随机过程中的条件期望估计
随机变量期望值公式

随机变量期望值公式
期望:在概率论和统计学中,一个离散性随机变量的期望是试验中每次某个可能结果的概率乘以这个结果数值的总和。
如果假设每次试验出现结果的概率相等,期望就是随机试验在同样的机会下重复多次的结果相加,计算出的等概率“期望”的平均值。
需要注意的是,期望值也许与每一个结果都不相等,因为期望值是该变量输出值的平均数,期望值并不一定包含于变量的输出值集合里。
离散型随机变量期望的公式化表示为如下,假设随机变量为XX,取值x i(i=1,2,...,n)x i(i=1,2,...,n),对应发生概率p i(i=1,2,...,n)p i(i=1,2,...,n),E(X)E(X)为随机变量的期望:E(X)=∑n i=1p i x i E(X)=∑i=1np i x i。
当p i(i=1,2,...,n)p i(i=1,2,...,n)相等时,也即p i=1np i=1n时,E(X)E(X)可以简化为:E(X)=1n∑n i=1x i E(X)=1n∑i=1nx i
连续型随机变量的期望,可以使用求随机变量取值与对应概率乘积的积分求得,设XX为连续性随机变量,f(x)f(x)为对应的概率密度函数,则期望E(X)E(X)为:E(X)=∫xf(x)dxE(X)=∫xf(x)dx。
1。
条件数学期望与条件方差

利用全概率公式进行计算
将事件分解为若干个互斥事件,分别计算每个事件的数学期望,然后加权求和。
在金融中的应用
风险评估
在投资组合优化中,条件数学期望常用于评估不同风险水平下的预期收益。
资本资产定价模型(CAPM)
条件数学期望用于计算资产的预期收益率,进而确定其风险溢价。
条件数学期望与条件方差
目录
• 条件数学期望 • 条件方差 • 条件数学期望与条件方差的关系 • 条件数学期望与条件方差的实例分析
01
条件数学期望
定义与性质
定义
在给定某个条件或信息下,数学期望 的值。
性质
与普通数学期望的性质相似,但需要 考虑条件的影响。
计算方法
利用概率质量函数或概率密度函数计算
波动风险,进而制定合适的投资策略。
外汇汇率的条件数学期望与条件方差分析
总结词
外汇汇率的条件数学期望和条件方差分析有 助于投资者预测汇率走势,进行合理的资产 配置。
详细描述
通过分析外汇汇率的历史数据和市场信息, 投资者可以预测未来汇率的走势,进而制定 相应的投资策略。条件方差则反映了外汇汇 率波动的风险,投资者可以根据风险承受能 力进行资产配置。
投资决策
在制定投资决策时,投资者可以利用条件数学期望和条件方差 来评估不同投资策略的预期回报和风险,从而选择更合适的策
略。
04
条件数学期望与条件方差的实例分 析
股票价格的条件数学期望与条件方差分析
总结词
股票价格的条件数学期望和条件方差分析是 评估投资风险和预期收益的重要工具。
详细描述
条件数学期望表示在给定某些信息或条件下 ,未来股票价格的预期值。通过分析历史数 据和市场信息,投资者可以预测未来股票价 格的走势,并制定相应的投资策略。条件方 差则衡量了股票价格的条件数学期望的波动 性,即风险。较低的条件方差意味着股票价
随机过程的鞅理论基础

随机过程的鞅理论基础随机过程是描述在随机现象下发生的过程的数学工具。
鞅是随机过程理论中的一个重要概念,在概率论和统计学中有着广泛的应用。
鞅是指一个随机过程,其条件期望在给定任何时刻前的信息下都是已知的,即能够在未来给定以往信息来对未来的情况进行合理预测。
鞅理论是随机过程的重要分支,它为我们提供了一种强大的工具,用于研究各种随机现象,比如金融市场、生态系统、通信网络等领域中的随机过程。
随机过程和鞅的定义随机过程是由一系列随机变量组成的数学模型,表示随机现象随着时间的演化。
在一个随机过程中,每个时间点都会有一个随机变量与之对应。
而鞅则是一种特殊类型的随机过程,它满足以下两个条件:1.鞅在任意时刻的期望都是已知的,即给定过去的信息时,可以预测未来的情况。
2.鞅在任意时刻都是渐近有界的,即它在任意时间都不会远离某个固定值。
鞅理论的基本性质和应用鞅具有许多重要的性质和应用,其中一些包括:•停止定理:停止定理指出,如果一个随机过程是鞅,并且在某一时间点停止后仍然是鞅,那么在该时间点后的条件期望与该随机过程的值相等。
•鞅的收敛定理:鞅的收敛定理是鞅理论中的一个基本结果,它描述了鞅序列的极限存在性和性质。
•鞅在金融领域的应用:在金融市场中,鞅理论被广泛应用于定价、风险管理和衍生品定价等方面。
例如,鞅理论可以用来描述股票价格的演变和预测未来价格走势。
总结随机过程的鞅理论是概率论和统计学中重要的理论分支,它为我们提供了一种强大的工具,用于研究各种随机现象。
鞅的定义和基本性质为我们理解随机过程的特性和行为提供了基础,而鞅在金融领域等实际应用中也发挥着重要作用。
通过深入学习和理解鞅理论,我们可以更好地理解和分析各种随机现象,为实际问题的解决提供有力支持。
概率中数学期望的变式应用

概率中数学期望的变式应用在概率论中,数学期望是一个非常重要的概念,它是描述随机变量取值平均水平的一种方法。
在实际应用中,我们经常会遇到一些与期望值有关的问题,例如如何计算期望值、如何求期望的变化等。
本文将着重介绍概率中数学期望的变式应用。
一、离散型随机变量的数学期望设随机变量X的取值为x1,x2,...,xn,相应的概率为p1,p2,...,pn,则X的数学期望为:E(X)=x1p1+x2p2+...+xnpn在实际应用中,我们需要根据实际情况来进行一些变化,使期望值更符合实际情况。
1. 期望的线性性对于任意两个随机变量X和Y以及任意两个常数a和b,有如下关系:E(aX+bY)=aE(X)+bE(Y)这个公式成为期望的线性性,意味着对于一组由随机变量组成的线性组合,其期望等于各随机变量期望的加权平均值。
例如,某公司每月销售额X和每月成本Y均服从正态分布,且均值分别为500000元和400000元,而销售额和成本的相关系数为0.8。
现问该公司每月净利润的期望是多少?设净利润为Z,则有Z=X-Y,根据期望的线性性,有E(Z)=E(X)-E(Y)=500000-400000=1000002. 期望的加法法则对于连续型随机变量而言,其数学期望的计算稍微有些不同。
设f(x)为随机变量的概率密度函数,则任何单调可积函数g(x)的期望为:E(g(x))=∫g(x)f(x)dx其中,积分区间为随机变量的取值范围。
例如,某家电公司生产的电脑寿命X服从正态分布,均值为5年,标准差为2年。
现问该公司生产出的电脑寿命的平方的期望数是多少?设电脑寿命为X,则X的概率密度函数为:f(x)=1/[2sqrt(2π)]exp[-(x-5)^2/8]设电脑寿命的平方为g(X),则g(X)=X^2,根据期望的定义,有E(g(X))=E(X^2)=∫x^2f(x)dx将f(x)代入上式,展开计算,可得E(X^2)=17三、条件期望在实际应用中,我们常常需要计算有条件地对随机变量取值求期望的操作。
随机过程知识点

