高考数学复习-空间图形的基本关系与公理
【优化方案】高三数学一轮复习 第8章8.3空间图形的基本关系及公理课件 文 北师大版

4.(2010年西安调研)已知a、b是异面直线,下 列命题: ①存在一个平面α,使a∥α,且b∥α;②存在一 个平面α,使a⊥α且b⊥α;③存在一个平面α, 使a⊂α,且b与α相交;④存在一个平面α,使a, b到平面α的距离相等. 其中正确命题是________. 答案:①③④
5.如图所示,在正方体ABCD-A1B1C1D1中, AB1与C1B所成的角是________.
意时,应仔细分析问题中每一句话的含义.
三点共线与三线共点问题 利用两平面交线的惟一性,证明诸点在两平面的 交线上是证明空间诸点共线的常用方法.证明点 共线的方法从另一个角度讲也就是证明三线共点 的方法. 证明线共点,基本方法是先确定两条直线的交点, 再证交点在第三条直线上,也可将直线归结为两 平面的交线,交点归结为两平面的公共点,由公 理2证明点在直线上.
课前热身 1.(教材习题改编)如图所示,将无盖正方体纸盒 展开,直线AB,CD在原正方体中的位置关系是 ( )
A.平行
B.垂直
C.相交成60°
D.异面成60°
答案:D
2.若三个平面两两相交,且三条交线相交于一 点,则这三个平面把空间分成( )部分. A.5 B.6 C.7 D.8 答案:D
3.下列四个命题中,正确命题的个数是( ) ①空间不同三点确定一个平面; ②垂直于同一直线的两直线平行; ③一条直线和两平行线中的一条相交,也必和另 一条相交; ④两组对边相等的四边形是平行四边形. A.0 B. 1 C.2 D.3 答案:A
1 中点,得 GH 綊 AD,易得 BC 綊 GH,从而四 2 边形 BCHG 是平行四边形. (2)证明 D 点在 EF、CH 确定的平面内.
【解】
(1)证明:由已知 FG=GA, 1 FH=HD,可得 GH 綊 AD. 2 1 又 BC 綊 AD, 2 ∴GH 綊 BC, ∴四边形 BCHG 为平行四边形.
【2021高考数学】第3节 空间图形的基本关系与公理

第3节空间图形的基本关系与公理考试要求 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单.命题知识梳理1. 空间图形的公理(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.(4)公理4:平行于同一条直线的两条直线平行.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.(5)等角定理11空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言a ∥ba ∥αα∥β相交关系图形语言符号语言a ∩b =Aa ∩α=Aα∩β=l独有关系图形语言符号语言 a ,b 是异面直线aα3.异面直线所成的角(1)定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角. (2)范围:⎝ ⎛⎦⎥0,π2.[常用结论与微点提醒]1.空间中两个角的两边分别对应平行,则这两个角相等或互补.2.异面直线的判定:经过平面内一点和平面外一点的直线与平面内不经过该点的直线互为异面直线.13.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( ) (2)两两相交的三条直线最多可以确定三个平面.( ) (3)如果两个平面有三个公共点,则这两个平面重合.( ) (4)若直线a 不平行于平面α,且aα,则α内的所有直线与a 异面.( )解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误. (4)由于a 不平行于平面α,且a α,则a 与平面α相交,故平面α内有与a 相交的直线,故错误.答案 (1)× (2)√ (3)× (4)×2.(新教材必修第二册P213例2改编)在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2,则异面直线AC 和BC 1所成角的余弦值是( ) A.8525B.455C.855D.4525解析 如图,连接AD 1,CD 1,则∠D 1AC (或其补角)就是异面直线AC 和BC 1所成的角,易知AC=5,AD1=25,CD1=13,由余弦定理得cos ∠D1AC=AD21+AC2-CD212AD1·AC=8525.答案 A3.(老教材必修2P26例1改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( )A.梯形B.矩形C.菱形D.正方形解析如图所示,易证四边形EFGH为平行四边形,因为E,F分别为AB,BC的中点,所以EF∥AC,又FG∥BD,所以∠EFG或其补角为AC与BD所成的角,而AC与BD所成的角为90°,所以∠EFG=90°,故四边形EFGH为矩形.答案 B4.(2019·贵阳调研)α是一个平面,m,n是两条直线,A是一个点,若mα,nα,且A∈m ,A∈α,则m,n的位置关系不可能是( )A.垂直B.相交C.异面D.平行解析依题意,m∩α=A,nα,∴m与n异面或相交(垂直是相交的特例),一定不平行.1。
【优化方案】2012高考数学总复习 第8章§8.3空间图形的基本关系及公理精品课件 理 北师大版

如图所示, 如图所示,已知空间四边形 ABCD 中, E,H 分别是边 AB,AD 的中点,F,G 分别是 , 的中点, , , CF CG 2 上的点, 边 BC,CD 上的点,且CB=CD= , , 3 (1)求证:三条直线 EF,GH,AC 交于一点. 求证: 交于一点. 求证 , , AE CF AH CG (2)若在本题中, = =2, 若在本题中, 若在本题中 EB FB , HD=GD=3, , 其他条件不变. 求证: EH, FG, 三线共点. BD 其他条件不变. 求证: , , 三线共点.
