【北师大版】选修4-4数学:第2章《极坐标系的概念》学案(含答案)

合集下载

坐标系与参数方程复习 课件(北师大版选修4-4)

坐标系与参数方程复习 课件(北师大版选修4-4)

则θ =_____. 【解析】直线为y=xtanθ,圆为(x-4)2+y2=4,作出图形, 相切时,易知倾斜角为 或 5 .
6 6
2 0
A(4,0)
x2 【例3】.已知点P为椭圆 y 2 1 在第一象限部分上的点, 3
则x+y的最大值等于_____.
x= 3 cosθ
2 解析:设椭圆 x y2 1在第一象限部分上的点P
3 6
则△OAB的面积为_____.
解:点B(5,- 5 )即B(5,7 ),且点A(4, ) , 6 6 3
∴∠AOB= 7 5 ,
6 3 6
所以△OAB的面积为
S= 1·|OA|·|OB|·sin∠AOB= 1 ×4×5×sin 5
2 2
=
1 1 ×4×5× =5. 2 2
练习:
7 3 ),则|AB|=___. 12 12 2.在极坐标系中,定点A(2, ),点B在直线 2 5 (1, ) ρ cosθ +ρ sinθ =0上运动,当线段AB最短时,点B的极坐标 3 6
1.极坐标系中,点A(1,5 ),B(2,-
为_______. 3.若M、N分别是曲线ρ =2cosθ 和 sin( ) 2 上的动点,
为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方 程为ρ sinθ =1,则直线l与圆C的交点的直角坐标为
(-1,1),(1,1) ______________________.
• • • • •
1.极坐标的定义及ρ、θ的含义。 2.能写出、认出简单图像的极坐标方程。 3.极坐标与直角坐标的互化(重点是极化直)。 4.参数方程的定义。 5.能写出、认出简单图像的参数方程,及参数 的几何意义。 • 6.参数方程化普通方程。

北师大版高中数学选修4-4同步精练:第一章2.1极坐标系的概念2.2点的极坐标与直角坐标的互化.docx

北师大版高中数学选修4-4同步精练:第一章2.1极坐标系的概念2.2点的极坐标与直角坐标的互化.docx

高中数学学习材料马鸣风萧萧*整理制作极坐标系的概念、点的极坐标与直角坐标的互化练习1点P的直角坐标为(2,2)-,那么它的极坐标可表示为( ).A.π2,4⎛⎫⎪⎝⎭B.3π2,4⎛⎫⎪⎝⎭C.5π2,4⎛⎫⎪⎝⎭D.7π2,4⎛⎫⎪⎝⎭2在极坐标系中,与点π8,6⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标是( ).A.π8,6⎛⎫⎪⎝⎭B.58,π6⎛⎫-⎪⎝⎭C.58,π6⎛⎫-⎪⎝⎭D.π8,6⎛⎫--⎪⎝⎭3在极坐标系中,若等边△ABC的两个顶点是Aπ2,4⎛⎫⎪⎝⎭,B5π2,4⎛⎫⎪⎝⎭,那么可能是顶点C的坐标的是( ).A.3π4,4⎛⎫⎪⎝⎭B.3π23,4⎛⎫⎪⎝⎭C.(23,π) D.(3,π)4在极坐标系中,极坐标52,π4⎛⎫⎪⎝⎭化为直角坐标为( ).A.(1,1) B.(-1,1) C.(1,-1) D.(-1,-1)5直线l过点Aπ7,3⎛⎫⎪⎝⎭,Bπ7,6⎛⎫⎪⎝⎭,则直线l与极轴所在直线的夹角等于________.6点Aπ5,3⎛⎫⎪⎝⎭在条件:(1)ρ>0,θ∈(-2π,0)下的极坐标是__________;(2)ρ<0,θ∈(2π,4π)下的极坐标是__________.7将下列极坐标化成直角坐标.(1)π2,4⎛⎫ ⎪⎝⎭;(2)π6,3⎛⎫-⎪⎝⎭;(3)(5,π).8已知极点在点(2,-2)处,极轴方向与x轴正方向相同的极坐标系中,点M的极坐标为π4,6⎛⎫⎪⎝⎭,求点M在直角坐标系中的坐标.参考答案1 答案:B ρ=2222(-)+()=2,tan θ=22-=-1, ∵点P 在第二象限,∴最小正角3π=4θ. 2 答案:A 点(ρ,θ)关于极点对称的点为(ρ,π+θ), 故π8,6⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标为78,π6⎛⎫- ⎪⎝⎭,即π8,6⎛⎫ ⎪⎝⎭. 3答案:B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,∴|OC |=23,∠AOC =π2,点C 的极角ππ3π==424θ+或5ππ7π=424+, 即点C 的极坐标为3π23,4⎛⎫ ⎪⎝⎭或7π23,4⎛⎫ ⎪⎝⎭. 4答案:D x =ρcos θ=522sin π=2=142⎛⎫⋅-- ⎪ ⎪⎝⎭, y =ρsin θ=522sin π=2=142⎛⎫⋅-- ⎪ ⎪⎝⎭, 故所求直角坐标为(-1,-1).5答案:π4如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=7,∠AOB =πππ=366-,所以ππ5π6==212OAB -∠. 所以π5ππ=π=3124ACO ∠--. 6 答案:(1)55,π3⎛⎫- ⎪⎝⎭ (2)105,π3⎛⎫- ⎪⎝⎭ (1)当ρ>0时,点A 的极坐标形式为π5,2π+3k ⎛⎫ ⎪⎝⎭(k ∈Z ), ∵θ∈(-2π,0).令k =-1,点A 的极坐标为55,π3⎛⎫- ⎪⎝⎭,符合题意. (2)当ρ<0时,π5,3⎛⎫ ⎪⎝⎭的极坐标的一般形式是π5,21π+3k ⎛⎫-(+) ⎪⎝⎭(k ∈Z ). ∵θ∈(2π,4π),当k =1时,点A 的极坐标为105,π3⎛⎫- ⎪⎝⎭,符合题意. 7 答案:解:(1)π=2cos =14x ⋅,π=2sin =14y ⋅, 所以点π2,4⎛⎫ ⎪⎝⎭的直角坐标为(1,1). (2)x =6·πcos 3⎛⎫- ⎪⎝⎭=3, y =6·πsin =333⎛⎫-- ⎪⎝⎭. 所以点π6,3⎛⎫- ⎪⎝⎭的直角坐标为(3,33-). (3)x =5·cos π=-5,y =5·sin π=0, 所以点(5,π)的直角坐标为(-5,0).8 答案:解:设M (x ,y ),则x -2=ρcos θ=π4cos =236, ∴x =2+23,y -(-2)=ρsin θ=π4sin 6=2. ∴y =2-2=0.∴点M 的直角坐标为(2+23,0).。