第一章:预备知识§1.1 概率空间随机试验;样本空间记为Ω..定义1.1 设Ω是一个集合;F 是Ω的某些子集组成的集合族..如果 1∈ΩF ;2∈A 若F ;∈Ω=A A \则F ; 3若∈n A F ; ,,21=n ;则∞=∈1n nAF ;则称F 为-σ代数Borel 域..Ω;F 称为可测空间;F 中的元素称为事件.. 由定义易知:定义1.2 设Ω;F 是可测空间;P ·是定义在F 上的实值函数..如果 则称P 是()F ,Ω上的概率;P F ,,Ω称为概率空间;PA 为事件A 的概率..定义1.3 设P F ,,Ω是概率空间;F G ⊂;如果对任意G A A A n ∈,,,21 ; ,2,1=n 有: (),11∏===⎪⎪⎭⎫⎝⎛ni i n i i A P A P则称G 为独立事件族..§1.2 随机变量及其分布随机变量X ;分布函数)(x F ;n 维随机变量或n 维随机向量;联合分布函数;{}T t X t ∈,是独立的..§1.3随机变量的数字特征定义1.7 设随机变量X 的分布函数为)(x F ;若⎰∞∞-∞<)(||x dF x ;则称)(X E =⎰∞∞-)(x xdF为X 的数学期望或均值..上式右边的积分称为Lebesgue-Stieltjes 积分..方差;()()[]EY Y EX X E B XY --=为X 、Y 的协方差;而 为X 、Y 的相关系数..若,0=XY ρ则称X 、Y 不相关..Schwarz 不等式若,,22∞<∞<EY EX则§ 1.4 特征函数、母函数和拉氏变换定义1. 10 设随机变量的分布函数为Fx;称为X 的特征函数随机变量的特征函数具有下列性质: 1(0)1,()1,()()g g t g t g t =≤-= 1 2 g t 在()∞∞-, 上一致连续..3()(0)()k k k g i E X =4若12,,,n X X X 是相互独立的随机变量;则12n X X X X =+++的特征函数12()()()()n g t g t g t g t =;其中()i g t 是随机变量X i 的特征函数;1,2,,i n =.定义1 . 11 设 12(,,,)n X X X X =是n 维随机变量;t = 12,,,n t t t ,R ∈ 则称121()(,,,)()[exp()]nitX n k k k g t g t t t E eE i t X '====∑;为X 的特征函数..定义1.12 设X 是非负整数值随机变量;分布列 则称)()(Xdef s E s P ==k k k s P ∑∞=0为X 的母函数..§ 1.5 n 维正态分布定义1.13 若n 维随机变量),,,(21n X X X X =的联合概率密度为 式中;),,,(21n a a a a =是常向量;n n ij b B ⨯=)(是正定矩阵;则称X 为n 维正态随机变量或服从n 维正态分布;记作),(~B a N X ..可以证明;若),(~B a N X ;则X 的特征函数为为了应用的方便;下面;我们不加证明地给出常用的几个结论..性质1 若),(~B a N X 则n l b B a X E kl X X k k l k ,,2,1,,)( ===..性质2 设),(~B a N X ;XA Y =;若BA A '正定;则),(~BA A aA N Y '..即正态随机变量的线性变换仍为正态随机变量..性质3 设),,,(4321X X X X X =是四维正态随机变量;4,3,2,1,0)(==k X E k ;则§ 1.6 条件期望给定Y=y 时;X 的条件期望定义为由此可见除了概率是关于事件{Y=y }的条件概率以外;现在的定义与无条件的情况完全一样..EX|Y=y 是y 的函数;y 是Y 的一个可能值..若在已知Y 的条件下;全面地考虑X 的均值;需要以Y 代替y;EX|Y 是随机变量Y 的函数;也是随机变量;称为 X 在 Y 下的条件期望.. 条件期望在概率论、数理统计和随机过程中是一个十分重要的概念;下面我们介绍一个极其有用的性质..性质 若随机变量X 与Y 的期望存在;则⎰===)()|()]|([)(y dF y Y X E Y X E E X E Y --------1如果Y 是离散型随机变量;则上式为如果Y 是连续型;具有概率密度fx;则1式为第二章 随机过程的概念与基本类型§2.1 随机过程的基本概念定义2.1 设P F ,,Ω是概率空间;T 是给定的参数集;若对每个t ∈T ;有一个随机变量Xt ;e 与之对应;则称随机变量族}),,({T t e t X ∈是P F ,,Ω的随机过程;简记为随机过程}),({T t t X ∈..T 称为参数集;通常表示时间..通常将随机过程}),,({T t e t X ∈解释为一个物理系统..Xt 表示在时刻t 所处的状态..Xt 的所有可能状态所构成的集合称为状态空间或相空间;记为I ..从数学的观点来说;随机过程}),,({T t e t X ∈是定义在T ×Ω上的二元函数..对固定的t;Xt ;e 是定义在T 上的普通函数;称为随机过程}),,({T t e t X ∈的一个样本函数或轨道;样本函数的全体称为样本函数的空间..§ 2.2 随机过程的函数特征t X ={Xt ;t ∈T }的有限维分布函数族..有限维特征函数族: 其中:定义2.3 设t X ={Xt ;t ∈T }的均值函数def t m X )()]([t X E ;T t ∈.. 二阶矩过程;协方差函数:T ,)]()([),()(2∈-=t t m t X E def t t B t D X X X相关函数: =),(t s R X )]()([t X s X E定义2.4 设{Xt ;t ∈T };{Yt ;t ∈T }是两个二阶矩过程;互协方差函数;互相关函数..§ 2.3 复随机过程定义 2.5 设},{T t X t ∈;},{T t Y t ∈是取实数值的两个随机过程;若对任意T t ∈ t t t iY X Z +=; 其中 1-=i ;则称},{T t Z t ∈为复随机过程.定理 2.2 复随机过程},{T t X t ∈的协方差函数 ),(t s B 具有性质 1对称性:),(),(s t B t s B =;2非负定性§2.4 几种重要的随机过程一、正交增量过程定义2.6 设(){}T ∈X t t ,是零均值的二阶矩过程;若对任意的,4321T ∈<≤<t t t t 有公式()()[]()()[]03412=X -X X -X E t t t t ;则称()t X 正交增量过程..二、独立增量过程定义2.7 设(){}T ∈X t t ,是随机过程;若对任意的正整数n 和,21T ∈<<<n t t t 随机变量()()()()()()12312,,,-X -X X -X X -X n n t t t t t t 是互相独立的;则称(){}T ∈X t t ,是独立增量过程;又称可加过程..定义 2.8 设(){}T ∈X t t ,是平稳独立增量过程;若对任意,t s <随机变量()()s t X -X 的分布仅依赖于s t -;则称(){}T ∈X t t ,是平稳独立增量过程..