(一) 差动变压器的性能实验(学习类别)

合集下载

变压器差动保护实验报告

变压器差动保护实验报告

变压器差动保护实验报告1#主变差动保护试验报告继电保护检验报告设备名称: 主变差动保护安装地点: 继保室负责人: 刁俊起检验性质: 新安装检验试验日期: 2012.11.24开关编号: 510、410检验单位: 山东送变电工程公司试验人员: 王振报告编写:校核:审核:刁俊起风雨殿风电场RCS-9671CS变压器差动保护装置检验报告(新安装检验)试验日期: 2012年11月24日3绝缘及耐压试验:按下表测量端子进行分组,采用1000V摇表分别测量各组回路对地及各组回路之间的绝缘电阻,绝缘电阻值均应大于10MΩ。

在保护屏端子排处将所有电流、电压及直流回路的端子连在一起,并将电流、电压回路的接地点解开。

整个回路对地施加工频电压为1000V、历时为1分钟的介质强度试验,试验4工作电源检查(1)直流电源缓慢上升时的自启动性能检验。

直流电源从零缓慢升至80%额定电压值,此时逆变电源插件应正常工作,逆变电源指示灯都应亮,保护装置应没有误动作或误发信号的现象,(失电告警继电器触点返回)。

检查结果合格(2)拉合直流电源时的自启动性能。

直流电源调至80%额定电压,断开、合上检验直流电源开关,逆变电源插件应正常工作(失电告警继电器触点动作正确)。

检查结果合格(3)工作电源输出电压值及稳定性检测保护装置所有插件均插入,分别加80%、100%、110%的直流额定电压,电源监视指示灯、液晶显示器及保护装置均处于正常工作状态,测量电源输出电压值如下: 5初步通电检查(1)打印机检验:检查结果合格(2)键盘和液晶显示检验:检查结果合格(3)保护定值整定及失电保护功能检验:检查结果合格(4)时钟设置及失电保护功能检验检查结果合格(5)软件版本和程序校验码的核对6电气特性试验6.2开出检验6.3功耗测量:(记录功耗最大一侧的测量数据)6.4模/数变换系统检查:6.4.1零漂检查:利用人机对话打印出采样值的零漂(不加任何交流量时的正常采样值),电流、电压回路6.4.2电流通道刻度检查模拟量测量误差应不超过?5%。

实验三 差动变压器系列实验

实验三 差动变压器系列实验

实验三 差动变压器系列实验1.差动变压器基本性能实验:根据实验电路图连接好电路,设置音频振荡器输出频率为5KHz ,输出值Vp-p 为2V 。

原始数据记录表: 位 移(mm) -0.8 -0.6 -0.4-0.20 0.2 0.4 0.6 0.81.0 电 压(V)0.1810.1430.095 0.0520.0260.0570.1020.1470.1960.230根据表格中数据,画出V —X 曲线:0.050.10.150.20.25位移(mm)电压(V )2. 差动变压器性能参数的标定:根据实验电路图连接好电路:旋动测微头,带动衔铁向上5mm ,向下5mm 位移,每旋一周(0.5mm )记录一电压值并填入表格:位移/mm (向上) 3.03.54.04.55.05.56.06.57.07.58.08.59.0 电压(V ) 4.62 4.60 4.43 4.00 3.62 3.23 2.65 2.00 1.45 0.89 0.23 0.76 1.42 位移/mm (向下) 8.07.57.06.56.05.55.04.54.03.53.0电压(V )0.220.751.432.102.633.153.624.064.304.514.60--0.8 -0.6 -0.4 -0.2 0 0.2 0.40.6 0.8 1.0由上表可知,当位移在8mm时,有最小电压值0.23V。

四、误差分析:由于差动变压器制作上的不对称以及铁心位置等等因素,存在零点残余电动势,使得传感器的输出特性在零点附近不灵敏,给测量带来误差。

实验二 差动变压器式电感传感器的性能实验

实验二 差动变压器式电感传感器的性能实验

实验二 差动变压器式电感传感器的性能实验实验二(1)差动变压器性能一、实验目的:了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。