2019-2020学年北师大版高中数学选修4-4同步配套课件:1.2极坐标系1.2.3-1.2.5 .pdf

2019-2020学年北师大版高中数学选修4-4同步配套课件:1.2极坐标系1.2.3-1.2.5 .pdf

目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
2.曲线的极坐标方程与直角坐标方程的互化
根据点的直角坐标与极坐标互化关系式,曲线方程两种形式的互
化可以顺利完成.
点的直角坐标与极坐标互化关系如下:
������ = ������cos������, (1)点 M 的极坐标(ρ,θ)化为直角坐标(x,y)的关系式: ������ = ������sin������;
=
1,
即 x+ 3������ = 2.
当 θ=0 时,ρ=2,所以点 M 的极坐标为(2,0).

θ=
π 2
时,ρ=
23 3
,
所以点N
的极坐标为
23 3
,
π 2
.
题型一 题型二 题型三
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
∠MOP=
������-
π 4
,∠OPM=
π2,
所以|OM|cos∠MOP=|OP|,
即 ρcos
������-
π 4
= 2, 即ρcos
������-
π 4
= 2, 显然点P 也在这条直线上.
故所求直线的极坐标方程为 ρcos
������-
π 4
= 2.
题型一 题型二 题型三
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN

【高中教育】最新高中数学第一章坐标系第2节极坐标系第2课时极坐标和直角坐标的互化检测北师大选修4_4

【高中教育】最新高中数学第一章坐标系第2节极坐标系第2课时极坐标和直角坐标的互化检测北师大选修4_4

——教学资料参考参考范本——【高中教育】最新高中数学第一章坐标系第2节极坐标系第2课时极坐标和直角坐标的互化检测北师大选修4_4______年______月______日____________________部门一、选择题(每小题5分,共20分)1.设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( )A .B .⎝ ⎛⎭⎪⎫-32,54πC .D .⎝ ⎛⎭⎪⎫-3,34π解析: 先把复数化为直角坐标,再化为极坐标. 答案: A2.两点A ,B 的极坐标分别为,,则A ,B 两点间的距离为( ) A . B .36-π26C .D .13-6 3解析: 点A ,B 的极直角坐标分别为(1,),(0,3), 则|AB|=-+3-=。

答案: D3.在极坐标系中,两点P 和Q ,则PQ 的中点的极坐标是( ) A . B .⎝ ⎛⎭⎪⎫2,2π3C .D .⎝ ⎛⎭⎪⎫1+3,5π12解析: 先化直角坐标,再化为极坐标.∵P ,∴⎩⎪⎨⎪⎧x =2cos π3=1,y =2sin π3=3,∴P(1,). ∵Q ,∴∴Q(-3,).∴中点M 的直角坐标为(-1,). ∴ρ2=(-1)2+()2=4,∴ρ=2。

∴tan θ==-,∴θ=。

∴中点M 的极坐标为。

答案: B4.已知点M 的极坐标为,则点M 关于y 轴对称的点的直角坐标为( )A .(-3,-3)B .(3,-3)C .(-3,3)D .(3,3)解析: ∵点M 的极坐标为, ∴x =6cos =6cos =6×32=3,y =6sin =6sin =-6×=-3,∴点M 的直角坐标为(3,-3),∴点M 关于y 轴对称的点的直角坐标为(-3,-3). 答案: A二、填空题(每小题5分,共10分)5.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为__________ ________。

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

北师大版高中数学选修4-4《点的极坐标和直角坐标的互化》课件(共13张PPT)

北师大版高中数学选修4-4《点的极坐标和直角坐标的互化》课件(共13张PPT)