三、马尔可夫过程定义2.9设(){}T t t X ∈,为随机过程;若对任意正整数n 及n t t t << ,21;()()0,,)(1111>==--n n x t X x t X P ;且其条件分布()(){}1111,,|)(--===n n n n x t X x t X x t X P =(){}11|)(--==n n n n x t X x t X P ;2.6则称(){}T t t X ∈,为马尔可夫过程..四、正态过程和维纳过程定义 2.10设(){}T t t X ∈,是随机过程;若对任意正整数n 和T t t t ∈∈ ,,21;()() ,,21t X t X ;()n t X 是n 维正态随机变量;则称(){}T t t X ∈,是正态过程或高斯过程..定义 2.11设{}∞<<-∞t t W ),(为随机过程;如果 10)0(=W ;2它是独立、平稳增量过程; 3对t s ,∀;增量()0,||,0~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程;也称布朗运动过程..定理 2.3 设{}∞<<-∞t t W ),(是参数为2σ的维纳过程;则 (1) 任意t ),(∞-∞∈;()||,0~)(2t N t W σ; (2) 对任意∞<<<∞-t s a ,;[]),m in())()())(()((2a t a s a W t W a W s W E --=--σ;特别: ()()t s t s Rw ,m in ,2σ=..五、平稳过程定义 2.12 设(){}T t t X ∈,是随机过程;如果对任意常数τ和正整数,n 当T ∈++T ∈ττn n t t t t ,,,,,11 时;()()()()n t t t X X X ,,21与()()()()τττ+X +X +X n t t t ,,,21 有相同的联合分布;则称(){}T t t X ∈,为严平稳过程;也称狭义平稳过程..定义 2.13 设(){}T t t X ∈,是随机过程;如果 1(){}T t t X ∈,是二阶矩过程;2对于任意()()[]=X E =T ∈X t t m t ,常数;3对任意的()()s t R t s R t s -=T ∈X X ,,,;则称(){}T t t X ∈,为广义平稳过程;简称为平稳过程..若T 为离散集;则称平稳过程(){}T t t X ∈,为平稳序列..第三章 泊松过程§3.1 泊松过程的定义和例子定义3.1 计数过程定义3.2 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程;若它满足下列条件 1 X0= 0;2 Xt 是独立增量过程;3 在任一长度为t 的区间中;事件A 发生的次数服从参数λt >0的泊松分布;即对任意s;t >0;有注意;从条件3知泊松过程是平稳增量过程且t t X E λ=)]([..由于;tt X E )]([=λ表示单位时间内事件A 发生的平均个数;故称λ为此过程的速率或强度..定义3.3 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程;若它满足下列条件 1 X0= 0;2 Xt 是独立、平稳增量过程;3 Xt 满足下列两式:)(}2)()({),(}1)()({h o t X h t X P h o h t X h t X P =≥-++==-+λ 3.2定理3.1 定义3.2与定义3.3是等价的..3.2 泊松过程的基本性质一、数字特征设}0),({≥t t X 是泊松过程;一般泊松过程的有),m in(),(t s t s B X λ=..有特征函数定义;可得泊松过程的特征函数为二、时间间隔与等待时间的分布n W 为第n 次事件A 出现的时刻或第n 次事件A 的等待时间;n T 是第n 个时间间隔;它们都是随机变量..定理3.2 设}0),({≥t t X 是具有参数λ的泊松分布;)1(≥n T n 是对应的时间间隔序列;则随机变量),2,1( =n T n 是独立同分布的均值为λ/1的指数分布..定理3.3 设}1,{≥n W n 是与泊松过程}0),({≥t t X 对应的一个等待时间序列;则n W 服从参数为n 与λ的Γ分布;其概率密度为三、到达时间的条件分布定理3.4 设}0),({≥t t X 是泊松过程;已知在0;t 内事件A 发生n 次;则这n 次到达时间n W W W <<< 21与相应于n 个0;t 上均匀分布的独立随机变量的顺序统计量有相同的分布..§3.3 非齐次泊松过程定义 3.4 称计数过程{(),0}X t t ≥为具有跳跃强度函数()t λ的非齐次泊松过程;若它满足下列条件:1 (0)0X =;2 ()X t 是独立增量过程;3{()()1}()(){()()2}()P X t h X t t h o h P X t h X t o h λ+-==++-≥=非齐次泊松过程的均值函数为:定理 3.5 设{(),0}X t t ≥是具有均值函数0()()tX m t s ds λ=⎰的非齐次泊松过程;则有 或上式表明{()()}P X t s X t n +-=不仅是t 的函数;也是s 的函数..3.4 复合泊松过程定义3.5 设}0),({≥t t N 是强度为λ的泊松过程;,...}2,1{,=k Y k 是一列独立同分布随机变量;且与}0),({≥t t N 独立;令 则称}0),({≥t t X 为复合泊松过程..定理3.6 设,0)()(1≥∑==t k t x Y t N k 是复合泊松过程;则1..}0),({≥t t X 是独立增量过程;2Xt 的特征函数]}1)([ex p{)()(-=u g t u g Y t X λ;其中)(u g Y 是随机变量1Y 的特征函数;λ是事件的到达率..3若,)(21∞<Y E 则].[)]([],[)]([211Y tE t X D Y tE t X E λλ==第4章 马尔可夫链§4.1 马尔可夫链的概念及转移概率一、马尔可夫键的定义定义1 设有随机过程},{T n X n ∈;若对于任意的整数T n ∈和任意的I i i i n ∈+110,,, ;条件概率满足则称},{T n X n ∈为马尔可夫链;简称马氏链..二、转移概率定义2 称条件概率为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率;其中I j i ∈,;简称为转移概率..定义 3 若对任意的I j i ∈,;马尔可夫链},{T n X n ∈的转移概率)(n p ij 与n 无关;则称马尔可夫链是齐次的;并记)(n p ij 为ij p ..定义4 称条件概率为马尔可夫链},{T n X n ∈的n 步转移概率;定理 1 设},{T n X n ∈为马尔可夫链;则对任意整数n l n <≤≥0,0和I j i ∈,;n 步转移概率)(n ij p 具有下列性质:定义5 设},{T n X n ∈为马尔可夫链;称为},{T n X n ∈的初始概率和绝对概率;并分别称},{I j p j ∈和}),({I j n p j ∈为},{T n X n ∈的初始分布和绝对分布;简记为}{j p 和)}({n p j ..