二、实验原理:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。

初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。

差动变压器是开磁路,工作是建立在互感基础上的。

其原理及输出特性见图(9)图(9)图(10)三、实验所需部件:差动变压器、音频振荡器、测微头、示波器。

四、实验步骤:1.按图(10)接线,差动变压器初级线圈必须从音频振荡器LV 端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv /格。

2.音频振荡器输出频率5KHZ ,输出值V P -P 2V 。

3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。

4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压Lv 示波器V P-P值,读数过程中应注意初、次级波形的相位关系。

5.仔细调节测微头使次级线圈的输出波形至不能再小,这就是零点残余电压。

可以看出它与输入电压的相位差约为π/2,是基频分量。

6.根据表格所列结果,画出Vop-p-X曲线,指出线性工作范围。

五、注意事项:示波器第二通道为悬浮工作状态。

实验二(2)差动变压器零残电压的补偿一、实验目的:由于零残电压的存在会造成差动变压器零点附近的不灵敏区,如此电压经过放大器还会使放大器未级趋向饱和,影响电路正常工作,因此必须采用适当的方法进行补偿抵消。

二、实验原理:零残电压中主要包含两种波形成份:1.基波分量。

这是由于差动变压器二个次级绕组因材料或工艺差异造成等效电路参数(M、L、R)不同,线圈中的铜损电阻及导磁材料的铁损,线圈中线间电容的存在,都使得激励电流与所产生的磁通不同相。

2.高次谐波。

主要是由导磁材料磁化曲线非线性引起,由于磁滞损耗和铁磁饱和的影响,使激励电流与磁通波形不一致,产生了非正弦波(主要是三次谐波)磁通,从而在二次绕组中感应出非正弦波的电动势。

互感式电感传感器——差动变压器性能测试试验目的1了解差动

互感式电感传感器——差动变压器性能测试试验目的1了解差动

互感式电感传感器——差动变压器性能测试一、实验目的:1、了解差动变压器原理及工作情况;2、说明如何用适当的网络线路对残余电压进行补偿;3、了解差动变压器测量系统的组成和标定方法;4、了解差动变压器的实际应用。

二、实验内容:1、差动变压器的性能实验;2、差动变压器零残余电压的补偿实验;3、差动变压器的标定实验;4、差动变压器的应用实验(振幅测量、电子称)(一)差动变压器的性能实验实验单元及附件:音频振荡器测微头示波器主、副电源差动变压器振动平台。

旋钮的初始位置:音频振荡器4KHz~8KHz之间,双踪示波器第一通道灵敏度500mv/div,第二通道灵敏度10mv/div,触发选择打到第一通道,主、副电源关闭,示波器第二通道为悬浮工作状态。

实验原理:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。

初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边,差动变压器是开磁路,工作是建立在互感基础上的。

其原理及输出特性见图4-1。

实验步骤:(1)根据图4-2接线,将差动变压器、音频振荡器(必须LV输出)、双踪示波器连接起来,组成一个测量线路。

开启主、副电源,将示波器探头分别接至差动变压器的输入和输出端,调节差动变压器源边线圈音频振荡器激励信号峰峰值为2V。

(2)用手提压差动变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。

图4-1 图4-2(3)转动测微头使测微头与振动平台吸合,再向上转动测微头5mm,使振动平台往上位移。

(4)向下旋钮测微头,使振动平台产生位移。

每位移0.2mm,用示波器读出差动变压器输出端峰峰值填入下表,根据所得数据计算灵敏度S。

S=△V/△X(式中△V为电压变化,△X为相应振动平台的位移变化),作出V-X关系曲线。

读数过程中应注意初、次级波形的相应关系。

思考题:(1)根据实验结果,指出线性范围。

工学实验6差动变压器测量位移

工学实验6差动变压器测量位移

实验6 差动变压器测量位移一.实验目的1.本实验说明差动变压器的工作原理。

2.实验说明如何选适当的线路对残余电压进行补偿。

3.本实验说明差动变压器测量系统的组成的标定方法。

二.实验内容1.差动变压器的性能2.零点残余电压补偿3.差动变压器的标定三.基本原理1.差动变压器是由一次线圈和二次级线圈及一个铁芯组成,本试验采用三节式结构。

当一次线圈接入激励电压后,二次线圈将产生感应电动势,这种互感变化称之为差动电压器。

2.这种传感器的二次线圈有两个,一个感应电势增加,另一个感应电势则减少,将两只次级反向串接(同名端连接),这种接线方式就称之为差动电压器3.由于差动变压器二次线圈的等效参数不对称,一次线圈的纵向排列的不均匀性,二次的不均匀、不一致,铁芯特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零。