AE CF (2)因为 = =2, 因为EB FB ,
所以 EF∥AC. ∥ AH CG 又HD=GD=3, , ∴HG∥AC, ∥ ,
∴EF∥HG,且EF>HG. ∥ , 所以四边形EFGH为梯形. 为梯形. 所以四边形 为梯形 交于点P, 设EH与FG交于点 , 与 交于点 则P∈平面 ∈平面ABD,P∈平面 , ∈平面BCD, , 所以P在两平面的交线 上 所以 在两平面的交线BD上, 在两平面的交线 所以EH、 、 三线共点 三线共点. 所以 、FG、BD三线共点. 【易错警示】 易错警示】 缺乏理论依据. 缺乏理论依据. 证明线共点时, 证明线共点时,两条直线相交可能
(4) 空 间 直 线 和 平 面 的 位 置 关 系 有 三 种 : 直线在平面内 __________________ 、 直 线 和 平 面 相 交 、 直线与平面平行 . _______________. (5) 空 间 两 平 面 的 位 置 关 系 有 两 种 : 两平面平行和两平面相交 _____________________________. . 思考感悟 直线吗? 直线吗? 若aα,b β,则a,b就一定是异面 , , , 就一定是异面
高中数学 空间图形的基本关系与公理 1_4_2 公理4(平行公理)与异面直线所成的角课件

目标导航
预习引导
2.等角定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或 互补.
预习交流 2
如果两个角的两条边分别对应平行且方向相同 ,那么这两个角的 关系如何?如果有一组对应边方向相同,另一组对应边方向相反,那么这 两个角的关系如何? 提示:相等;互补.
目标导航
预习引导
3.空间四边形 四个顶点不在同一平面内的四边形叫作空间四边形.
第 2 课时
公理 4(平行公理)与异面直线所成的角
目标导航
预习引导
学习目标
1.记住并会应用公理 4. 2.理解等角定理的条件和结论. 3.知道什么是空间四边形. 4.知道什么是异面直线所成的角,会求简单的异面直线所成的角. 重点:公理 4 及其应用以及异面直线所成角的求法. 难点:对异面直线所成的角的理解和求法. 疑点:怎样求异面直线所成的角?
= ,请回答并证明当空间四边形 ABCD 的四条边及点
2 3
G,H 满足什么条件时,四边形 EFGH,
(1)为平行四边形? (2)为菱形?
问题导学
当堂检测
思路分析:由
������������ ������������
=
������������ ������������
= ,可想到证明 EF∥AC;为使四边形 EFGH
2 3
2 3
理由:由(1)知,若
=
������������ ������������
= ,
3 5 2 5 2 3
2 3
则四边形 EFGH 为平行四边形,且 EF= AC,EH= BD.若 AC= BD, 则 EF= AC= BD=EH. ∴ 平行四边形 EFGH 为菱形.
3 5 2 5
第八章 8.2空间图形的基本关系与公理

§8.2 空间图形的基本关系与公理知识梳理:1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面). 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.2.公理4:平行于同一条直线的两条直线平行.3.定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.4.直线与直线的位置关系(1)位置关系的分类: ⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.②范围:⎝⎛⎦⎤0,π2. 5.直线与平面的位置关系有平行、相交、在平面内三种情况.6.平面与平面的位置关系有平行、相交两种情况.课前检测:1.下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .3 答案 C解析 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.2.(2014·广东)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( ) 答案 DA .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 解析 如图,在长方体ABCD -A1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA ,若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若l 4=DC 1,也满足条件,此时l 1与l 4相交,可以排除选项B.故选D.3.如图所示,已知在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是______,AE 和BG 所成角的大小是________.答案 45° 60°解析 ∵BC 与EG 所成的角等于AC 与BC 所成的角即∠ACB ,tan ∠ACB =AB BC =2323=1,∴∠ACB =45°,∵AE 与BG 所成的角等于BF 与BG 所成的角即∠GBF ,tan ∠GBF =GF BF =232=3, ∴∠GBF =60°.4.已知空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,则下列判断:①MN ≥12(AC +BD );②MN >12(AC +BD );③MN =12(AC +BD );④MN <12(AC +BD ). 其中正确的是________.答案 ④解析 如图,取BC 的中点O , 连接MO 、NO ,则OM =12AC ,ON =12BD , 在△MON 中,MN <OM +ON =12(AC +BD ),∴④正确. 应用示例:题型一 平面基本性质的应用例1 如图所示,正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面; (2)CE 、D 1F 、DA 三线共点.思维点拨 第(2)问先证CE 与D 1F 交于一点,再证该点在直线DA 上.证明 (1)如图,连接EF ,CD 1,A 1B . ∵E 、F 分别是AB 、AA 1的中点,∴EF ∥BA 1. 又A 1B ∥D 1C ,∴EF ∥CD 1,∴E 、C 、D 1、F 四点共面.(2)∵EF ∥CD 1,EF <CD 1, ∴CE 与D 1F 必相交,设交点为P , 则由P ∈CE ,CE 平面ABCD ,得P ∈平面ABCD .同理P ∈平面ADD 1A 1. 又平面ABCD ∩平面ADD 1A 1=DA ,∴P ∈直线DA .∴CE 、D 1F 、DA 三线共点.思维升华 公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G 、H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形;(2)C 、D 、F 、E 四点是否共面?为什么?(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD . 又BC 綊12AD ,∴GH 綊BC . ∴四边形BCHG 为平行四边形. (2)解 ∵BE 綊12AF ,G 是F A 的中点,∴BE 綊FG , ∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG 綊CH ,∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.题型二 判断空间两直线的位置关系例2 (1)如图,在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)思维点拨(1)连接B1C,B1D1,则点M点是B1C的中点,证明MN∥B1D1;(2)先判断直线GH、MN是否共面,若不共面,再利用异面直线的判定定理判定.答案(1)D(2)②④解析(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.