高中数学必修一函数题型方法总结

高中数学必修一函数题型方法总结
高中数学必修一函数题型方法总结

这份资料是全部内容已经完成的一部分,后续资料正在编写中。此资料是必修一函数部分的总结,希望对各位高中同学有所帮助。

部分题目给出了详细的答案,部分题目仅给出了简单思路。部分题目仅仅是题目。希望同学能仔细阅读给出答案的题目,总结这一类题目的思路与方法。活学活用。

第一部分 典型例题解析

一、函数部分

一、函数的值域:求函数值域的常用方法有(观察法、配方法、判别式、换元、分离常数法、方程法)。

1、函数164x y =-的值域是( )。A 、[0,+∞)

B 、[0,4) C[0,4] D (0,4)

解析:本题是指数函数与幂函数复合,我们可以直接求出

各自的取值范围。所以本题我们用直接分析法。

[)

401600160,4x x x

x

x

∴∴≥≤∴∈ >16-4<;要根号有意义,16-4。综上可知:16-4<16-4

2、若函数()y f x =的值域是1,32??

????

,则函数

1()()()

F x f x f x =+

的值域是( )。 11051010.,3.2,.,.3,23223A B C D ????????????????????????

解析:本题是复合函数求值域,可变形

11(),()(),,32f x t F x F t t t t ??

===+∈????

方法一:定义求单调区间

21212121211221211212

121212121212

11(),()(),,3,,

2111

()()()()(1).

1

0111

11(1)01

11111

(1)0f x t F x g t t t t t t g t g t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ??

===+∈????∴-=+-+=---∴?-?-

令>>,∴>。当

>时,求得<<,<。此时<,函数递减。

当<时,求得>>,>。此时>,函数递增[]1,1,1,3..

2151010(),(1)2,(3).()2,.

2233x x g g g F x ??

∴∈∈??????∴===∴∈????

。时函数递减.时函数递增

方法二:学了不等式的话,我们可以由基本不等式求单调区间。

111

0,22, 1.

11

,32

t t t t t t t t

t t t ∴+≥==?=∴=== >此时当时,函数取得最小值。然后判断

时的函数值即可。

3、函数234x

y x =

-的值域是( ) A.44(,)(,)33-∞+∞ B.22

(,)(,)33-∞+∞ C.R

D.24

(,)(,)33

-∞+∞

方法一、分离常数法。希望同学自己探究分离常数的方法。

22882.0,.3439129123

22,,33x y y x x x y ==+≠∴≠---????

∴∈-∞+∞ ? ?

????

方法二、方程法。

24.(34)2..3432

2

320.

3

22,,33x y

y y x x x x y y y y =

?∴-=?=--∴-≠?≠????

∴∈-∞+∞ ? ?

???? 方程有解。 4、函数21

22

x y x x +=++的值域是( )。

A.11(,)22-

B.(11,,)22??-∞-+∞????

C.11,22??-????

D.[]1,1-

方法一:方程判别式法。

()22

222(21)210.22110,,(21)21011=40.,.

22()

yx y x y x x x x R yx y x y b ac y ?+-+-=++=++≠∴∈∴+-+-=??

∴?-≥∈-????

原函数方程有意义。

在R 上有根。解得注讨论一元一次方程情况

方法二:11

(1)1

y x x =

++

+,参考例题2两个方法。

5、定义域为R 的函数()y f x =的值域为[],a b ,则函数

()y f x a =+的值域为( )。 A.[]2,a a b + B.

[]

,a b C.

[]0,b a -

D.[],a a b -+

解析:注意本题有套,不要被套住。请同学自己分析。

二、定义域问题。函数定义域注意要求两点:1、函数有意义。2、函数符合实际。对于复合函数的定义域,如

[()]f g x ,即要求x 满足()g x 的定义,有要求()g x 的值

域满足()f x 定义。下面给出几道例题。 1、若12

1

()

log (21)

f x x +,则()f x 的定义域为( )。

A.1,02??-

???B.1,02??- ???C.1,2??

-+∞ ???