称为零点残余电压.四.实验所需部件音频振荡器、双线示波器、万用表、测微头、电桥、差动放大器、差动变压器、移相器、相敏检波器、低通滤波器、电压表。

图一五.实验步骤1.差动变压器的性能(1)按图一接线,示波器第一通道灵敏度500mV/cm,第二通道灵敏度10mV/cm。

(2)调整主机箱中的端子输出,调节音频振荡器的频率,输出频率为4KH Z(可用主机箱的频率表输入Fin来监测),调节输出幅度旋钮,使输入到初级线圈的电压Vp-p为2V (可用示波器监测)。

(3)旋动测微头,带动铁氧体磁芯在差动线圈中上下运动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出变化很大基本能过零点,而且相位与初级线圈波形(L V 音频信号Vp-p=2V 波形)比较,同相或反向变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接线直到正确为止。

(4)注意线圈初、次级的相应关系:当铁芯从上至下运动时,相位由反相变为同相。

(5)仔细调节测微头,使示波器第二通道的的波形峰—峰值Vp-p 最小,输出电压为差动变压器的零点残余电压,这时可以左右位移,假设其中一个方向为正位移,则另一方向位移为负,从Vp-p 最小开始旋动测微头,每隔2mm 从示波器上读出输出电压的Uop-p 值,填入下表。

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。

(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。

2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。

3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。

实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。

3.V/F表调至20V档。

4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。

5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。

6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。

7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。

8.向下每0.5mm读一个数。

项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。

差动变压器实训报告模板

一、实训目的1. 了解差动变压器的工作原理和特性。

2. 掌握差动变压器的安装、调试和测试方法。

3. 培养动手操作能力和分析问题的能力。

二、实训器材1. 差动变压器实验模板2. 差动变压器3. 测微头4. 双线示波器5. 音频信号源(音频振荡器)6. 直流电源7. 万用表8. 连接线、插头等辅助器材三、实训原理差动变压器是一种将机械位移转换为电信号的传感器。

它由一个初级线圈和两个次级线圈及一个铁芯组成。

当被测物体移动时,差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化。

一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。

其输出电势反映出被测物体的移动量。

四、实训步骤1. 差动变压器的安装:将差动变压器装在差动变压器实验模板上,确保连接牢固。

2. 实验接线:根据实验模板图,正确连接差动变压器、测微头、双线示波器、音频信号源、直流电源和万用表等设备。

3. 调节实验参数:调节音频振荡器的频率,使其输出频率为45kHz(可用主控箱的频率表输入Fin来监测)。

调节输出幅度为峰峰值Vp-p 2V(可用示波器监测:X轴为0.2ms/div)。

4. 测试差动变压器性能:a. 调整测微头,使其处于初始位置,观察示波器上的输出波形,记录初始电压值。

b. 逐步调整测微头,使其沿轴向移动,观察示波器上的输出波形变化,记录不同位置下的电压值。

c. 分析差动变压器输出电压与位移之间的关系,计算线性度、灵敏度等性能指标。

5. 数据处理与分析:将实验数据整理成表格,绘制曲线图,分析差动变压器的性能。

五、实验结果与分析1. 记录实验数据,包括测微头位移X、次级输出电压vp-、初级输入电压Vi等。

2. 分析差动变压器的线性度、灵敏度等性能指标,与理论值进行比较。

3. 分析实验过程中可能存在的问题,如接线错误、设备故障等,并提出改进措施。

实验22——实验报告 (2)