如图,已知不共面的三条直线a、b、c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD与BC是异面直线.证明方法一(反证法)假设AD和BC共面,所确定的平面为α,那么点P、A、B、C、D都在平面α内,∴直线a、b、c都在平面α内,与已知条件a、b、c不共面矛盾,假设不成立,∴AD和BC是异面直线.方法二 (直接证法)∵a ∩c =P ,∴它们确定一个平面,设为α,由已知C ∉平面α,B ∈平面α,BC 平面α,AD 平面α,B ∉AD ,∴AD 和BC 是异面直线.题型三 求两条异面直线所成的角例3 如图,在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,求EF 与AB 所成角的大小.思维点拨 取AC 中点,利用三角形中位线的性质作出所求角.解 如图,取AC 的中点G ,连接EG 、FG ,则EG 綊12AB ,FG 綊12CD , 由AB =CD 知EG =FG , ∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角.∵AB 与CD 所成的角为30°,∴∠EGF =30°或150°. 由EG =FG 知△EFG 为等腰三角形,当∠EGF =30°时,∠GEF =75°; 当∠EGF =150°时,∠GEF =15°.故EF 与AB 所成的角为15°或75°.思维升华 (1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.(1)(2014·大纲全国)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE与BD 所成角的余弦值为( ) A.16 B.36 C.13 D.33(2)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( ) A .30° B .45° C .60° D .90°答案 (1)B (2)C解析 (1)画出正四面体ABCD 的直观图,如图所示.设其棱长为2,取AD 的中点F ,连接EF ,设EF 的中点为O ,连接CO ,则EF ∥BD ,则∠FEC 就是异面直线CE 与BD 所成的角.△ABC 为等边三角形,则CE ⊥AB ,易得CE =3,同理可得CF =3,故CE =CF .因为OE =OF ,所以CO ⊥EF . 又EO =12EF =14BD =12, 所以cos ∠FEC =EO CE =123=36. (2)如图,可补成一个正方体,∴AC 1∥BD 1.∴BA 1与AC 1所成角的大小为∠A 1BD 1.又易知△A 1BD 1为正三角形,∴∠A 1BD 1=60°. 即BA 1与AC 1成60°的角.课堂小结:方法与技巧1.主要题型的解题方法: (1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”). (2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线.2.判定空间两条直线是异面直线的方法: (1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. (2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往可以选在其中一条直线上(线面的端点或中点)利用三角形求解.失误与防范1.正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.2.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.3.两条异面直线所成角的范围是(0°,90°].课后作业:。
2018北师大版文科数学高考总复习教师用书:8-2空间图形的基本关系与公理含答案

第2讲空间图形的基本关系与公理最新考纲1。
理解空间直线、平面位置关系的定义;2。
了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.知识梳理1.空间图形的公理(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.(4)公理4:平行于同一条直线的两条直线平行.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.(5)等角定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言a∥b a∥αα∥β相交关系图形语言符号语a∩b=A a∩α=Aα∩β=l言独有关系图形语言符号语言a,b是异面直线aα3.异面直线所成的角(1)定义:过空间任意一点P分别引两条异面直线a,b的平行线l1,l2(a∥l1,b∥l2),这两条相交直线所成的锐角(或直角)就是异面直线a,b所成的角.(2)范围:错误!。
诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(2)两两相交的三条直线最多可以确定三个平面.()(3)如果两个平面有三个公共点,则这两个平面重合.( ) (4)若直线a不平行于平面α,且aα,则α内的所有直线与a异面.()解析(1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.(4)由于a不平行于平面α,且aα,则a与平面α相交,故平面α内有与a相交的直线,故错误.答案(1)×(2)√(3)×(4)×2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )A.30° B.45°C.60° D.90°解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°.答案C3.在下列命题中,不是公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理,是由公理推证出来的.答案A4.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交"的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由题意知aα,bβ,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.答案A5.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________.答案b与α相交或b∥α或bα考点一空间图形的公理及应用【例1】如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B。
2021高考总复习文数(北师大版)课件:空间图形的基本关系与公理
文字语言 平行于同一条直线的两条直 公理 4 线_平__行_______
等角 定理
空间中,如果两个角的两条边 分别对应平行,那么这两个角 相等或互补
图形语言
符号语言
若 a∥b,b∥c,则 __a_∥__c_____
若 AO∥A′O′,BC∥ __B_′O__′ _____,则∠AOB =∠A′O′B′,∠AOC 和∠A′O′B′互补
若 A∈l,B∈l,A∈α,B ∈α,则 l α
文字语言
如果两个不重合的平面 _有__一__个__公__共__点______,那么它 公理 3 们__有__且__只__有____一条通过这 个点的公共直线
图形语言
符号语言
若 A∈α,A∈β,则 __α_∩__β_=__l,__且__A_∈__l______
2.空间图形的公理及等角定理
文字语言
过不在一条直线上的三点, 公理 1 __有__且__只__有__一个平面(即可以
确定一个平面) 如果一条直线上的 __两__点______在一个平面内,那 公理 2 么这条直线__在__此______平面 内(即直线__在___平__面___内)
图形语言
符号语言 若 A、B、C 三点不共线, 则__存__在______一个平面 α 使 A∈α,B∈α,C∈α
m∥α,n⊥β,则( C)
A.m∥l
B.m∥n
C.n⊥l
D.m⊥n
解析:由已知,α∩β=l,∴l β,又∵n⊥β,∴n⊥l,C 正确.