定理2 设},{T n X n ∈为马尔可夫链;则对任意I j ∈和1≥n ;绝对概率)(n p j 具有下列性质:定理3 设},{T n X n ∈为马尔可夫链;则对任意I i i i n ∈,,,21 和1≥n ;有§4.2 马尔可夫链的状态分类一、状态分类假设{,0}n X n ≥是齐次马尔可夫链;其状态空间{0,1,2,}I =;转移概率是,,ij p i j I ∈; 初始分布为{,,}j p i j I ∈ ..定义 4.6 如集合(){:1,0}n ii n n p ≥>非空;则称该集合的最大公约数()()..{:0}n ii d d i G C D n p ==>为状态i 的周期..如1>d 就称i 为周期的;如1=d 就称i 为非周期的..若对每一个不可被d 整除的n ;有()n ii p =0;且d 是具有此性质的最大正整数;则称d为状态i 的周期..引理4.1 如i 的周期为d;则存在正整数M;对一切M n ≥;有()0nd ii p >..定义 对,,S j i ∈记()0{,,1,2,,1|},2n ij n k f P X j X j k n X i n ==≠=-=≥ 4.15称()n ij f 是系统在0时从i 出发经过n 步转移后首次到达状态j 的概率;而()ij f ∞则是在0时从i出发;系统在有限步转移内不可能到达状态j 的概率..我们将()n ij f 和ij f 统称为首达概率又称首中概率..引理1 ()0n ij ij f f ≤≤ n j i ,,∀(2) 首达概率可以用一步转移概率来表示:定义4.7 若ii f =1;则称状态i 为常返的;若ii f <1;则称状态i 为非常返的.. 定义4.8 如∞<i μ;则称常返态i 为正常返的;如∞=i μ;则称常返态i 为零常返的;非周期的正常返态称为遍历状态..从状态是否常返;如常返的话是否正常返;如正常返的话是否非周期等三层次上将状态区分为以下的类型:)(n ij f 与)(n ijp 有如下关系: 定理4.4 对任意状态,i j ;及∞<≤n 1;有()()()()()1.nnn k n k n k k ijijjjij jj k k pfpf p --====∑∑ 4.16引理4.2 }.0,1:{..}0,1:{..)()(>≥=>≥n ii n iif n n D C G p n n D C G二、常返态的性质及其性质定理4.5 状态i 常返的充要条件为∞=∑∞=0n iip4.18如i 非常返;则定理4.7 设i 常返且有周期d;则ind iin d p μ=∞→)(lim . 4.26其中i μ为i 的平均返回时间..当∞=i μ时;0=idμ.推论 设i 常返;则(1) i 零常返0lim )(=⇔∞→n iin p ;2i 遍历()1lim 0n ii n ip μ←∞⇔=>..定理4.8 可达关系与互通关系都具有传递性;即如果j i →;k j →;则k i →; 如果i k ↔;k j ↔;则k i ↔..定理4.9 如i j ↔;则(1) i 与j 同为常返或非常返;若为常返;则它们同为正常返或零常返; (2) i 与j 有相同的周期..§4.3 状态空间的分解定义4.9 状态空间I 的子集C 称为随机闭集;如对任意i C ∈及k C ∉都有0ik p =..闭集C 称为不可约的;如C 的状态互通..马氏链{}n X 称为不可约的;如其状态空间不可约..引理4.4 C 是闭集的充要条件为对任意i C ∈及k ∉C 都有()n ik p =0;n ≥1.. 称状态i 为吸收的;如ii p =1..显然状态i 吸收等价于单点集{}i 为闭集.. 定理4.10 任一马氏链的状态空间I;可唯一地分解成有限个或可列个互不相交的子集12,,,D C C 之和;使得① 每一n C 是常返态组成的不可约闭集..② n C 中的状态同类;或全是正常返;或全是零常返..它们有相同的周期且1jk f =; ,n i k C ∈..③ D 由全体非常返状态组成..自n C 中的状态不能到达D 中的状态.. 定义4.10 称矩阵ij a 为随机矩阵;如其元素非负且每i 有∑jij a =1..显然k 步转移矩阵)(k P =)(k ij p 为随机矩阵..引理4.5 设C 为闭集;又G =)(k ij p ; i ;j ∈C;是C 上所得的即与C 相应的k 步转移子矩阵;则G 仍是随机矩阵..定理4.11 周期为d 的不可约马氏链;其状态空间C 可唯一地分解为d 个互不相交地子集之和;即1,,,d r r S r C G G G r s φ-===≠ 4.31且使得自r G 中任一状态出发;经一步转移必进入1+r G 中其中0G G d =..定理4.12 设{,0}n X n ≥是周期为d 的不可约马氏链;则在定理4.11的结论下有1如只在时刻0,,2,d d 上考虑{}n X ;即得一新马氏链;其转移阵()()()d d ij P p =;对此新链;每一r G 是不可约闭集;且r G 中的状态是非周期的..2如原马氏链 {}n X 常返;{}nd X 也常返..§4.4 )(n ij p 的渐近性质与平稳分布一、)(n ij p 的渐近性质定理4.13 如j 非常返或零常返;则)(lim n ij n p ∞→=0;I i ∈∀ 4.33推论1 有限状态的马氏链;不可能全是非常返状态;也不可能含有零常返状态;从而不可约的有限马氏链必为正常返的..推论2 如马氏链有一个零常返状态;则必有无限多个零常返状态..定理4.14 如j 正常返;周期为d;则对任意i 及10-≤≤d r 有()lim ()nd r ijij n jd p f r μ+→∞= 4.37 推论 设不可约、正常返、周期d 的马氏链;其状态空间为C;则对一切C j i ∈,;有,(),lim 0,s nd j ijn di j G p μ→∞⎧⎪=⎨⎪⎩如与同属于子集否则, 4.38 其中s d s G C 1-==U 为定理4.11中所给出..特别;如d=1;则对一切,i j 有.1lim )(jn ijn p μ=→∞4.39定理 4.15 对任意状态,,j i 有推论 如{}n X 不可约;常返;则对任意,i j ;有()111lim n k ij n k j p n μ→∞==∑ j μ=∞时;理解j1μ=0 定义4.11 称概率分布{,}j j I π∈为马尔可夫链的平稳分布;若它满足⎪⎪⎩⎪⎪⎨⎧≥==∑∑∈∈.0,1,j I j i ij I i i j p ππππ 4.41值得注意的是;对平稳分布{,}j j I π∈;有()n j i ij i Ip ππ∈=∑ 4.42定理 4.16 不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布;且此平稳分布就是极限分布1{,}j j I u ∈..推论1 有限状态的不可约非周期马尔可夫链必存在平稳分布..推论 2 若不可约马尔可夫链的所有状态是非常返或零常返的;则不存在平稳分布.