差动一、实验目的通过实验学习差动变压测试系统的组成和标定方法;通过实验掌握相敏检波电路的设计思想;养成良好的分析问题解决问题的思维。

二、实验原理差动变压器主要主要是利用铁芯在差动变压器中移动,将非电量的位移转化为线圈间的互感M的一种磁电机构。

其电路图可表示为图一:R2L3 1m L4 1mR4图 1 差动变压器等效电路具体输出可表示为:幅频特性:12120***NE UNσσ∆= (1)相频特性:21()arctaneQω=(2)其中11LQrω=,为电感的品质因数。

由公式(1)可知,当铁芯产生σ∆的位移时,输出电压会产生线性的变化。

实验中只需测出电压的变化,即可推算出σ∆。

实验中,考虑到输出信号为交流信号,为了方便测量,采用相敏检波电路,将其转化为带直流分量的信号,从而通过对直流分量的测量,实现对电压的测量。

同时将电路的相位信息反映出来。

具体实验电路的框图如下:图 2实验电路框架图实际实验中主要干扰来自差动变压器的零残电压,差动放大器的零漂电压,以及元件参数精度等。

对于差动变压器的零残电压,主要有基波分量以及高次谐波分量。

零残电压的产生主要原因有:a、由于制造工艺的影响,使得差动变压器不对称b、传感器中存在寄生参数;c、供电电源中含有高次谐波;d、磁路本身存在非线性。

e、工频干扰针对以上几点原因,主要采取的补偿方法有:a、从设计和工艺制作上尽量保证线路和磁路的对程;b、对芯片做好电源的退耦处理,防止引入高次谐波;c、采用相敏检波电路,实验中的相敏检波电路能将高次谐波与基波分开,基波分量将在该电路中被转化为含有直流成分的信号,而高次谐波将无法转化,从而在通过后级滤波器时被滤去,实现对高次谐波的补偿;d、选用补偿电路。

实验中主要利用电路从信号输入端获取信号,并将信号送到差分放大的前端,利用差放的减法作用,将原信号的基波分量减去,该方法理论上可使零残电压中基波分量为零。

本实验主要目的是找出差动变压器位移与输出电压的关系,并标定,以便在实际测量中使用。

实验3差动变压器性能测试

实验小组:黄文玉(201006020128)昝贵彬(201006080107)林雅萍(201006090130)差动变压器式电感传感器基本原理:电感传感器是把被测量转换成线圈的自感变化来实现检测的,而差动变压器是把被测量变化转移成线圈的互感变化来进行测量。

差动变压器本身是一个变压器,初级线圈输入交流电压,次级线圈感应出交流信号,当初次级间的互感受外界影响而变化时,次级所感应的电压幅值也随之发生变化。

由于两个次级线圈接成差动形式,故称为差动变压器。

差动变压器结构是由一个圆筒形骨架上分三段绕制成三个线圈和插入其中的可动铁芯组成。

中间绕组N1为初级线圈,上下各有一组完全对称于初级的次级线圈N2,在铁芯处于中间位置时,初级线圈的互感相等。

实验3. 差动变压器性能测试实验目的:了解差动变压器的工作原理。

熟悉差动变压器的性能。

实验所用单元:音频振荡器,差动变压器,双波示波器。

实验注意事项:差动变压器的两个次级线圈必须接成差动形式,即同名端相连。

可通过信号相位是否变化进行判别。

实验步骤:(1)按图1接线,将音频振荡器LV输出至差动变压器初级,频率为4KHZ。

(2)打开主电源及副电源调整音频振荡器幅度,用示波器观察,使音频LV信号输出电压峰峰值为2V。

(3)调节测微头使次级的差动输出电压最小,提高示波器灵敏度,读出的最小电压叫做零点残余电压,观察输入与输出相位差约为__90°___。

当铁芯由上至下时,相位由___同____相变为___反____相。

(4)输出从零开始,旋转测微头,从示波器上读出电压Vp-p值填入下表1:(5)根据所得结果,画出X—Vp-p曲线,指出曲线线性工作范围,求出灵敏度。

k=△V/△X图1 差动变压器性能测试和结构示意图如图2:图2 差动变压器输出特性曲线由上图可看出,传感器的线性工作范围是X=-2~+2之间,求传感器的灵敏度:K = △U/△x = 200/4 = 50 mV/mm.。