5.(教材习题改编)两两相交的三条直线最多可确定________个平面. 解析:当三条直线共点且不共面时,最多可确定3个平面. 答案:3
02
课堂·考点突破
平面的基本性质
专题3 空间图形的基本关系与公理(解析版)-2021年高考数学立体几何中必考知识专练
专题3:空间图形的基本关系与公理(解析版)一公理1 公理2 公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言,,A lB llA Bααα∈∈⎫⇒⊂⎬∈∈⎭,,,,A B CA B Cα⇒不共线确定平面,lP PP lαβαβ=⎧∈∈⇒⎨∈⎩作用判断线在面内确定一个平面证明多点共线推论1 经过一条直线和这条直线外的一点,有且只有一个平面;推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.二.直线与直线的位置关系直线:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;直线:不同在任何一个平面内,没有公共点。
(既不平行,也不相交)三.直线与平面的位置关系有三种情况:在平面内——有无数个公共点.符号 aα相交——有且只有一个公共点符号 a∩α= A平行——没有公共点符号 a∥α说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示对应练习一、单选题1.如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤【答案】D【分析】根据平面的表示方法判断.【详解】③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.2.下列叙述错误的是()A.若p∈α∩β,且α∩β=l,则p∈l.B.若直线a∩b=A,则直线a与b能确定一个平面.C.三点A,B,C确定一个平面.D.若A∈l,B∈l且A∈α,B∈α则l α.【答案】C【分析】由空间线面位置关系,结合公理即推论,逐个验证即可.【详解】选项A,点P在是两平面的公共点,当然在交线上,故正确;选项B,由公理的推论可知,两相交直线确定一个平面,故正确;选项C,只有不共线的三点才能确定一个平面,故错误;选项D,由公理1,直线上有两点在一个平面内,则整条直线都在平面内.故选:C3.在空间中,下列结论正确的是()A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面【答案】A【分析】根据确定平面的公理及其推论对选项逐个判断即可得出结果.【详解】三角形有且仅有3个不在同一条直线上的顶点,故其可以确定一个平面,即A正确;当四边形为空间四边形时不能确定一个平面,故B错误;当点在直线上时,一个点和一条直线不能确定一个平面,故C错误;当两条直线异面时,不能确定一个平面,即D错误;故选:A.【点睛】本题主要考查平面的基本定理及其推论,解题时要认真审题,仔细解答,属于基础题.4.下列命题中正确的是( )A .若直线l 上有无数个点不在平面α内,则//l αB .如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行C .若两条直线都与第三条直线垂直,则这两条直线互相平行D .垂直于同一个平面的两条直线互相平行 【答案】D 【分析】利用空间中直线与直线、直线与平面的位置关系进行判断. 【详解】解:选项A: 若直线l 上有无数个点不在平面α内,则//l α或相交,故A 错误;选项B: 如果两条平行直线中的一条与一个平面平行,那么另一条可能与这个平面平行,也可包含于这个平面,故B 错误;选项C: 若两条直线都与第三条直线垂直,则这两条直线相交、平行或异面,故C 错误; 选项D: 垂直于同一个平面的两条直线互相平行, 故D 正确, 故选:D 【点睛】本题考查空间中直线与直线、直线与平面的位置关系的判断,解题时要认真审题,注意空间思维能力的培养.5.已知直线l 和不重合的两个平面α,β,且l α⊂,有下面四个命题:①若//l β,则//αβ;②若//αβ,则//l β;③若l β⊥,则αβ⊥;④若αβ⊥,则l β⊥ 其中真命题的序号是( ) A .①② B .②③ C .②③④ D .①④【答案】B 【分析】对于①,由//l β可得α与β可平行,可相交;对于②,若//αβ,则由面面平行的性质定理可判断;对于③,由线面垂直的判定定理可判断;对于④,当αβ⊥时,l 可能在β内,可能与β平行,可能相交 【详解】解:对于①,由//l β可得α与β可平行,可相交,故错误; 对于②,若//αβ,则由面面平行的性质定理可得//l β,故正确; 对于③,若l β⊥,则由线面垂直的判定定理可得αβ⊥,故正确;对于④,当αβ⊥时,l 可能在β内,可能与β平行,可能相交,所以不一定有l β⊥,故错误, 故选:B 【点睛】此题考查线线、线面、面面关系的判断,属于基础题6.四个顶点不在同一平面上的四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 上的点,如果直线EF ,GH 交于点P ,那么( )A .点P 一定在直线AC 上B .点P 一定在直线BD 上C .点P 一定在平面ABC 外D .点P 一定在平面BCD 内 【答案】A 【分析】由两个面的交点在两个面的交线上,知P 在两面的交线上,由AC 是两平面的交线,知点P 必在直线AC 上. 【详解】解:∵EF 在面ABC 内,而GH 在面ADC 内, 且EF 和GH 能相交于点P , ∴P 在面ABC 和面ADC 的交线上, ∵AC 是两平面的交线, 所以点P 必在直线AC 上. 故选:A .【点睛】本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答. 7.平面α平面l β=,点A α∈,点B β∈,且B l ∉,点C α∈,又ACl R =,过A 、B 、C 三点确定的平面为γ,则βγ⋂是( )A .直线CRB .直线BRC .直线ABD .直线BC【答案】B 【分析】确定平面β、γ的公共点,利用公理可得出平面β与γ的交线. 【详解】 如下图所示:由题意可知,AC γ⊂,AC l R =,则R γ∈,又平面α平面l β=,则l α⊂,l β⊂,AC l R =,R β∴∈,B β∈,B γ∈,因此,βγ⋂=直线BR .故选:B. 【点睛】本题考查两平面交线的确定,关键是确定两平面的公共点,属于基础题.8.设l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若//l α,m α⊂,则//l m C .若//αβ,m β⊄,//m α,则//m β D .若//l α,//m α,则//l m【答案】C 【分析】由线面垂直的判定定理可判断A ,由线面平行的性质定理可判断B ,由面面平行的性质定理可判断C ,由线面平行的性质定理可判断D. 