3.已知A,B两点的极坐标A(2, ),B(4, 5 ),求A, B两点间
3
6
距离和AOB的面积。
4.已知两点的极坐标A(3, ),B(3, ),求A, B两点间
2
6
距离和AB与极轴正方向的夹角.
课时小结
1.点的极坐标的理解,极坐标的不唯一性; 2.点的极坐标与直角坐标的互化; 3.极坐标系下,两点间距离公式及应用。
(1)当极径 0,以OX为始边作角,在角的终边上截取| OM | ; (2)当极径 0,以OX为始边作角,在角的终边的反向延长线上 截取 | OM || |; (3)极点的极坐标为(0,),其中为任意角。
M
O
X

° O
x
(, )
3.极坐标系下点与它的极坐标的对应情况
P
[1]给定(,),就可以在极坐标平
M (ρ,θ)
面内确定唯一的一点M;
O
X
[2]给定平面上一点M,但却有无数个极坐标与之对应。
(,),(, 2k ), (, 2k )(k Z)表示同一点
如果限定ρ>0,0≤θ<2π 那么除极点外,平面内的点和极坐标就可以一一对应了.
(ρ,θ)
(ρ,θ +2kπ)
(-ρ,θ +π) (-ρ,θ +(2k+1)π)
[3]对称性:
点(,)关于极轴的对称点为(,2 ); 点(, )关于极点对称点为(, ); 点(, )关于过极点且垂直于极轴的直线的对称点为(, ).

新课探究
1.点的极坐标与直角坐标的互化:
(

R);
(2)点M的直角坐标(x, y)为极坐标(, )的关系式:

北师大版高中数学选修4-4同步精练:第一章2.1极坐标系的概念2.2点的极坐标与直角坐标的互化

高中数学学习材料金戈铁骑整理制作极坐标系的概念、点的极坐标与直角坐标的互化练习1点P的直角坐标为(2,2)-,那么它的极坐标可表示为( ).A.π2,4⎛⎫⎪⎝⎭B.3π2,4⎛⎫⎪⎝⎭C.5π2,4⎛⎫⎪⎝⎭D.7π2,4⎛⎫⎪⎝⎭2在极坐标系中,与点π8,6⎛⎫-⎪⎝⎭关于极点对称的点的一个坐标是( ).A.π8,6⎛⎫⎪⎝⎭B.58,π6⎛⎫-⎪⎝⎭C.58,π6⎛⎫-⎪⎝⎭D.π8,6⎛⎫--⎪⎝⎭3在极坐标系中,若等边△ABC的两个顶点是Aπ2,4⎛⎫⎪⎝⎭,B5π2,4⎛⎫⎪⎝⎭,那么可能是顶点C的坐标的是( ).A.3π4,4⎛⎫⎪⎝⎭B.3π23,4⎛⎫⎪⎝⎭C.(23,π) D.(3,π)4在极坐标系中,极坐标52,π4⎛⎫⎪⎝⎭化为直角坐标为( ).A.(1,1) B.(-1,1) C.(1,-1) D.(-1,-1)5直线l过点Aπ7,3⎛⎫⎪⎝⎭,Bπ7,6⎛⎫⎪⎝⎭,则直线l与极轴所在直线的夹角等于________.6点Aπ5,3⎛⎫⎪⎝⎭在条件:(1)ρ>0,θ∈(-2π,0)下的极坐标是__________;(2)ρ<0,θ∈(2π,4π)下的极坐标是__________.7将下列极坐标化成直角坐标.(1)π2,4⎛⎫ ⎪⎝⎭;(2)π6,3⎛⎫-⎪⎝⎭;(3)(5,π).8已知极点在点(2,-2)处,极轴方向与x轴正方向相同的极坐标系中,点M的极坐标为π4,6⎛⎫⎪⎝⎭,求点M在直角坐标系中的坐标.参考答案1 答案:B ρ=2222(-)+()=2,tan θ=22-=-1, ∵点P 在第二象限,∴最小正角3π=4θ. 2 答案:A 点(ρ,θ)关于极点对称的点为(ρ,π+θ), 故π8,6⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标为78,π6⎛⎫- ⎪⎝⎭,即π8,6⎛⎫ ⎪⎝⎭. 3答案:B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,∴|OC |=23,∠AOC =π2,点C 的极角ππ3π==424θ+或5ππ7π=424+, 即点C 的极坐标为3π23,4⎛⎫ ⎪⎝⎭或7π23,4⎛⎫ ⎪⎝⎭. 4答案:D x =ρcos θ=522sin π=2=142⎛⎫⋅-- ⎪ ⎪⎝⎭, y =ρsin θ=522sin π=2=142⎛⎫⋅-- ⎪ ⎪⎝⎭, 故所求直角坐标为(-1,-1).5答案:π4如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=7,∠AOB =πππ=366-,所以ππ5π6==212OAB -∠. 所以π5ππ=π=3124ACO ∠--. 6 答案:(1)55,π3⎛⎫- ⎪⎝⎭ (2)105,π3⎛⎫- ⎪⎝⎭ (1)当ρ>0时,点A 的极坐标形式为π5,2π+3k ⎛⎫ ⎪⎝⎭(k ∈Z ), ∵θ∈(-2π,0).令k =-1,点A 的极坐标为55,π3⎛⎫- ⎪⎝⎭,符合题意. (2)当ρ<0时,π5,3⎛⎫ ⎪⎝⎭的极坐标的一般形式是π5,21π+3k ⎛⎫-(+) ⎪⎝⎭(k ∈Z ). ∵θ∈(2π,4π),当k =1时,点A 的极坐标为105,π3⎛⎫- ⎪⎝⎭,符合题意. 7 答案:解:(1)π=2cos =14x ⋅,π=2sin =14y ⋅, 所以点π2,4⎛⎫ ⎪⎝⎭的直角坐标为(1,1). (2)x =6·πcos 3⎛⎫- ⎪⎝⎭=3, y =6·πsin =333⎛⎫-- ⎪⎝⎭. 所以点π6,3⎛⎫- ⎪⎝⎭的直角坐标为(3,33-). (3)x =5·cos π=-5,y =5·sin π=0, 所以点(5,π)的直角坐标为(-5,0).8 答案:解:设M (x ,y ),则x -2=ρcos θ=π4cos =236, ∴x =2+23,y -(-2)=ρsin θ=π4sin 6=2. ∴y =2-2=0.∴点M 的直角坐标为(2+23,0).。