实验二 差动变压器特性及应用

实验二差动变压器特性及应用实验性质:综合性实验实验目的:1、了解差动变压器的原理及工作情况。

2、了解如何用适当的网络线路对残余电压进行补偿。

3、了解差动变压器的实际应用。

实验仪器:音频振荡器、测微头、双线示波器、电桥、差动变压器、差动放大器、移相器、相敏检波器、低通滤波器、电压表、低频振荡器、激振器。

实验步骤:一、差动变压器性能检测1、设定有关旋钮初始位置:音频振荡器4KHz,双线示波器第一通道灵敏度500mV/cm,第二通道灵敏度20mV/cm,触发选择打到第一通道。

2、按图1接线,音频振荡器必须从LV接出。

3、调整音频振荡器幅度旋钮,使音频LV信号输入到初级线圈的电压为2Vp-p。

图1音频振荡器4KHz 接第一通道接第二通道4、旋动测微头,从示波器上读出次级输出电压Vp-p 值填入下表:读出过程中应注意初、次级波形的相位关系:当铁芯从上至下时,相位由________相变为________相。

5、仔细调节测微头使次级的差动输出电压为最小,必要时应将通道二的灵敏度打到较高档,如0.2V/cm,这个最小电压叫做 ,可以看出它与输入电压的相位差约为__________,因此是__________正交分量。

6、根据所得结果,画出(V op-p -X)曲线,指出线线工作范围,求出灵敏度:VS X∆=∆ 注意事项:(1)差动变压器的激励源必须从音频振荡器的电流输出口(LV 插口)输出。

(2)差动变压器的两个次级线圈必须接成差动形式(即同名端相连。

这可通过信号相位有否变化判别之)。

(3)差动变压器与示波器的连线应尽量短一些,以免引入干扰。

二、差动变压器零点残余电压的补偿1、设定有关旋钮的初始位置:音频振荡器4KHz ,双线示波器第一通道灵敏度500mV/cm ,第二通道灵敏度1V/cm ,触发选择打到第一通道,差动放大器的增益旋到最大。

2、观察差动变压器的结构。

按图2接线,音频振荡必须从LV 插口输出,w1、w2、r 、c 为电桥单元中调平衡网络。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分享参考#
1
实验三 电磁式传感器
(一) 差动变压器的性能实验
一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式
和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发
生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反
向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源
(音频振荡器)、直流电源、万用表。

四、实验步骤:
1、根据图3-1,将差动变压器装在差动变压器实验模板上。

图3-1 差动变压器电容传感器安装示意图
2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率
为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。调节幅度使输出幅度为峰一峰值 Vp-p=2V(可用
示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端
方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移
动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,
而且相位与初级圈波形(Lv音频信号Vp-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同
名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。
分享参考#
2

3、旋动测微头,使示波器第二通道显示的波形峰一峰值Vp-p为最小。这时可以左右位移,假设其中一个方向为
正位移,则另一方向移为负。从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值填入
下表(3-1)。再从Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关
系。

表(3-1)差动变压器位移ΔX值与输出电压Vp-p数据表

X(mm) 无数据 -← 0mm 1.5 3.0 4.5 6.0 7.5
V(mv) 233 248 264 288 312 336
4、实验过程中注意差动变压输出的最小值即为差动变压器的零点残余电压大小。
根据表4-1画出Vop-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。
>> axis([0 7.5 233 336 ]);
coords=[0,1.5,3.0,4.5,6.0,7.5;233,248,264,288,312,366];
grid;
hold;
plot(coords(1,:),coords(2,:),'*');
x=coords(1,:)
y=coords(2,:)'
b=size(coords);
c=ones(1,b(2));
MT=[c;x];
M=MT';
f=inv(MT*M)*MT*y

图3-2 双线示波与差动变压器连结示意图

相关文档
最新文档