【详解】解:对于A ,由线面垂直的判定定理可知当直线l 垂直平面α内的两条相交直线时,l α⊥才成立,所以A 不正确;对于B ,若//l α,m α⊂,则//l m 或l ,m 异面,所以B 不正确; 对于C ,由面面平行的性质定理可知是正确的,对于D ,若//l α,//m α,则l ,m 有可能相交、平行或异面,所以D 不正确, 故选:C 【点睛】此题考查了线线、线面和面面的位置关系,考查平行和垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.9. 下列命题中,正确的是 ( )A .经过正方体任意两条面对角线,有且只有一个平面B .经过正方体任意两条体对角线,有且只有一个平面C .经过正方体任意两条棱,有且只有一个平面D .经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面 【答案】B 【解析】因为正方体的四条体对角线相交于同一点(正方体的中心),因此经过正方体任意两条体对角线,有且只有一个平面,故选B .点睛:确定平面方法: 过不在一条直线上的三点,有且只有一个平面;经过一条直线和这条直线外一点有且只有一个平面;经过两条相交直线有且只有一个平面;经过两条平行直线有且只有一个平面.10.设α,β表示平面,l 表示直线,A ,B ,C 表示三个不同的点,给出下列命题:①若∈A l ,A α∈,B l ∈,B α∈,则l α⊂;②若A α∈,A β∈,B α∈,B β∈,则AB αβ=;③若l α⊄,∈A l ,则A α;④若,,A B C α∈,,,A B C β∈,则α与β重合.其中,正确的有( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】根据平面的基本性质及推论进行判断. 【详解】若∈A l ,A α∈,B l ∈,B α∈,根据公里1,得l α⊂,①正确;若A α∈,A β∈,B α∈,B β∈,则直线AB 既在平面α内,又在平面β内, 所以AB αβ=,②正确;若l α⊄,则直线l 可能与平面α相交于点A ,所以∈A l 时, A α∈,③不正确; 若,,A B C α∈,,,A B C β∈,当,,A B C 共线时,α与β可能不重合,④不正确; 故选:B. 【点睛】本题主要考查平面的性质,明确平面的基本性质及推论是求解的关键,侧重考查直观想象的核心素养.11.平面α的一条斜线AP 交平面α于P 点,过定点A 的直线l 与AP 垂直,且交平面α于M 点,则M 点的轨迹是( ).A .一条直线B .一个圆C .两条平行直线D .两个同心圆【答案】A 【分析】由过定点A 的直线l 与AP 垂直可知,直线l 绕点A 旋转形成一个平面,由此可知两平面的交线即为所求.【详解】解:如图,设直线l与l'是其中两条任意的直线,⊥,则这两条相交直线确定一个平面β,且斜线APβ由过平面外一点有且只有一个平面与已知直线垂直可知,过定点定点A且与AP垂直的直线都在平面β内,∴M点都在平面α与平面β的交线上,故选:A.【点睛】本题主要考查空间中点、线、面的位置关系,考查空间想象能力,属于基础题.12.和直线l都平行的直线,a b的位置关系是()A.相交B.异面C.平行D.平行、相交或异面【答案】C【分析】直接利用平行公理,即可得到答案.【详解】由平行公理,可知平行与同一直线的两直线是平行的,所以和直线l都平行的直线,a b的位置关系是平行,故选C.【点睛】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题.二、填空题13.如图,已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1BC 与AC 所成的角为_____.【答案】60︒ 【解析】11//BC AD ∴ 异面直线1BC 与AC 所成的角为0160CAD ∠=14.已知l ,m 是两条不同的直线,α,β是两个不同的平面,给出下列四个论断:①//l m ,②//αβ,③m α⊥,④l β⊥.以其中的两个论断作为命题的条件,l α⊥作为命题的结论,写出一个真命题:______.【答案】若//l m ,m α⊥,则l α⊥ 【分析】若//l m ,m α⊥,则l α⊥,运用线面垂直的性质和判定定理,即可得到结论. 【详解】解:l ,m 是两条不同的直线,α,β是两个不同的平面, 可得若//l m ,m α⊥,则l α⊥, 理由:在α内取两条相交直线a ,b , 由m α⊥可得m a ⊥.m b ⊥, 又//l m ,可得l a ⊥.l b ⊥,而a ,b 为α内的两条相交直线,可得l α⊥. 故答案为:若//l m ,m α⊥,则l α⊥ 【点睛】此题考查线面垂直的判定定理和性质定理的应用,考查推理能力,属于基础题15.如图,在正方体1111ABCD A B C D -中,E ,F 依次是11A D 和11B C 的中点,则异面直线AE 与CF 所成角的余弦值为__.【答案】35【分析】连AE 、BF 、EF ,利用平行四边形可得//BF AE ,可得BFC ∠是异面直线AE 与CF 所成角(或所成角的补角),然后用余弦定理可得结果. 【详解】在正方体1111ABCD A B C D -中,连AE 、BF 、EF ,E ,F 依次是11A D 和11B C 的中点,所以11//A E B F 且11A E B F =,所以四边形11A B FE 为平行四边形, 所以11//EF A B 且11EF A B =,又11//A B AB 且11A B AB =, 所以//EF AB 且EF AB =,所以四边形ABFE 为平行四边形,//BF AE ∴,BFC ∴∠是异面直线AE 与CF 所成角(或所成角的补角), 设正方体1111ABCD A B C D -的棱长为2,则415BF CF ==+3cos5BFC∴∠==.∴异面直线AE与CF所成角的余弦值为35.故答案为:35.【点睛】本题考查了求异面直线所成的角,考查了余弦定理,属于基础题.16.在长方体1111ABCD A B C D-中,11AA AD==,2AB=,则直线AC与1A D所成的角的大小等于__________.【答案】arccos10【分析】连接11,B A B C,可得直线AC与1A D所成的角为1B CA∠,利用余弦定理求1cos B CA∠即可.【详解】解:如图,连接11,B A B C,由长方体的结构特点可知11//B C A D,则直线AC与1A D所成的角为1B CA∠(或其补角),因为11B A BC AC======,在1B CA中,2221111cos210BC AC ABB CABC AC+-∠===⋅,1arccos10B CA∴∠=.