1.3.2 直线的极坐标方程 课件 (北师大选修4-4)



解:由图可知围成的面 积就是扇形AOB 的面积 1 2 8 即S 4 6 3
A
O
B
X
4、直线 cos 2关于直线= 对称的直线 4 方程为 ( B ) A、 cos 2, B、 sin 2 C、 sin 2, D、=2sin
解:此题可以变成求直 x 2关于y x 线 的对称直线的问题 即y 2化为极坐标方程为 sin 2
§1.3.2直线的极坐标方程
复习引入:
怎样求曲线的极坐标方程?
答:与直角坐标系里的情况一样,求 曲线的极坐标方程就是找出曲线上动 点P的坐标与之间的关系,然后列 出方程(,)=0 ,再化简并讨论。
新课讲授 例题1:求过极点,倾角为 4 的射线 的极坐标方程。 M 分析: 如图,所求的射线 上任一点的极角都 ﹚ 4 o x 是 / 4,其 极径可以取任意的非负数。故所求 直线的极坐标方程为 ( 0)
OM cos MOA OA 即 cos a 可以验证,点A的坐标也满足上式。
求直线的极坐标方程步骤 1、根据题意画出草图; 2、设点 M ( , ) 是直线上任意一点; 3、连接MO; 4、根据几何条件建立关于 , 的方 程,并化简; 5、检验并确认所得的方程即为所求。
0
为了弥补这个不足,可以考虑允许 极径可以取全体实数。则上面的直 线的极坐标方程可以表示为

4 ( R)

5 ( R) 4
( 0)表示极角为的一条射线。 = ( R)表示极角为的一条直线。
例题2、求过点A(a,0)(a>0),且垂直 于极轴的直线L的极坐标方程。 解:如图,设点 M ( , ) M 为直线L上除点A外的任 意一点,连接OM ﹚ o A x 在 Rt MOA 中有

高中数学 第一章 坐标系 1-2-4 曲线的极坐标方程与直角坐标方程的互化课件 北师大版选修4-4


3.将直角坐标方程 x2+y2+2x+2y=0 化为极坐标方程为
()
A.ρ=-2cosθ
B.ρ=-2sinθ
C.ρ=-2(cosθ+sinθ)
π D.ρ=-2cos(θ+ 4 )
答案 C 解析 依题意得 ρ2+2ρcosθ+2ρsinθ=0, 所以 ρ+2cosθ+2sinθ=0 或 ρ=0, 又曲线 ρ+2cosθ+2sinθ=0 经过极点, 所以 ρ=-2(cosθ+sinθ).故选 C.
π ∴这是过极点且倾斜角为 3 的射线的极坐标方程.
π ∴射线 y= 3x(x≥0)的极坐标方程为 θ= 3 (ρ≥0).
(2)将 x=ρcosθ,y=ρsinθ代入 x2+y2=r2,得 ρ2cos2θ+ρ2sin2θ=r2,∴ρ2=r2(r>0). ∵ρ≥0,∴ρ=r 为所求.
题型二 极坐标方程化为直角坐标方程
(2)圆心为(2,23π),半径为 3.
π (3)圆心为(2, 3 ),半径为 3.
结束 语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
【答案】 (1)(x-12)2+(y+ 23)2=1, (2)(x- 23)2+(y-12)2=1, (3)x- 3y-2=0, (4) 3x+y-2=0
题型三 极坐标方程的应用
例 3 (2015·新课标全国Ⅰ)在直角坐标系 xOy 中,直线 C1: x =-2,圆 C2:(x-1)2+(y-2)2=1,以坐标原点为极点, x 轴 的正半轴为极轴建立极坐标系.
π 由此题总结:直线 ρcosθ=1 绕极点逆时针旋转 3 ,即得直线
π
π
ρcos(θ- 3 )=1,其中点(1,0)转到(1, 3 ).