推论3 若{,}j j I π∈是马尔可夫链的平稳分布;则第五章 连续时间的马尔可夫链§5.1连续时间的马尔可夫链定义 5.1 设随机过程{X t;t ≥0};状态空间{,0}n I i n =≥;若对于任意1210n t t t +≤<<<及121,,,n i i i I +∈有= 11{()|()}n n n n P X t i X t i ++== 5.1 则称{X t;t ≥0}为连续时间的马尔可夫链..记5.1式条件概率的一般形式为(,){()|()}ij p s t P X s t j X s i =+== 5.2定义 5.2 若5.2式的转移概率与s 无关;则称连续时间马尔可夫链具有平稳的或齐次的转移概率;此时转移概率简记为(,)()ij ij p s t p t = 5.3其转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥..以下的讨论均假定我们所考虑的连续时间马尔柯夫链都具有齐次转移概率..为方便起见;简称为齐次马尔可夫过程..定理5.1.1 齐次马尔可夫过程的转移概率具有以下性质:其中3式为马尔可夫过程的Chapman-Kolmogorov 简称C-K 方程..1;2由概率定义及()ij p t 的定义易知;下面只证明3..定义5.1.3对于任一t ≥0;记分别称{(),}j p t j I ∈和{,}j p j I ∈为齐次马尔可夫过程的绝对概率分布和初始概率分布..性质5.1.1 齐次马尔可夫过程的绝对概率及有限维概率分布具有以下性质:§5.2 柯尔莫哥洛夫微分方程引理 5.2.1 设齐次马尔可夫过程满足正则性条件;则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数..定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率;则下列极限存在我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移速率或跳跃强度.. 推论 对有限齐次马尔可夫过程;有定理5.4 柯尔莫哥洛夫向后方程假设ik ii k iq q ≠=∑;则对一切,i j 及t 0;有()()()ijik kj ii ij k ip t q p t q p t ≠'=-∑ 5.2.4 定理5.2.3 柯尔莫哥洛夫向前方程在适当的正则条件下定理5.2.4 齐次马尔可夫链过程在t 时刻处于状态j ∈I 的绝对概率()j p t 满足如下方程:定理5.2.5 设马尔可夫过程是不可约的;则有下列性质:1若它是正常返的;则极限lim ()ij t p t →∞存在且等于0,j j I π>∈;这里j π是方程组的唯一非负解;此时称{,j j I π∈}是该过程的平稳分布;并且有2若它是零常返的或非常返的;则§5.3 生灭过程定义 设齐次马尔可夫过程{(),0}X t t ≥的状态空间为{0,1,2,}I =;转移概率为()ij p t ;如果则称{(),0}X t t ≥为生灭过程..其中;i λ称为出生率;i μ称为死亡率..1若,i i i i λλμμ==λ;μ为正常数;则称{(),0}X t t ≥为线性生灭过程;2若0i μ≡;则称{(),0}X t t ≥为纯生过程; 3若0i λ≡;则称{(),0}X t t ≥为纯灭过程..第六章 平稳随机过程§6.1 平稳过程的概念与例子一、平稳过程的定义1.平稳过程定义§6.2 联合平稳过程及相关函数的性质一、联合平稳过程定义 设{(),}X t t T ∈和{(),}Y t t T ∈是两个平稳过程;若它们的互相关函数[()()]E X t Y t τ-及[()()]E Y t X t τ-仅与τ有关;而与t 无关;则称()X t 和()Y t 是联合平稳随机过程..定理6.1 设{(),}X t t T ∈为平稳过程;则其相关函数具下列性质:1 ;0)0(≥X R2 );()(ττ-=X X R R3 );0()(X X R R ≤τ4 )(τX R 是非负定的;即对任意实数12,,,n t t t 及复数12,,,n a a a ;有5 若()X t 是周期为T 的周期函数;即()()X t X t T =+;则)()(t R R X X +=ττ;6 若()X t 是不含周期分量的非周期过程;当∞→τ时;()X t 与()X t τ+相互独立;则 1 );0()0()(),0()0()(22Y X XY Y X XY R R R R R R ≤≤ττ 2 ()()XY YX R R ττ-=§ 6.3 随机分析一、收敛性概念1、处处收敛对于概率空间(,,)P Ω℘上的随机序列{}n X ;每个试验结果e 都对应一序列..12(),(),,(),n X e X e X e 6.2故随机序列{}n X 实际上代表一族6.2式的序列;故不能用普通极限形式来定义随机序列的收敛性..若6.2式对每个e 都收敛;则称随机序列{}n X 处处收敛;即满足 其中X 为随机变量..2、以概率1收敛若使随机序列{()}n X e 满足的e 的集合的概率为1;即我们称二阶矩随机序列{()}n X e 以概率1收敛于二阶矩随机变量Xe;或称{()}n X e 几乎处处收敛于Xe;记作XX ea n −→−...3、依概率收敛若对于任给的ε>0; 若有0}|)()({|lim =≥-∞→εe X e X P n n ;则称二阶矩随机序列{()}n X e 依概率收敛于二阶矩随机变量Xe;记作X X Pn −→−.. 4、均方收敛设有二阶矩随机序列{}n X 和二阶矩随机变量X;若有0]|[|lim 2=-∞→X X E n n 6.3成立;则称{}n X 均方收敛;记作X X sm n −−→−... 注:6.3式一般记为l.i.m n x X X →∞=或..n l i mX X =.. 5、依分布收敛设有二阶矩随机序列{}n X 和二阶矩随机变量X;若{}n X 相应的分布函数列{()}n F x ;在X 的分布函数Fx 的每一个连续点处;有则称二阶矩随机序列{}n X 依分布收敛于二阶矩随机变量X;记作X X dn −→−对于以上四种收敛定义进行比较;有下列关系:1 若X X s m n −−→−.;则X X Pn −→− 2 若XX ea n −→−.;则X X Pn −→−3 若X X Pn −→−;则X X dn −→− 定理2 二阶矩随机序列{}n X 收敛于二阶矩随机变量X 的充要条件为定理3 设{},{},{}n n n X Y Z 都是二阶矩随机序列;U 为二阶矩随机变量;{n c }为常数序列;a;b;c 为常数..令X mX i l n =..;Y mY i l n =..;Z mZ i l n =..;c mc i l n =....则1 c c mc i l n n n ==∞→lim ..;2 U mU i l =..;3 cU U c m i l n =)(..;4 bY aX bY aX m i l n n +=+)(..;5 ]..[][][lim n n n mX i l E X E X E ==∞→;6 )]..)(..[(][][lim ,m n m n m n Y m i l mX i l E Y X E Y X E ==∞→;特别有]|..