故答案为:arccos10.【点睛】本题考查异面直线所成的角,关键是要通过平移找到异面直线所成的角的平面角,是基础题.三、解答题17.如图,在正方体1111ABCD A B C D -中,E ,F ,1E ,1F 分别为棱AD ,AB ,11B C ,11C D 的中点.求证:111EA F E CF ∠=∠.【答案】见解析 【分析】根据空间中两个角的两边平行时,角的关系可知两个角相等或互补. 结合空间中平行线的传递性及当两个角的方向相同时,即可证明两个角相等. 【详解】证明:如图,在正方体1111ABCD A B C D -中,取11A B 的中点M ,连接名BM ,1F M由题意得112BF A M AB ==又1BF M A ∥∴四边形1A FBM 为平行四边形 ∴1A F BM ∥又1F ,M 分别为11C D ,11A B 的中点,则111F M C B =∥而11C B BC =∥∴1F M BC =∥∴四边形1F MBC 为平行四边形 ∴1BM F C ∥ 又1BM A F ∥ ∴11A F F C ∥ 同理可得11A ECE∴1EA F ∠与11E CF ∠的两边分别平行,且方向都相反 ∴111EA F E CF ∠=∠. 【点睛】本题考查了直线与直线平行的证明,空间中角的两边分别平行时两个角的关系,属于基础题. 18.(不写做法)(1)如图,直角梯形ABCD 中,//AB CD ,AB CD >,S 是直角梯形ABCD 所在平面外一点,画出平面SBD 和平面SAC 的交线.(2)如图所示,在正方体1111ABCD A B C D -中,试画出平面11AB D 与平面11ACC A 的交线.【答案】(1)见解析(2)见解析 【分析】(1)延长BD 和AC 交于点O ,再连接SO ,即得到交线; (2)先记11B D 与11A C 的交点为O ,连接AO ,即可得出交线. 【详解】(1)(延长BD 和AC 交于点O ,连接SO ,SO 即为平面SBD 和平面SAC 的交线),如图:(2)(记11B D 与11A C 的交点为O ,连接AO ,则AO 即为平面11AB D 与平面11ACC A 的交线),如图:【点睛】本题主要考查画出平面与平面的交线,考查空间想象能力,属于基础题型. 19.如图,已知正方体ABCD -A ′B ′C ′D .(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在的直线与直线AA′垂直?【答案】(1)棱AD、DC、CC′、DD′、D′C′、B′C′(2)45°(3)AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′【分析】(1)根据异面直线的定义判断即可;(2)∠B′BA′为异面直线BA′与CC′的夹角,进而可得直线BA′和CC′的夹角;(3)根据正方体的性质即可判断.【详解】(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线;(2)由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°;(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.【点睛】本题考查异面直线的定义,考查线线角的求解,考查线线垂直的判断,是基础题.VB VC的中点,求异20.如图,AB是圆O的直径,点C是弧AB的中点,,D E分别是,面直线DE与AB所成的角.【答案】45︒ 【分析】根据题意,直径所对圆周角是直角,BC AC ∴⊥,又知点C 是弧AB 的中点,则等腰直角三角形,再根据中位线平行,找到异面直线所成角的平面角,即可求解. 【详解】AB 是圆O 的直径,BC AC ∴⊥.∵点C 是弧AB 的中点,,45BC AC ABC ∴=∴∠=︒. 在VBC △中,,D E 分别为,VB VC 的中点,DE BC ∴∥,DE ∴与AB 所成的角为45ABC ∠=︒.故答案为:45︒ 【点睛】本题考查异面直线所成角问题,考查转化与化归思想,属于基础题.21.如图1所示,在梯形ABCD 中,//AB CD ,E ,F 分别为BC ,AD 的中点,将平面CDFE 沿EF 翻折起来,使CD 到达C D ''的位置(如图2),G ,H 分别为AD ',BC '的中点,求证:四边形EFGHEFGH 为平行四边形.图1 图2【答案】证明见详解.【分析】通过证明EF //GH ,且EF =GF ,即可证明. 【详解】在题图1中,∵四边形ABCD 为梯形,//AB CD ,E F ,分别为BC AD ,的中点,∴//EF AB 且()12EF AB CD =+. 在题图2中,易知////C D EF AB ''. ∵,G H 分别为AD ',BC '的中点, ∴//GH AB 且()()1122GH AB C D AB CD ''=+=+, ∴//GH EF ,GH EF =,∴四边形EFGH 为平行四边形.即证. 【点睛】本题考查通过线线平行证明平行四边形,主要借助几何关系进行证明.22.如图所示,已知,E F 分别是正方体1111ABCD A B C D -的棱11,AA CC 的中点,求证:四边形1BED F 是平行四边形.【答案】见解析 【分析】取1D D 的中点G ,连接,EG GC ,证明四边形EGCB 是平行四边形,再证四边形1D GCF 为平行四边形,即可证明四边形1BED F 是平行四边形. 【详解】证明 取1D D 的中点G ,连接,EG GC .∵E 是1A A 的中点,G 是1D D 的中点,//EG AD ∴. 由正方体的性质知//AD BC ,//EG BC ∴, ∴四边形EGCB 是平行四边形,//EB GC ∴. 又,G F 分别是1D D ,1C C 的中点,1//D G FC ∴,且1D G FC =,∴四边形1D GCF 为平行四边形,1//D F GC ∴, 1//EB D F ∴,∴四边形1BED F 是平行四边形. 【点睛】本题考查了线线平行的判定,利用平行四边形的对边平行且相等证明线线平行,是基础题.。
2012届高考数学(文)一轮复习课件:7-2第二节 空间图形的基本关系与公理(北师大版)
第七章
立体几何
北 师 大 版 数 学 文
[解]
(1)取 CD 的中点 G,连结 MG、NG.
正方形 ABCD、DCEF 的边长为 2, 则 MG⊥CD,MG=2,NG= 2. 因为平面 ABCD⊥平面 DCEF, 所以 MG⊥平面 DCEF.∴MG⊥NG, ∴MN= MG2+NG2= 6.
(2)证明:假设直线ME与BN共面,
第七章
立体几何
北 师 大 版 数 学 文
第七章
立体几何
北 师 大 版 数 学 文
例4
(2009· 辽宁卷 )如图 ,已知两个正方形 ABCD和
DCEF不在同一平面内,M、N分别为AB、DF的中点.