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

[核心必知]1.极坐标系的概念 (1)极坐标系的建立在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.极坐标与直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ; ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0)W. [问题思考]1.平面上的点与这一点的极坐标是一一对应的吗?为什么?提示:不是.在极坐标系中,与给定的极坐标(ρ,θ)相对应的点是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠0),那么这一点也可以表示为(ρ,θ+2n π)或(-ρ,θ+(2n +1)π)(其中n ∈Z ).2.若ρ>0,0≤θ<2π,则除极点外,点M (ρ,θ)与平面内的点之间是否是一一对应的?提示:如果我们规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示,这时,极坐标与平面内的点之间就是一一对应的关系.3.若点M 的极坐标为(ρ,θ),则M 点关于极点、极轴、过极点且垂直于极轴的直线的对称点的极坐标是什么?提示:设点M 的极坐标是(ρ,θ),则M 点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);M 点关于极轴的对称点的极坐标是(ρ,-θ);M 点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).已知定点P ⎝⎛⎭⎫4,π3.(1)将极点移至O ′⎝⎛⎭⎫23,π6处极轴方向不变,求P 点的新坐标;(2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标.[精讲详析] 本题考查极坐标系的建立及极坐标的求法.解答本题需要根据题意要求建立正确的极坐标系,然后求相应的点的极坐标.(1)设P 点新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23, |OP |=4,∠POx =π3,∠O ′Ox =π6,∴∠POO ′=π6.在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,∴ρ=2. 即|O ′P |=2.∴|OP |2=|OO ′|2+|O ′P |2,∠OO ′P =π2.∴∠OPO ′=π3.∴∠OP ′P =π-π3-π3=π3.∴∠PP ′x =2π3.∴∠PO ′x ′=2π3.∴P 点的新坐标为(2,2π3).(2)如图,设P 点新坐标为(ρ,θ),则ρ=4,θ=π3+π6=∴P 点的新坐标为(4,π2).—————————————建立极坐标系的要素是(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向.四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0;但必要时,允许ρ<0.1.边长为a 的正六边形的一个顶点为极点,极轴通过它的一边,求正六边形各顶点坐标.解:由点的极坐标的定义可知,正六边形各顶点的极坐标分别为:(0,0)、(a ,0)、(3a ,π6)、(2a ,π3)、(3a ,π2)、(a ,23π)或(0,0)、(a ,0)、(3a ,-π6)、(2a ,-π3)、(3a ,-π2)、(a ,-23π).若以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)已知点A 的极坐标⎝⎛⎭⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)[精讲详析] 本题考查极坐标和直角坐标的互化.解答此题只需将已知条件代入相关公式即可.(1)∵x =ρcos θ=4·cos 5π3=2. y =ρsin θ=4sin5π3=-2 3. ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1.且点B 位于第四象限内, ∴θ=7π4.∴点B 的极坐标为(22,7π4).又∵x =0,y <0,ρ=15, ∴点C 的极坐标为(15,3π2).(1)将极坐标(ρ,θ)化为直角坐标(x ,y )的公式是:x =ρcos θ,y =ρsin θ;(2)将直角坐标(x ,y )化为极坐标(ρ,θ)的公式是:ρ2=x 2+y 2,tan θ=yx (x ≠0),在利用此公式时要注意ρ和θ的取值范围.2.(1)把点M 的极坐标⎝⎛⎭⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标.(ρ>0,0≤θ<2π) 解:(1)x =8cos 2π3=-4, y =8sin2π3=43, 因此,点M 的直角坐标是(-4,43). (2)ρ=(6)2+(-2)2=22, tan θ=-26=-33,又因为点在第四象限,得θ=116π.因此,点P 的极坐标为(22,11π6).在极坐标系中,已知A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,23π,求A 、B 两点之间的距离. [精讲详析] 本题考查极坐标与直角坐标的互化、极坐标系中两点间的距离公式.解答此题可直接利用极坐标系中两点间的距离公式求解,也可以先将极坐标化为直角坐标,然后利用两点间的距离公式求解.法一:由A (3,-π3)、B (1,2π3)在过极点O 的一条直线上,这时A 、B 两点的距离为|AB |=3+1=4,所以,A 、B 两点间的距离为4.