[|]|[|]|[|lim 222n n n mX i l E X E X E ==∞→..定理4 设{}n X 为二阶矩随机序列;则{}n X 均方收敛的充要条件为下列极限存在][lim ,m n m n X X E ∞→..二、均方连续定义 设有二阶矩过程}),({T t t X ∈;若对0t T ∈;有2000lim [|()()|]0h E X t h X t →+-=;则称()X t 在0t 点均方连续;记作000..()()h l i m X t h X t →+=..若对T 中一切点都均方连续;则称()X t 在T 上均方连续..定理均方连续准则二阶矩过程}),({T t t X ∈在t 点均方连续的充要条件为相关函数处连续在点),(),(21t t t t R X ..推论 若相关函数),(21t t R X 在}),,{(T t t t ∈上连续;则它在T ×T 上连续三、均方导数定义7 设}),({T t t X ∈是二阶矩过程;若存在一个随机过程)(t X ';满足类似的有22)(dtXd t X 或'' 称为),(21t t R X 在12(,)t t 的广义二阶导数;记为定理6 均方可微准则 二阶矩过程}),({T t t X ∈在t 点均方可微的充要条件为相关函数),(),(21t t t t R X 在点的广义二阶导数存在..推论1 二阶矩过程}),({T t t X ∈在T 上均方可微的充要条件为相关函数),(21t t R X 在}),,{(T t t t ∈上每一点广义二阶可微..推论2 若),(21t t R X 在}),,{(T t t t ∈上每一点广义二阶可微;则()X dm t dt在T 上以及在T T ⨯上存在;且有四、均方积分定义8 如果0n ∆→时;n S 均方收敛于S ;即2lim ||0n n E S S ∆→-=;则称()()f t X t 在[,]a b 上均方可积;并记为定理7 均方可积准则()()f t X t 在区间[,]a b 上均方可积的充要条件为存在..特别的;二阶矩过程()X t 在[,]a b 上均方可积的充要条件为12(,)X R t t 在[,][,]a b a b ⨯上可积..定理8 设()()f t X t 在区间[,]a b 上均方可积;则有 1 [()()]()[()]bbaaE f t X t dt f t E X t dt =⎰⎰特别有 [()][()]bbaaE X t dt E X t dt =⎰⎰2 111222121212[()()()()]()()(,)bb bbX aaaaE f t X t dt f t X t dt f t f t R t t dt dt =⎰⎰⎰⎰特别的有 21212|()|(,)bbbX aaaE X t dt R t t dt dt =⎰⎰⎰..定理9 设二阶矩过程}),({T t t X ∈在[,]a b 上均方连续;则在均方意义下存在;且随机过程}),({T t t X ∈在[,]a b 上均方可微;且有()()Y t X t '=.. 推论 设()X t 均方可微;且()X t '均方连续;则 特别有§4 平稳过程的各态历经性定义9 设{(),}X t t -∞<<∞为均方连续的平稳过程;则分别称为该过程的时间均值和时间相关函数..定义10 设{(),}X t t -∞<<∞是均方连续的平稳过程;若()Pr.1(())X t E X t <>;即 以概率1成立;则称该平稳过程的均值具有各态历经性..若()()Pr.1(()())X t X t E X t X t ττ<->-;即以概率1成立;则称该平稳过程的相关函数具有各态历经性..定义11 如果均方连续的平稳过程{(),}X t t T ∈的均值和相关函数都具有各态历经性;则称该平稳过程为具有各态历经性或遍历性..定理 10 设{(),}X t t -∞<<∞是均方连续的平稳过程;则它的均值具有各态历经性的充要条件为2221lim 1[()]022T X X T T R m d T T τττ-→∞⎛⎫--= ⎪⎝⎭⎰ 6.9 定理6.11 设{(),}X t t -∞<<∞为均方连续的平稳过程;则其相关函数具有各态历经性的充要条件为2211121lim1()()022TX T T B R d T T ττττ-→∞⎛⎫⎡⎤--= ⎪⎣⎦⎝⎭⎰ 6.15 其中111()()()()()B E X t X t X t X t τττττ⎡⎤=----⎢⎥⎣⎦6.16 定理6.12 对于均方连续平稳过程{(),0}X t t ≤<∞;等式以概率1成立的充要条件为若()X t 为实平稳过程;则上式变为定理 6.13 对于均方连续平稳过程{(),0}X t t ≤<∞;等式 以概率1成立的充要条件为 其中1()B τ与6.16式相同..若()X t 为实平稳过程;则上式变为第七章 平稳过程的谱分析§7.1 平稳过程的谱密度设)(t X 是均方连续随机过程;作截尾随机过程因为()t X T 均方可积;故存在傅式变换(,)()()i ti t x T T T F T X t e dt X t e dt Tωωω--∞==-∞-⎰⎰…………..7.4利用帕塞伐公式及傅式反变换;可得定义7.1 设 {}∞<<-∞t t X ),( 为均方连续随机过程;称 为 )(t X 的平均功率;称为 )(t X 的功率谱密度;简称谱密度..当 )(t X 是平稳均方连续函数时;由于[])(2t X E 是与t 无关的常数;利用均方积分的性质可以将7.5式简化得()221()()02limx T T E X t dt E X t R T T →∞⎡⎤⎡⎤===⎣⎦⎣⎦-⎰ ……….. 7.8 由7.8式和7.5式看出;平稳过程的平均功率等于该过程的均方值;或等于它的谱密度在频域上的积分;即()212X S d ψωωπ∞=-∞⎰ ………………. 7.9定义7.2 设{,0,1,2,}n X n =±±是平稳随机序列;若相关函数满足()X n R n ∞=-∞<∞∑则称为{,0,1,2,}n X n =±±的谱密度..§7.2谱密度的分析设 {}∞<<-∞t t X ),( 为均方连续平稳过程;)(τX R 为它的相关函数;()ωX S 为它的频率谱密度;()ωX S 具有下列性质: (1) 若()∞<∞-∞⎰ττd R X ;则()ωX S 是)(τX R 的傅式变换;即()()i t X X S R e d ωωττ-∞=-∞⎰ ………. 7.122 ()ωX S 是ω的实的;非负的偶函数..3 当 ()ωX S 是ω有理函数时;其形式必为其中22,(0,2,,2;2,4,,2)n i m j a b i n j m --==为常数;且20n a >;m n >;分母无实根..§7.3 窄带过程及白噪声过程的功率谱密度定义 1 设 (){},X t t -∞<<∞为实值平稳过程;若它的均值为零;且谱密度在所有频率范围内为非零的常数;即()()0X s N ωω=-∞<<∞则称()X t 为白噪声过程..具有下列性质的函数称为δ函数:δ函数有一个非常重要的运算性质;即抽样性质..