(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长; (2)用反证法证明:直线ME与BN是两条异面直线.
这与BC是正方体的棱相矛盾.
∴假设不成立,故D1B与CC1是异面直线.
第七章
立体几何
北 师 大 版 数 学 文
[总结评价] (1)问通过观察,AM和CN显然不是异面直 线,可以直接证明AM与CN共面.(2)问直观感觉到D1B和CC1 是异面直线的可能性较大,如果直接证明它们异面,很难达 到目的,考虑到命题情况是单一的,不是异面,就是共面, 因此想到用反证法来证明,反证法是立体几何中经常使用的
∴DB∥B′D′.
第七章
立体几何
北 师 大 版 数 学 文
∴A′B、DB、A′D是全等的正方形的对角线. ∴A′B=BD=A′D,即△A′BD是正三角形.
∴∠A′BD=60°.
∵∠A′BD是锐角,
∴∠A′BD是异面直线A′B与B′D′所成的角.
∴A′B与B′D′所成的角为60°.
空间图形的基本关系与公理课件
第七章
立体几何
栏目导引
【变式训练】 3.下列四个命题:
①若直线a、b是异面直线,b、c是异面直线,则a、c是异面直线; ②若直线a、b相交,b、c相交,则a、c相交; ③若a∥b,则a、b与c所成的角相等; ④若a⊥b,b⊥c,则a∥c. 其中真命题的个数是( A.4 C.2 ) B.3 D.1
A.1条
C.3条
B.2条
D.4条
解析:
连接AC1,则AC1与棱AB,AD,AA1所成的角都相等;过
点A分别作正方体的另外三条体对角线的平行线,则它们与棱AB,AD, AA1所成的角也都相等.故这样的直线l可以作4条. 答案: D
工具
第七章
立体几何
栏目导引
2.(2009·湖南卷)平行六面体ABCD-A1B1C1D1中,既与AB共面也 与CC1共面的棱的条数为( A.3 C.5 ) B.4 D.6
∴EF∥CD1.
故E、F、D1、C四点共面.
工具
第七章
立体几何
栏目导引
(2)在平面EFD1C内,由于EF≠CD1, 所以CE与D1F必相交.设CE∩D1F=P, ∵D1F在平面A1ADD1内, ∴P在平面A1ADD1内. 同理,P在平面ABCD内, ∴P在平面A1ADD1与平面ABCD的交线DA上,
【阅后报告】
该题难度较小,第(1)问的关键在于“找到角”,
而第(2)问关键在于证明BM⊥平面A1B1M,这些方法是解决立体问题常用
思路.
工具
第七章
立体几何
栏目导引
1.(2010·江西卷)过正方体ABCD-A1B1C1D1的顶点A作直线l,使l 与棱AB,AD,AA1所成的角都相等,这样的直线l 可以作( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间图形的基本关系与公理A组1.以下四个命题中,正确命题的个数是________.①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.解析:①正确,可以用反证法证明;②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在一个平面上.答案:12.给出下列四个命题:①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若M∈α,M∈β,α∩β=l,则M∈l;④空间中,相交于同一点的三条直线在同一平面内.其中真命题的个数为________.解析:根据平面的基本性质知③正确.答案:13.(2009年高考湖南卷改编)平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为________.解析:根据两条平行直线、两条相交直线确定一个平面,可得CD、BC、BB1、AA、C1D1符合条件.答案:514.正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点.那么,正方体的过P、Q、R的截面图形是________.解析:边长是正方体棱长的22倍的正六边形.答案:正六边形5.(原创题)已知直线m、n及平面α,其中m∥n,那么平面α内到两条直线m、n距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是________.解析:如图1,当直线m或直线n在平面α内且m、n所在平面与α垂直时不可能有符合题意的点;如图2,直线m、n到已知平面α的距离相等且两直线所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m、n所在平面与已知平面α平行,则符合题意的点为一条直线.答案:(1)(2)(4)6.如图,已知平面α、β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l 共点(相交于一点).证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两腰,∴AB,CD必定相交于一点.如图,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β,∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点B组1.有以下三个命题:①平面外的一条直线与这个平面最多有一个公共点;②直线l在平面α内,可以用符号“l∈α”表示;③若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交,其中所有正确命题的序号是______________.解析:表示线与面的关系用“⊂”或“⊄”表示,故②错误.答案:①③2.(2010年黄冈调研)下列命题中正确的是________.①若△ABC在平面α外,它的三条边所在的直线分别交α于P、Q、R,则P、Q、R三点共线;②若三条直线a、b、c互相平行且分别交直线l于A、B、C三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.解析:在①中,因为P、Q、R三点既在平面ABC上,又在平面α上,所以这三点必在平面ABC与α的交线上,即P、Q、R三点共线,故①正确;在②中,因为a∥b,所以a与b确定一个平面α,而l上有A、B两点在该平面上,所以l⊂α,即a、b、l三线共面于α;同理a、c、l三线也共面,不妨设为β,而α、β有两条公共的直线a、l,∴α与β重合,即这些直线共面,故②正确;在③中,不妨设其中有四点共面,则它们最多只能确定7个平面,故③错.答案:①②3.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点②三条直线两两平行③三条直线共点④有两条直线平行,第三条直线和这两条直线都相交其中使三条直线共面的充分条件有:________.