法二:∵ρ1=3,ρ2=1,θ1=-π3,θ2=2π3,由两点间的距离公式得|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=32+12-2×3×1×cos (-π3-23π)=10-6cos π =10+6 =16 =4.法三:将A (3,-π3),B (1,2π3)由极坐标化为直角坐标,对于A (3,-π3)有x =3cos (-π3)=32,y =3sin(-π3)=-332,∴A (32,-332).对于B (1,2π3)有x =1×cos 2π3=-12,y =1×sin2π3=32, ∴B (-12,32).∴|AB |=(32+12)2+(-332-32)2=4+12=4. ∴AB 两点间的距离为4.对于这类问题的解决方法,可以直接用极坐标内两点间的距离公式d =ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)求得;也可以把A 、B 两点由极坐标化为直角坐标,利用直角坐标中两点间的距离公式d =(x 1-x 2)2+(y 1-y 2)2求得;极坐标与直角坐标的互化体现了化归的解题思想;还可以考虑其对称性,根据对称性求得.3.在极坐标系中,如果等边三角形的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,54π,则求第三个顶点C 的坐标.解:由题设知,A 、B 两点关于极点O 对称,又|AB |=4,由正三角形的性质知,|CO |=23,∠AOC =π2,从而C 的极坐标为(23,34π)或(23,-π4).极坐标与直角坐标的互化在高考模拟中经常出现.本考题将极坐标与直角坐标的互化同极坐标系中两点间的距离和简单的三角恒等变换相结合考查,是高考模拟命题的一个新亮点.[考题印证]已知极坐标系中,极点为O ,将点A (4,π6)绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.[命题立意] 本题主要考查点的极坐标的求法以及直角坐标与极坐标的转化. [解析] 依题意,点B 的极坐标为(4,5π12),∵cos 5π12=cos (π4+π6)=cos π4cos π6-sin π4·sin π6=22·32-22·12=6-24, sin 5π12=sin (π4+π6)=sin π4cos π6+cos π4·sin π6=22·32+22·12=6+24, ∴x =ρcos θ=4×6-24=6-2, y =ρsin θ=6+ 2.∴点B 的直角坐标为(6-2,6+2). [答案] (6-2,6+2)一、选择题1.在极坐标系中,点M ⎝⎛⎭⎫-2,π6的位置,可按如下规则确定( )A .作射线OP ,使∠xOP =π6,再在射线OP 上取点M ,使|OM |=2 B .作射线OP ,使∠xOP =7π6,再在射线OP 上取点M ,使|OM |=2 C .作射线OP ,使∠xOP =7π6,再在射线OP 的反向延长线上取点M ,使|OM |=2 D .作射线OP ,使∠xOP =-π6,再在射线OP 上取点M ,使|OM |=2解析:选B 当ρ<0时,点M (ρ,θ)的位置按下列规定确定:作射线OP ,使∠xOP =θ,在OP 的反向延长线上取|OM |=|ρ|,则点M 就是坐标(ρ,θ)的点.2.在极坐标平面内,点M ⎝⎛⎭⎫π3,200π,N ⎝⎛⎭⎫-π3,201π,G ⎝⎛⎭⎫-π3,-200π,H ⎝⎛⎭⎫2π+π3,200π中互相重合的两个点是( )A .M 和NB .M 和GC .M 和HD .N 和H 解析:选A 由极坐标定义可知,M 、N 表示同一个点.3.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点 (ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称. 4.已知极坐标平面内的点P ⎝⎛⎭⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分别为( )A.⎝⎛⎭⎫2,π3,(1,3)B.⎝⎛⎭⎫2,-π3,(1,-3)C.⎝⎛⎭⎫2,2π3,(-1,3)D.⎝⎛⎭⎫2,-2π3,(-1,-3)解析:选D 点P (2,-5π3)关于极点的对称点为(2,-5π3+π),即(2,-2π3),且x =2cos (-2π3)=-2cos π3=-1,y =2sin (-2π3)=-2sin π3=- 3.二、填空题5.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为________.解析:点M 的极坐标为(ρ,θ),设其直角坐标为(x ,y ),依题意得ρ=x ,θ=y , 即x 2+y 2=x 2. ∴y =θ=0,ρ>0,∴M (ρ,0). 答案:(ρ,0)6.已知极坐标系中,极点为O ,0≤θ<2π,M ⎝⎛⎭⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.解析:如图所示,|OM |=3,∠xOM =π3,在直线OM 上取点P 、Q ,使|OP |=7,|OQ |=1,∠xOP =π3,∠xOQ =4π3,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.答案:(7,π3)或(1,4π3)7.直线l 过点A ⎝⎛⎭⎫3,π3,B ⎝⎛⎭⎫3,π6,则直线l 与极轴夹角等于________.解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为________.