对任何连续函数()f x ;有()()()0,f x x dx f δ∞-∞=⎰7.15或()()().f x x T dx f T δ∞-∞-=⎰§7.4 联合平稳过程的互谱密度定义7.4 设()X t 和()Y t 是两个平稳过程;且它们是联合平稳的平稳相关的;若它们的互相关函数()XY R τ满足()XY R d ττ∞-∞<∞⎰;则称()XY R τ的傅氏变换 ()()i XY XY s R ed ωτωττ∞--∞=⎰ ………………….7.21 是()X t 与()Y t 的互功率谱密度;简称互谱密度.. 因此互谱密度()YX s ω与互相关函数()YX R τ的关系如下:()()i YXYXs R e d ωτωττ∞--∞=⎰; 互谱密度具有下列性质:⑴ ()()XY YX s s ωω=;即()XY s ω与()YX s ω互为共轭;⑵ ()Re XY s ω⎡⎤⎣⎦和()Re YX s ω⎡⎤⎣⎦是ω的偶函数;而()Im XY s ω⎡⎤⎣⎦和()Im YX s ω⎡⎤⎣⎦是ω的奇函数;⑶ ()XY s ω与()X s ω和()Y s ω满足下列关系式: ⑷若()X t 和()Y t 相互正交;则()()0XY YX s s ωω==。
13个期望计算公式

13个期望计算公式期望是概率论中的一个重要概念,它描述了一个随机变量的平均值。
在现实生活中,我们经常需要计算某种随机变量的期望,以便更好地理解和预测各种现象。
本文将介绍13个常见的期望计算公式,帮助读者更好地理解和运用期望的概念。
1. 离散型随机变量的期望计算公式。
对于离散型随机变量X,其期望可以通过以下公式计算:E(X) = Σx P(X=x)。
其中,x表示随机变量X可能取的值,P(X=x)表示X取值为x的概率。
2. 连续型随机变量的期望计算公式。
对于连续型随机变量X,其期望可以通过以下公式计算:E(X) = ∫x f(x) dx。
其中,f(x)表示X的概率密度函数。
3. 二项分布的期望计算公式。
对于二项分布B(n,p),其期望可以通过以下公式计算:E(X) = n p。
其中,n表示试验的次数,p表示每次试验成功的概率。
4. 泊松分布的期望计算公式。
对于泊松分布P(λ),其期望可以通过以下公式计算:E(X) = λ。
其中,λ表示单位时间(或单位面积)内事件发生的平均次数。
5. 几何分布的期望计算公式。
对于几何分布G(p),其期望可以通过以下公式计算:E(X) = 1/p。
其中,p表示每次试验成功的概率。
6. 均匀分布的期望计算公式。
对于均匀分布U(a,b),其期望可以通过以下公式计算:E(X) = (a+b)/2。
其中,a和b分别表示随机变量X的取值范围的下限和上限。
7. 指数分布的期望计算公式。
对于指数分布Exp(λ),其期望可以通过以下公式计算:E(X) = 1/λ。
其中,λ表示事件发生的速率。
8. 正态分布的期望计算公式。
对于正态分布N(μ,σ²),其期望可以通过以下公式计算:E(X) = μ。
其中,μ表示分布的均值。
9. 超几何分布的期望计算公式。
对于超几何分布H(N,M,n),其期望可以通过以下公式计算:E(X) = n (M/N)。
其中,N表示总体容量,M表示总体中具有成功属性的个体数量,n表示抽取的样本容量。
随机过程的鞅与鞅收敛定理
随机过程的鞅与鞅收敛定理在概率论与数理统计中,鞅(Martingale)是一类非常重要的随机过程。
它具有很多优秀的性质和应用,并且相关的鞅收敛定理也是概率论研究的热点之一。
一、鞅的定义和性质鞅是一种随机过程,具有无偏性和零相对增殖的特点。
对于一个随机过程X(t),如果满足以下条件,即可称为鞅:1. 期望有限:E[|X(t)|] < ∞,对于所有的t;2. 可测性:对于任意的s < t,X(t)是关于{X(s), X(s+1), … , X(t-1)}可测的;3. 无偏性:对于任意的s < t,E[X(t) | X(s), X(s+1), … , X(s-1)] =X(s);4. 零相对增殖:对于任意的s < t,E[X(t) - X(s) | X(s), X(s+1), … ,X(s-1)] = 0。
鞅的定义保证了它在每个时刻的期望都是已知的,且在未来的增量不可被预测。
鞅是许多重要的随机过程的核心组成部分,如布朗运动、泊松过程等。
二、鞅的应用鞅在概率论和数理统计中有着广泛的应用。
以下是一些典型的应用场景:1. 金融市场:鞅在金融领域中有着重要的应用,特别是在期权定价、投资组合管理、风险评估等方面。
其中最著名的例子就是黑-斯科尔斯模型,该模型中的股价就可以看作是一个连续时间的鞅。
2. 数理统计:鞅是统计推断和假设检验的基础之一,它在最大似然估计、贝叶斯估计等方法中发挥着重要的作用。
鞅收敛定理也为统计学家提供了一种判断估计量的一致性的方法。
3. 随机优化:鞅是随机优化中的一个重要工具,可以用来描述随机系统的动态变化过程,并为优化问题的求解提供有效的方法。
例如,在随机最优控制中,鞅可以用来建立随机系统的动态规划方程。
三、鞅收敛定理鞅收敛定理是鞅理论中的重要结果,它研究了鞅序列的收敛性质。
其中最经典的是鞅收敛定理的两种形式:鞅收敛定理一和鞅收敛定理二。
1. 鞅收敛定理一:如果{X_n, n ≥ 1}是对于某个概率空间(Ω, F, P)中的鞅序列,并且满足以下条件:(a) X_n以概率1收敛于一个随机变量X:P(lim n→∞ [X_n = X]) = 1;(b) 存在一个函数g(·)使得E[|X_n - X|] ≤ g(n),对于所有的n;(c) 存在一个随机变量Y,使得E[|Y|] < ∞,并且E[|X_n - X|] ≤E[|Y|],对于所有的n;那么,X_n以期望收敛于X,即lim n→∞ [E(X_n)]=E(X)。
条件期望的两种定义及其等价性探讨
21 0 1年 2 月
大 学 数 学
C o LLEG E A T H E M A T I M CS
V o .2 № .1 1 7,
Fe 2 1 b. 01
条 件 期 望 的两 种 定 义 及 其 等 价 性 探 讨
朱 福 国
( 西学 院 数学系 , 肃 张掖 740) 河 甘 30 0
解.
本 文 中 以( , 表 示概 率 空 间 , n, P) 6是 的子 代数 .
1 引 理 及 定 义
引理 1 口 若 是 可 积 ( 或积 分存 在 ) 随机 变 量 , 必 存 在惟 一 的 ( 计 a S 相 等 的 差 别 ) 积 ( 则 不 .. 可 相
应 地 , 分存 在 ) 积 的 可 测 随 机 变 量 , 满 足 它
jd Jd P P Af A —A ,gf. t
证 令
广
( 1 )
() 2
( 一 Ig P, VA∈ , A) d
则 是 ( , ) 的符 号 测 度 , 上 且 《 P, 由 Ra o — k d m 定 理 及 其 推 广 知 , 在 惟 一 的 ( 计 a s 相 故 d nNio y 存 不 .. 等 的 差 别 ) 可 测 的 R d n导 数 , 为 , 时 有 ao 记 这
[ 稿 日期 ] 2 0 - 5 1 收 0 80 3
12 3
大 学 数 学
第2 7卷
故 当 可积 ( 积分 存在 ) , 亦可 积 ( 积分 存在 ) 或 时 ' 7 或 .