解析:易知①中的三条直线一定共面,④中两条直线平行可确定一个平面,第三条直线和这两条直线相交于两点,则第三条直线也在这个平面内,故三条直线共面.答案:①④4.(2008年高考浙江卷改编)对两条不相交的空间直线a与b,必存在平面α,使得________.①a⊂α,b⊂α②a⊂α,b∥α③a⊥α,b⊥α④a⊂α,b⊥α解析:不相交的直线a、b的位置有两种:平行或异面.当a、b异面时,不存在平面α满足①、③;又只有当a⊥b时④才成立.答案:②5.正方体AC1中,E、F分别是线段C1D、BC的中点,则直线A1B与直线EF的位置关系是________.解析:直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.答案:相交6.(2010年湖南郴州调研)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析:①错误,l可能在平面α内;②正确,l∥β,l⊂γ,β∩γ=n⇒l∥n⇒n⊥α,则α⊥β;③错误,直线可能与平面相交;④正确.故填②④.答案:②④7.(2009年高考广东卷改编)给定下列四个命题:①若一个平面内的两条直线与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是________.解析:当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①不对;由平面与平面垂直的判定定理可知②正确;空间中垂直于同一条直线的两条直线可以平行,相交也可以异面,故③不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.答案:②④8.(2009年高考宁夏、海南卷改编)如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=22,则下列结论中错误的是________.①AC⊥BE②EF∥平面ABCD③三棱锥A-BEF的体积为定值④异面直线AE,BF所成的角为定值解析:∵AC⊥平面BB1D1D,又BE⊂平面BB1D1D,∴AC⊥BE.故①正确.∵B1D1∥平面ABCD,又E、F在直线D1B1上运动,∴EF∥平面ABCD.故②正确.③中由于点B 到直线B 1D 1的距离不变,故△BEF 的面积为定值.又点A 到平面BEF 的距离为22,故V A -BEF 为定值. 当点E 在D 1处,F 为D 1B 1的中点时,建立空间直角坐标系,如图所示,可得A (1,1,0),B (0,1,0),E (1,0,1),F ⎝ ⎛⎭⎪⎫12,12,1.∴A E →=(0,-1,1),B F →=(12,-12,1), ∴A E →·B F →=32.又|AE →|=2,|BF →|=62,∴cos〈A E →,B F →〉=322·62=32, ∴AE 与BF 成30°角.当E 为D 1B 1中点,F 在B 1处时,此时E ⎝ ⎛⎭⎪⎫12,12,1,F (0,1,1),∴A E →=⎝ ⎛⎭⎪⎫-12,-12,1,B F →=(0,0,1), ∴A E →·B F →=1,|A E →|= 32,∴cos〈A E →,B F →〉= 23=63≠32.故④错.答案:④9.(2008年高考陕西卷改编)如图,α⊥β,α∩β=l ,A ∈α,B ∈β,A 、B 到l 的距离分别是a 和b ,AB 与α、β所成的角分别是θ和φ,AB 在α、β内的射影分别是m和n.若a >b ,则θ与φ的大小关系为______,m 与n 的大小关系为______.解析:AB 与β成的角为∠ABC =φ,AB 与α成的角为∠BAD =θ,sin φ=sin∠ABC=a|AB|,sinθ=sin∠BAD=b|AB|.∵a>b,∴sinφ>sinθ.∴θ<φ.AB在α内的射影AD=AB2-b2,AB在β内的射影BC=AB2-a2,∴AD.BC,即m>n.答案:θ<φm>n10.如图,已知正方体ABCD-A 1B1C1D1中,E、F分别为D 1C1、B1C1的中点,AC∩BD=P,A1C1∩EF=Q,若A1C交平面DBFE于R点,试确定R点的位置.解:在正方体AC1中,连结PQ,∵Q∈A1C1,∴Q∈平面A1C1CA.又Q∈EF,∴Q∈平面BDEF,即Q是平面A1C1CA与平面BDEF的公共点,同理,P也是平面A 1C1CA与平面BDEF的公共点.∴平面A1C1CA∩平面BDEF=PQ.又A1C∩平面BDEF=R,∴R∈A1C,∴R∈平面A1C1CA,R∈平面BDEF.∴R是A1C与PQ的交点.如图.11.如图,在棱长为1的正方体ABCD-A1B1C1D1中,M 为AB的中点,N为BB1的中点,O为平面BCC1B1的中心.(1)过O作一直线与AN交于P,与CM交于Q(只写作法,不必证明);(2)求PQ的长.解:(1)连结ON,由ON∥AD知,AD与ON确定一个平面α.又O、C、M三点确定一个平面β(如图所示).∵三个平面α,β和ABCD两两相交,有三条交线OP、CM、DA,其中交线DA与交线CM不平行且共面.∴DA与CM必相交,记交点为Q,∴OQ是α与β的交线.连结OQ与AN交于P,与CM交于Q,故直线OPQ即为所求作的直线.(2)在Rt△APQ中,易知AQ=1,又易知△APQ∽△OPN,∴APPN=AQNO=2,AN=52,∴AP=53,∴PQ=AQ2+AP2=14 3.12.(2008年高考四川卷)如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊12AD,BE綊12FA,G、H分别为FA、FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C、D、F、E四点是否共面?为什么?(3)设AB=BE,证明:平面ADE⊥平面CDE.解:(1)证明:由题设知,FG=GA,FH=HD,所以GH綊12AD.又BC綊12AD,故GH綊BC.所以四边形BCHG是平行四边形.(2)C、D、F、E四点共面.理由如下:由BE綊12AF,G是FA的中点知,BE綊GF,所以EF∥BG.由(1)知BG∥CH,所以EF∥CH,故EC、FH共面.又点D在直线FH上,所以C、D、F、E四点共面.(3)证明:连结EG.由AB=BE,BE綊AG及∠BAG=90°知ABEG是正方形,故BG⊥EA.由题设知,FA、AD、AB两两垂直,故AD⊥平面FABE,因此EA是ED在平面FABE内的射影.根据三垂线定理,BG⊥ED.又ED∩EA=E,所以BG⊥平面ADE.由(1)知,CH∥BG,所以CH⊥平面ADE.由(2)知F∈平面CDE,故CH⊂平面CDE,得平面ADE⊥平面CDE.。