解析:∵tan θ=-43,π2<θ<π,∴cos θ=-35,sin θ=45.∴x =5cos θ=-3,y =5sin θ=4. ∴点M 的直角坐标为(-3,4). 答案:(-3,4) 三、解答题9.设点A ⎝⎛⎭⎫1,π3,直线L 为过极点且垂直于极轴的直线,分别求出点A 关于极轴,直线L ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π)解:如图所示:关于极轴的对称点为 B (1,-π3)关于直线L 的对称点为C (1,2π3).关于极点O 的对称点为D (1,-2π3).10.已知点P 的直角坐标按伸缩变换⎩⎨⎧x ′=2x ,y ′=3y变换为点P ′(6,-3),限定ρ>0,0≤θ≤2π时,求点P 的极坐标.解:设点P 的直角坐标为(x ,y ),由题意得⎩⎨⎧6=2x -3=3y ,解得⎩⎨⎧x =3,y =- 3.∴点P 的直角坐标为(3,-3).ρ=32+(-3)2=23,tan θ=-33,∵0≤θ<2π,点P 在第四象限, ∴θ=11π6.∴点P 的极坐标为(23,11π6). 11.在极轴上求与点A ⎝⎛⎭⎫42,π4的距离为5的点M 的坐标. 解:设M (r ,0),因为A (42,π4), 所以 (42)2+r 2-82r ·cos π4=5. 即r 2-8r +7=0.解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 极坐标系 2.1 极坐标系的概念2.2 点的极坐标与直角坐标的互化1.掌握极坐标的概念,弄清极坐标的结构(建立极坐标的四要素).2.理解广义极坐标下点的极坐标(ρ,θ)与点之间的多对一的对应关系.3.已知一点的极坐标,能在极坐标系中描点,能进行点的极坐标与直角坐标的互化.1.极坐标系的概念 (1)极坐标系的建立.如图,在平面内取一个定点O ,叫作____,从点O 引一条射线Ox ,叫作____,选定一个________和__的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为________.(2)点的极坐标的规定.①如图,对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角,ρ叫作点M 的____,θ叫作点M 的____,有序实数对(ρ,θ)叫作点M 的______,记作M ______.当点M 在极点时,它的极径ρ=__,极角θ可以取______.②为了研究问题方便,极径ρ也允许取负值.当ρ<0时,点M (ρ,θ)的位置可以按下列规则确定:作射线OP ,使∠xOP =θ,在OP 的__________上取一点M ,使|OM |=|ρ|,这样点M 的坐标就是(ρ,θ),如下图:【做一做1-1】在极坐标系中,与点π36⎛⎫ ⎪⎝⎭,重合的点是( ). A .⎝ ⎛⎭⎪⎫3,136π B .⎝⎛⎭⎪⎫3,-π6C .⎝ ⎛⎭⎪⎫3,176πD .⎝⎛⎭⎪⎫3,-56π【做一做1-2】在极坐标系中,与(ρ,θ)关于极轴对称的点是( ).A .(ρ,θ)B .(ρ,-θ)C .(ρ,θ+π)D .(ρ,π-θ) 2.点的极坐标与直角坐标的互化 (1)互化的前提条件.如图,建立一个平面直角坐标系,把平面直角坐标系的原点作为____,x 轴的正半轴作为____,建立极坐标系,并且两种坐标系中取相同的________.(2)互化公式.如上图,设M 是平面内的任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ).如果限定ρ取正值,θ∈[0,2π),那么除____外,平面内点的直角坐标与极坐标之间就是一一对应的.①点M 的极坐标(ρ,θ)化为直角坐标(x ,y )的公式是⎩⎪⎨⎪⎧x = ,y = .②点M 的直角坐标(x ,y )化为极坐标(ρ,θ)的公式是⎩⎪⎨⎪⎧ρ2= ,tan θ= .【做一做2-1】点M 的极坐标为⎝ ⎛⎭⎪⎫5,23π,化成直角坐标形式是__________.【做一做2-2】点A 的极坐标为⎝⎛⎭⎪⎫-2,-π3,化成直角坐标形式是__________. 【做一做2-3】点P 的直角坐标为(6,2),化成极径是正值,极角在0到2π之间的极坐标为__________.1.建立极坐标系的意义 剖析:我们已经知道,确定平面内一个点的位置时,有时是依靠水平距离与垂直距离(即“长度”与“长度”,这就是直角坐标系的基本思想)这两个量来刻画,有时却是依靠距离与方位角(即“长度”与“角度”,这就是极坐标系的基本思想)这两个量来刻画.在生活中,如在台风预报、地震预报、测量、航空、航海中,甚至更贴近我们生活的如我们听到的声音,不但有高低之分,还有方向之分,我们能够辨别出声源的相对位置,这些都要用距离和方向来确定一点的位置.有些复杂的曲线,比如说环绕一点作旋转运动的点的轨迹,用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理.在应用上有重要价值的等速螺线,它的直角坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有一个简单的一次函数关系,我们将在后一节的内容中学习极坐标形式下的一些简单曲线方程.总之,使用极坐标是人们生产生活的需要.平面内建立直角坐标系是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法.2.极坐标系下点与它的极坐标对应情况剖析:(1)给定点(ρ,θ),就可以在极坐标平面内确定唯一的一个点M ;(2)给定平面上一点M ,却有无数个极坐标与之对应.原因在于极角有无数个.答案:1.