行分析时,应当注意到数控机床本身的特点。
6. 1 数控机床爬行与振动的分析 数控机床的滑动部件,如工作台、溜板、滑座等,在低速运动时常常会出现爬行现象。所谓爬行就是指上述部件时走时停的非匀速运动,轻微时表现为目光不易察觉的振颤,严重时表现为大距离冲动。由于爬行是非匀速冲动,从而严重地影响了加工精度;对定位精度要求高的数控机床则难以实现精确定位及微量进给;个别情况还可能出现扎刀,蹦飞工件等情况,故应引起高度重视。 1、引起爬行的几个因素引起爬行的因素很多,归纳起来主要有以下几种:( 1 )磨擦阻力变化引起的爬行机床床身导轨和工作台导轨面都是经过磨削或刮削的,宏观看是平直而光滑的,但在微观上却存在着不同程度的犬牙参差的微峰。滑动导轨的两个接触面只是两面的微峰峰尖接触,所以它们之间实际接触面积是非常小的,因而峰尖所承受的压力之高,远远超过其弹性变形的极限而出现塑性变形,尤其是大(重)型数控机床更为突出。此外,发生塑性变形的接触点的金属分子会产生强烈的粘着作用。由于参差不齐的微峰会出现相互交错啮合,相对运动时便产生了爬行现象。这便是机床相对运动的两导轨表面产生磨擦阻力的主要根源。 机床的爬行现象主要发生在低速运动时,此时两导轨面之间难以形成高速运动时的动压油膜,从而出现了由微峰直接接触的边界润滑。这时两导轨表面的微峰直接接触,压力极高,因而发生塑性变形,运动导致接触局部高热,出现金属分子的粘着,也称“冷焊”,这时两导轨间的磨擦系数是相当大的。 我们都知道,推动一个物体运动所用的力应大于维持这个物体运动所用的力。也就是静磨擦力(静磨擦系数)大于动磨擦力(动磨擦系数)。在低速运动开始的短暂时间,磨擦系数μ b 从静止状态下的最大值开始呈迅速下降趋势至最小值。此时工作台表现为向前冲动。随着速度υ的增大,而开始上升。上升到较大值时,磨擦阻力增大,工作台趋向静止。此时,由于磨擦阻力的增大,相对驱动也随之增大。当驱动增大到足以克服磨擦阻力时,工作台又重复出现以前的相同冲动,驱动力随之减小。这个驱动力和磨擦力不断变化的过程,也就是工作台时走时停的循环冲动过程,这便是爬行的因素之一。 ( 2 )机械零(部)件别劲引起的爬行由于执行元件与运动部件中心线不同心或不平行(如滚珠丝杠螺母副之间);或执行元件与导向面不平行(如工作台与床身导轨之间);或运动部件导向装置夹得太紧(如导轨副预紧过大);或液压缸活塞与活塞杆不同心产生别劲等现象均会造烦恼因磨擦阻力不均而产生爬行。还有因导轨平行度及扭曲度大,或导轨各段变化不一致使工作台移动时所需克服的阻力经常变化,滑动表面油膜破坏,导致出现爬行。 ( 3 )润滑不良引起的爬行当运动副的滑动速度减小时,油楔作用减弱,润滑油膜厚度降低,甚至破裂,造成金属表面局部接触。当滑动速度降低到一定数值时,油膜断裂比率增加,磨擦力随之增大,这种变化的磨擦力将导致工作台爬行。 ( 4 )液压系统泄漏引起的爬行由于液压系统中密封圈老化破裂,执行元件磨损等造成泄漏,使系统压力损失导致爬行,如液压泵内部零件磨损,引起液压泵输出流量和压力不足或波动;阀类元件及液压缸磨损,元件间隙变大,或液压缸活塞与缸体配合间隙过大,使高压腔与低压腔互通引起压力不足,使推力减小,在阻力变化时,液压泵不能提供压力变化而产生爬行。在液压系统的爬行中,及时消除液压缸中的气体是防止爬行的有效做法。 2、消除爬行的对策为了有效地消除爬行,应针对具体原因采用不同的措施:( 1 )改善磨擦阻力改善磨擦阻力的变化。旨在减小磨擦曲线随运动速度增加而下降的斜率,也就是减小静、动磨擦系数差,其主要措施在于改善润滑状态。 措施 1 :改善导轨的润滑,保证充足的润滑油量及润滑油油性好、粘度适宜。对工作台载荷大的大型机床应采用粘度高的导轨润滑油。 措施 2 :在单靠润滑油本身难以达到性能要求的情况下,可在油中加入添加剂,以改善润滑油的性能,例如加入硫化鲸鱼油,三甲酚磷酸脂,MoS2 油剂等,或在导轨表面涂上一层固体 MoS2 润滑剂。 措施 3 :在导轨上粘贴上一层 TSF 导轨软带。TSF 导轨软带是一种以聚四氟乙烯为基的高分子复合材料,具有优异的磨擦性能,磨擦系数很低,约为铸铁滑动导轨的 1/10 ,在维修时采用 TSF 导轨是一种非常省事的办法。它工艺简单、性能优越有着有为广阔的应用前景。 ( 2 )减少机械传动部件间的磨擦阻力对于机械别劲原因造成的爬行,在保证各元件自身精度的同时,着重调整运动导向装置的平行度和同心度,重视导向装置(如滚珠丝杠)松紧程度的调整。加强润滑减少磨擦阻力,对于液压缸要处理好油缸与工作机构的联接要求,保证活塞、活塞杆运动时不受弯力、扭力的作用。对于大行程的液压缸,为防止滑动而压力过高,在设计时可采用无缝钢管作活塞杆,以减轻自重增大刚度。 ( 3 )液压元件磨损导致的系统泄漏分为正常磨损和非正常磨损。对正常磨损可修复或更换新件,对非正常磨损则一定要查明原因采取相应措施。若导轨被拉伤,则要修复导轨。若是油缸拉毛时,可研磨修刮,严重拉伤时可上镗床修复,并根据具体情况改进活塞结构或重配活塞。 ( 4 )液压系统内存在空气造成的爬行当系统中存在空气时,则应对密封不良处严加密封,并定时更换油液。选用消泡性能好的液压油,或在油中加入消泡添加剂。从油箱的设计出发,尽可能采用有隔离板的油箱,使回油产生的气泡不会很快到达吸油管附近,液压泵的吸油管与系统回油管之间的距离尽可能远,也不失为一个有效方法。 机床爬行现象作为一种故障,对于数控机床所造成的直接后果相当严重,经济损失也是相当可观的。其引发的原因主要有机械、液压、润滑、电气等几个方面,它们之间往往相互关联、交织在一起。要在实践中不断积累经验,学会分析故障原因,以找到解决问题的最佳措施 在数控机床中有很多明显的不正常现象,但在有一些经济数控系统中,却没有报警,即使有时出现报警,报警的信息表明也不是你所看到不正常现象的报警。机床出现爬行与振动就是一个明显的例子。机床以低速运行时,机床工作台是蠕动着向前运动;机床要以高速运行时,就出现震动。
但是,如果仔细看一下导轨面润滑的情况,事实并非如此,就可以断定机床爬行和振动问题是属于速度的问题。既然是速度的问题就要去找速度环,我们知道机床的速度整个调节过程是由速度调节器来完成的。特别应该着重指出,速度调节器的时间常数,也就是速度调节器积分时间常数是以毫秒计的,因此,整个机床的伺服运动是一个过渡过程,是一个调节过程。 凡是与速度有关的问题,只能去查找速度调节器。因此,机床振动问题也要去查找速度调节器。可以从以下这些地方去查找速度调节器故障:一个是给定信号,一个是反馈信号,再一个就是速度调节器的本身。 第一个是由位置偏差计数器出来经 D/转换给速度调节器送来的模拟是 VCMD ,这个信号是否有振动分量,可以通过伺服板上的插脚 (FANUC6 系统的伺服板是 X18 脚) 来看一看它是否在那里振动。如果它就是有一个周期的振动信号,那毫无疑问机床振动是正确的,速度调节器这一部分没有问题,而是前级有问题,向 D /一转换器或偏差计数器去查找问题。如果我们测量结果没有任何振动的周期性的波形。那么问题肯定出在其他两个部分。 我们可以去观察测速发电机的波形,由于机床在振动,说明机床的速度在激烈的振荡中,当然测速发电机反馈回来的波形一定也是动荡不已的。但是我们可以看到,测速发电机反馈的波形中是否出现规律的大起大落,十分混乱现象。这时,我们最好能测一下机床的振动频率与电机旋转的速度是否存在一个准确的比率关系,譬如振动的频率是电机转速的四倍频率。这时我们就要考虑电机或测速发电机有故障的问题。 因为振动频率与电机转速成一定比率,首先就要检查一下电动机是否有故障,检查它的碳刷,整流子表面状况,以及机械振动的情况,并要检查滚珠轴承的润滑情况,整个这个检查,可不必全部拆卸下来,可通过视察官进行观察就可以了,轴承可以用耳去听声音来检查。如果没有什么问题,就要检查测速发电机。测速发电机一般是直流的。 测速发电机就是一台小型的永磁式直流发电机,它的输出电压应正比于转速,也就是输出电压与转速是线性关系。只要转速一定,它的输出电压波形应当是一条直线,但由于齿槽的影响及整流子换向的影响,在这直线上附着一个微小的交变量。为此,测速反馈电路上都加了滤波电路,这个滤波电路就是削弱这个附在电压上的交流分量。 测速发电机中常常出现的一个毛病就是炭刷磨下来的炭粉积存在换向片之间的槽内,造成测速发电机片间短路,一旦出现这样的问题就避免不了这个振动的问题。 这是因为这个被短路的元件一会在上面支路,一会在下面支路,一会正好处于换向状态,这 3 种情况就会出现 3 种不同的测速反馈的电压。在上面支路时,上面支路由于少了一个元件,电压必然要小,而当它这个元件又转到了下面支路时,下面的电压也小,这时不论在上面支路,还是在下面支路中,都必然使这两条支路的端电压下降,且有一个平衡电流流过这两条并联的支路,又造成一定的电压降。当这个元件处于换向,正好它也处于短路,这时上下两个支路没有短路元件,电压得以恢复,且也无环流。这样,与正常测速发电机状态一样。为此,三种不同情况下电压做了一个周期地变化,这个电压反馈到调节器上时,势必引起调节器的输出也做出相应地,周期地变化。这是仅仅说了一个元件被短路。特别严重时有一遍换向片全部被碳粉给填平了,全部短路,这样就会更为严重的电压波动。 反馈信号与给定信号对于调节器来说是完全相同的。所以,出现了反馈信号的波动,必然引起速度调节器的反方向调节,这样就引起机床的振动。