定义 1’ ( 口 公理 化定 义 ) 设 是概率 空 间( , 上 的 可积 ( 积 分 存 在) , P) 或 随机 变 量 , 是 的
随机过程中的条件分布与鞅的计算与应用
实例3:随机游 走模型
实例4:蒙提霍 尔问题
鞅的计算实例
添加标题
定义:鞅是一种特殊的随机过程,其条件分布与非条件分布相等
添加标题 添加标题 添加标题
计算方法:利用条件概率和期望公式进行计算
实例:假设有一个随机过程,其条件分布与非条件分布相等,可以通过 计算条件概率和期望值来得出该随机过程的鞅性质
应用:鞅在金融、统计学等领域有广泛应用,可以用于风险评估和投资 组合优化等
鞅在信息论中的应用
应用:在信息论中,鞅被用 于描述随机信号的统计特性, 如随机游走、布朗运动等
定义:鞅是一种特殊的随机 过程,其未来期望值等于当 前值
优势:鞅具有平稳性和遍历 性,能够提供对随机信号的
深入理解
实例:在通信系统中,利用 鞅理论分析信号的传输质量
和可靠性
鞅在物理中的应用
随机过程在物理学中的应用
条件分布的性质:条件分布具有独立性、对称性、可加性等性质。
条件分布的应用:在统计学、概率论、金融等领域中,条件分布被广泛应 用于各种场景,如回归分析、贝叶斯推断等。
条件分布的计算方法
定义:在给定某 些随机事件或随 机变量的条件下, 另一随机事件的 概率分布。
计算步骤:首先 确定条件,然后 使用概率公式计 算条件概率,最 后得出条件分布。
用。
研究方法不同: 条件分布主要 通过概率论的 方法进行研究, 而鞅主要通过 分析的方法进
行研究。
条件分布与鞅的转换关系
条件分布与鞅的 关系:在随机过 程中,条件分布 与鞅之间存在一 定的转换关系, 即条件分布可以 转换为鞅,鞅也 可以转换为条件
分布。
转换方法:通过 特定的数学公式 和技巧,可以将 条件分布转换为 鞅,或者将鞅转 换为条件分布。
随机过程--鞅
并且由于可以借助现代数值计算技术,它还提供了更为强大的运算能力,而这对于实际工 作又是至关重要的。
在本章中,我们首先在离散时间下,使用在概率基础一章中接触到的分割、条件数学 期望等概念来严格地给出鞅的定义。然后澄清一些性技术要求并给出连续时间鞅的概念。 介绍一些常见的鞅的例子。在讨论了鞅的两个重要子类之后,
F a = {{uu},{ud},{du},{dd}} F b = {uu, ud , du, dd}
F c = {{uu,ud},{du},{dd}} F d = {{uu},{uu,ud},{du},{dd}}
F e = {{uu},{ud},{du}} 根据我们在概率论一章中学习过的知识,我们知道 F a , F b 和 F c 都是对样本空间 Ω 的一种分割。这是因为按照分割的定义,它们各自包含的所有元素的并集构成了整个状 态空间,而它们所包含的元素两两相交的结果是空集。 F d 和 F e 则不是分割,因为 F d 中前两个元素的交集不是空集,而是{uu} ;而 fe 的所有元素的并也没有构成整个状态空 间,缺少了{dd} 。
10.3.2 多布-迈耶定理 10.3.3 二次变差过程 10.4 再论随机积分 10.4.1 鞅变换和随机积分 10.4.2 简单过程随机积分 10.4.3 再论伊藤积分 10.5 测度变换 10.5.1 直观理解 10.5.2 拉登-尼科迪姆导数 10.5.3 哥萨诺夫定理 10.5.4 鞅表示定理
如果不做什么手脚他的运气应当是同他以前的赌博经历无关的用表示他在赌完第n次后拥有的赌本数如果对于任何n都有成立即赌博的期望收获为0仅能维持原有财富水平不变就可以认为这种赌博在统计上是公平的ex就是对这种价格运动的预测而恰好鞅就是用条件数学期望来定义的这种相似性就激发了使用鞅和与之相关的数学概念来描述金融资产价格运动过程特征的热情鞅在20世纪80年代以后迅速成为主流金融经济学研究中标准的时髦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程中的条件期望估计
随机过程是概率论和数理统计中的一个重要概念,用于描述随机变
量在不同时间点上的随机演化规律。
条件期望是随机过程中的一个关
键概念,用于描述在给定某些条件下,随机变量的平均取值。
一、条件概率与条件期望的基本概念
随机过程是指一系列随机变量组成的集合,通常用 {X(t), t∈T} 表示,其中 t 表示时间点,X(t) 表示在时间点 t 上的随机变量。
条件概率
是指在给定某些条件下,事件发生的概率。
对于随机过程来说,条件
概率可以表示为 P(A|B),表示在事件 B 发生的条件下,事件 A 发生的
概率。
类似地,条件期望 E(X|Y) 表示在给定随机变量 Y 的取值的条件下,随机变量 X 的平均取值。
二、条件期望的性质与计算方法
条件期望具有以下性质:
1. 线性性质:如果 X 和 Y 是两个随机变量,a 和 b 是常数,则有
E(aX+bY|Z) = aE(X|Z) + bE(Y|Z)。
2. 条件期望的法则:如果 X 和 Y 是两个随机变量,则有 E(XY|Z) = E(X|Z)E(Y|Z)。
3. 独立性质:如果 X 和 Y 是独立的随机变量,则有 E(X|Y) = E(X)。
计算条件期望通常使用条件概率的定义和相关的概率计算公式。
对
于离散型随机变量,有以下计算方法:
1. 条件期望的定义:E(X|Y=y) = ∑x xP(X=x|Y=y)。
2. 条件概率的求解:P(X=x|Y=y) = P(X=x, Y=y) / P(Y=y)。
3. 条件概率的计算:P(X=x, Y=y) = ∑z P(X=x, Y=y, Z=z)。
对于连续型随机变量,计算的方法与离散型类似,只是将求和替换为积分。
三、条件期望在实际应用中的例子
条件期望在概率论和数理统计的实际应用中有广泛的用途。
以下是一些例子:
1. 金融风险管理:根据过去的市场数据,可以使用条件期望来估计未来的金融资产价格。
例如,在 Black-Scholes 期权定价模型中,使用条件期望来计算期权的价格。
2. 信号处理:在数字通信中,可以使用条件期望来估计接收信号的传输误差。
通过计算接收信号与已知发送信号之间的条件期望差异,可以判断信号传输的质量。
3. 机器学习:在监督学习中,可以使用条件期望来进行模型训练和预测。
通过计算给定输入变量的条件下,输出变量的期望,可以优化模型的预测性能。
总结:
随机过程中的条件期望是描述随机变量在给定某些条件下的平均取值的概念。
通过掌握条件概率的计算方法和条件期望的性质,可以在
实际问题中灵活应用。
在金融风险管理、信号处理和机器学习等领域,条件期望发挥着重要的作用,为我们提供了有效的问题求解方法。