(1)极点 极轴 单位长度 角 极坐标系(2)①极径 极角 极坐标 (ρ,θ) 0 任意值 ②反向延长线【做一做1-1】A 当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点.因为13π6=π6+2π,所以点⎝ ⎛⎭⎪⎫3,π6与⎝ ⎛⎭⎪⎫3,13π6表示同一个点,即重合. 【做一做1-2】B 极径为ρ,极角为θ,θ关于极轴对称的角为负角-θ,故所求的点为(ρ,-θ).2.(1)极点 极轴 单位长度 (2)原点 ①ρcos θ ρsin θ ②x 2+y 2y x(x ≠0) 【做一做2-1】⎝ ⎛⎭⎪⎫-52,532 x =5cos 23π=-52,y =5sin 23π=532.所以点M 的直角坐标为⎝ ⎛⎭⎪⎫-52,532.【做一做2-2】(-1,3) 因为点A 的极坐标又可以写成⎝⎛⎭⎪⎫2,2π3,所以x =ρcos θ=2cos 2π3=2×⎝ ⎛⎭⎪⎫-12=-1, y =ρsin θ=2sin2π3=2×32= 3. 所以点A 的直角坐标为(-1,3).【做一做2-3】⎝ ⎛⎭⎪⎫22,π6 ρ=62+22=22,tan θ=26=33,又点P 在第一象限,得θ=π6,因此点P 的极坐标是⎝⎛⎭⎪⎫22,π6.题型一 极坐标系中点的表示【例1】已知点M 的极坐标为⎝⎛⎭⎪⎫5,π3,下列给出的四个坐标中能表示点M 的坐标的是( ).A .⎝ ⎛⎭⎪⎫5,-π3B .⎝ ⎛⎭⎪⎫5,43πC .⎝ ⎛⎭⎪⎫5,-23πD .⎝⎛⎭⎪⎫5,-53π 反思:在极坐标系中,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z )表示同一个点.特别注意,极点O 的坐标为(0,θ)(其中θ可以取任意值).这与直角坐标系中的点与有序实数对一一对应的关系不同,极坐标平面内的点的极坐标可以有无数多种表示.题型二 对称性问题【例2】在极坐标系中,点A 的极坐标为⎝⎛⎭⎪⎫3,π6.(限定ρ>0,0≤θ<2π)(1)点A 关于极轴对称的点的极坐标是__________; (2)点A 关于极点对称的点的极坐标是__________;(3)点A 关于直线θ=π2对称的点的极坐标是__________.反思:在极坐标系中,点(ρ,θ)关于极轴所在直线对称的点的极坐标为(ρ,2k π-θ)(k ∈Z ),关于直线θ=π2对称的点的极坐标为(ρ,2k π+π-θ)(k ∈Z ),关于极点对称的点的极坐标为(ρ,θ+π+2k π)(k ∈Z ).题型三 点的极坐标与直角坐标的互化【例3】(1)把点M 的极坐标⎝ ⎛⎭⎪⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标(ρ>0,0≤θ<2π).分析:本题考查的是直角坐标与极坐标的互化公式的应用.反思:由直角坐标化成极坐标时,算出tan θ=-33,仅根据0≤θ<2π,只能得出θ=5π6或θ=11π6,要确定极角,需再根据点所在的象限来判断.答案:【例1】D 与点M 终边相同的极坐标可以表示为⎝⎛⎭⎪⎫5,2k π+π3(k ∈Z ),即极径相等,极角相差2π的整数倍.根据选项,当k =-1时,2k π+π3=-2π+π3=-53π,即⎝ ⎛⎭⎪⎫5,-53π能表示点M . 【例2】(1)⎝ ⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝ ⎛⎭⎪⎫3,5π6 通过作图可求解.【例3】解:(1)x =8cos 2π3=-4,y =8sin 2π3=43,因此点M 的直角坐标是(-4,43).(2)ρ=62+-22=22,tan θ=-26=-33,又因为点P 在第四象限,故θ=11π6.因此点P 的极坐标为⎝ ⎛⎭⎪⎫22,11π6. 1在极坐标系中与点A(3,π3-)关于极轴所在的直线对称的点的极坐标是( ). A .2π33⎛⎫ ⎪⎝⎭, B .π33⎛⎫ ⎪⎝⎭, C .4π33⎛⎫ ⎪⎝⎭, D .5π36⎛⎫ ⎪⎝⎭,2在极坐标系中,确定点π26M ⎛⎫- ⎪⎝⎭,的位置,下面方法正确的是( ).A .作射线OP ,使π6xOP ∠=,再在射线OP 上取点M ,使|OM |=2B .作射线OP ,使π6xOP ∠=,再在射线OP 的反向延长线上取点M ,使|OM |=2 C .作射线OP ,使7π6xOP ∠=,再在射线OP 的反向延长线上取点M ,使|OM |=2D .作射线OP ,使π6xOP ∠=-,再在射线OP 上取点M ,使|OM |=23点M 的极坐标为π4,4⎛⎫- ⎪⎝⎭,化为直角坐标为__________.4将下列各点由直角坐标化为极径ρ是正值,极角在0到2π之间的极坐标.(1);(2)(2--,.答案: 1.B 极坐标系中的点(ρ,θ)关于极轴所在直线的对称点的极坐标为(ρ,2k π-θ)(k ∈Z ),利用这个规律即可判断之.与点A ⎝ ⎛⎭⎪⎫3,-π3关于极轴所在直线的对称的点的极坐标可以表示为⎝⎛⎭⎪⎫3,2k π+π3(k ∈Z ),这时只有选项B 满足条件.2.B 本题涉及到极径为负值时的坐标表示.当ρ<0时,表示点(ρ,θ)的方法如下:作射线OP ,使∠xOP =θ.在OP 反向延长线上取一点M ,使|OM |=|ρ|,故B 项正确.3.(22,-22) x =ρcos θ=4cos ⎝ ⎛⎭⎪⎫-π4=4×22=22, y =ρsin θ=4sin ⎝ ⎛⎭⎪⎫-π4=4×⎝ ⎛⎭⎪⎫-22=-22,∴M (22,-22). 4.解:(1)ρ=32+32=23,tan θ=yx =33, 又点(3,3)在第一象限,所以θ=π6.所以点(3,3)的极坐标为⎝ ⎛⎭⎪⎫23,π6. (2)ρ=-2+-232=4,tan θ=y x =-23-2=3,又点(-2,-23)在第三象限,所以θ=4π3.所以点(-2,-23)的极坐标为⎝ ⎛⎭⎪⎫4,4π3.。

相关文档
最新文档