D.()0,+∞ 解析:本题有三点。对数函数有意义、根号有意义、分母

有意义。

2、若函数()y f x =的定义域是[0,2],则函数

(2)

()1

f x

g x x =

-的定义域是( )。 A.[0,1] B.[0,1) C.[)(]0,11,4 D.(0,1) 解析:

()[0,2].(2)2[0,2].[0,1].10 1.[0,1)

f x x f x x x x x x ∈∴∈∈-≠?≠∴∈ 的定义域中解得且

3、设2()lg 2x f x x +=-,则2

()()2x f f x

+的定义域为( )。

A.(4,0)(0,4)-

B.(4,1)(1,4)--

C.(2,1)(1,2)--

D.(4,2)(2,4)--

解析:本题先讨论2()lg 2x

f x x

+=-的定义域(2,2)x ∈-。

然后令(2,2)2

2(2,2)x

x

?∈-????∈-??

三、最值问题。最值问题是值域问题的一种。可由求值域

求得也可应用单调性求得。

1、已知52x ≥,则245

()24x x f x x -+=-有( )。

A.最大值54

B.最小值5

4

C.最大值1

D.最小值1 方法一:11

()[(2)]22

f x x x =-+

-,参考值域部分例题2方法。

方法二:

22245

(42)540,

2455.(42)540,

22

0,1 1.

5

1. 1.

2

x x y x y x y x x x y x y x y y x y -+=-+++=-≥-+++=≥∴?≥≥≤-≥≥ 可化为所以在时函数有实数根,求得或又时,所以函数有最小值 2、对于任意x R ∈,函数()f x 表示313,

,22

x x -++ 243x x -+中的较大者,则()f x 的最小值是( )。

A.2

B.3

C.8

D.-1

解析:本题画出三个函数的图像,由图像求最值。 3、已知函数13y x x =-+ 的最大值为M ,最小值为m ,则

m

M

的值为( )。 A.

14 B.12 C.22 D.3

2

解析:首先求定义域31x -≤≤。

22421342(1)4y x x x =+-+=+-++ ,讨论在 31x -≤≤上,函数最值即可。

四、求函数解析式。

1、已知()f x 是二次函数,且满足

(0)1,(1)()2f f x f x x =+-=,则()f x = 。

解析:已知二次函数,待定系数法与对应法。

2222().(0)1, 1.(1)()2(1)(1)1(1)2()20, 1. 1.()1

f x ax bx c f c f x f x x a x b x ax bx ax a b x

a b a b f x x x =++==+-=++++-++?++=∴+==∴=-∴=-+ 设所以由代入得

2、对于任意实数x ,函数()f x 满足1

()()af x bf cx x

+=,

22(,,0,),()a b c a b f x ≠≠=则 。

解析:把原式中11()()c

x af bf x x x

x

+=

换作得。即可得到方程组1()()1()()af x bf cx x

c af bf x x x ?

+=????+=??,解方程组,即可求出

()f x 。

3、已知()f x 是对除01x x ==及以外的一切实数有意义的函数,且1

()(

)1x f x f x x

-+=+,求函数()f x 。 解析:本题类似上述例2中的方程组法。

1

()(

)111121

()()1111

()()1111t x t f t f t t

t t t x f f t t t t x f f t t t t -=?+=+---=?+=

-=?+=+

---令令令 解上述三元方程组即可。 五、规律归纳问题。

1、若函数()f x 对任何R +

恒有

1212()()(),f x x f x f x =+

且(8)3,(2)f f ==则 。 解析

(8)(24)(2)(4)(2)(2)(2)(2)3,(2)1

(2)(22)(2)(2)11

(2)2

f f f f f f f f f f f f f f ==+=++∴====+=∴=

3解得

2、已知函数2

2()1x f x x =+,那么(1)(2)f f ++

111

()(3)()(4)()234

f f f f f ++++= 。 解析:探讨1

()()f x f x

+的值找规律

3、已知函数()f x 满足:1

(1),4()()4

f f x f y =

= ()()(,),(2001)f x y f x y x y R f ++-∈则= 。

解析由公式求(1),(2),(3),(4),(5)f f f f f 找规律。 六、对称与奇偶问题。 1、若二次函数

2()5()(4)f x x ax t f t f t =++=--对任意都有,且在

闭区间[],0m 上有最大值5,最小值1,则m 的取值范围是 。

2、设函数()y f x =定义在实数集上,则函数(1)(1)y f x f x =--与的图像关于( )。 A.直线x=0对称 B.直线y=0对称

C.直线y=1对称

D.直线x=1对称 解析:方法一:

1,1,(1)(),(1)(2).()().(2)=[(2)](2)()1x t x t f x f t f x f t y f x y f x y f t f t f t f t x -==+∴-=-=-==----∴--∴=令则需知与关于轴对称由向右平移两个单位得到关于直线对称

方法二:

(1)()(1)[(1)]()y f x y f x y f x f x y f x =-==-=--=-由向右平移一个单位由向右平移一个单位得到,所以二者关于x=1对称。

注意:()(2)f x f a x =-本题与的对称有所不同。 3、若()1f x x =+,则(1)f x +关于直线2x =对称的函数是 。 解析:方法一

()()0(2)[(2)]2.(1)(2)[(2)][(32)](5)6f x f x x f x f x x f x f x f x f x f x x

-=---=+------=-=- 与关于对称,与关于对称由向左平移三个单位,为保持对称轴不变,应向右平移三单位得 方法二:

()(1)2,,(1),2,,22

4,(,)(1)6f x x a b f x x y x a

x b y a x a b f x x

+=+++=∴==∴=-+=- 设()在上,在目标函数上,关于对称将代入 4、已知函数(21)y f x =+是偶函数,则函数()y f x =的对称轴一定是 。

解析:,(21)(21),

121,2

()(2)1f x f x t

x t x f t f t x ∴-+=+--+=?=∴=-∴= 偶函数令关于对称。

七、性质综合 1、奇偶与周期。

1.1设()f x 是周期为2的奇函数,当01x ≤≤时,

5

()2(1),()2

f x x x f =--则= 。

1.2设定义在R 上的奇函数()f x 满足()f x =(2)f x +,那么(1)(2)(3)(4)(2012)f f f f f ++++ 等于 。

解析:

(0)(0),(0)0.22.(0)(02)(2)

0.(1)(1)(12)(1),(1)0,(12)0

f f f n f f n f n f f f f f f n =-∴=∴=+==-=-=-+=∴=+= 为周期,

所以也是周期

1.3奇函数()f x 的最小正周期为T ,则()2

T

f -的值为 。

1.4若()f x 的最小正周期是2T ,且函数关于x=T 对称。则()f x 是( )。

A 、奇函数

B 、偶函数

C 、既是奇函数又是偶函数

D 、既不是奇函数又不是偶函数

1.5设函数()f x 是定义在R 上的奇函数,若()f x 的最小

正周期为3,且(1)1f >,23

(2)1

m f m -=+,则m 的取值

范围是( )。

2..3A m < B 、213m m <≠-且 C 、213m -<<

D 、2

13

m m ><-或

1.6、函数()f x 的定义域为R ,若(1)(1)f x f x +-

与都是

奇函数,则( )。A 、()f x 是偶函数 B 、()f x 是奇

函数 C 、()(2)f x f x =+ D 、(3)f x +是奇函数 解析:由奇函数得

(1)(1),(1)(1)f x f x f x f x -+=-+--=--,

∴函数()f x 关于点(1,0)和(-1,0)对称。(重点结论:函数关于两个点或轴对称可知函数为周期函数,周期为2m n -)∴()f x 为周期为4的周期函数。

所以(3)[(2)1][(2)1]

((4)1)(3)

f x f x f x f x f x +=++=--++=----=--+

所以函数(3)f x +为奇函数。

(本题较难,注意理解。关于结论证明我专门会讲)

2.奇偶与单调

2.1 若(),()q x g x 均为奇函数,

()()()1f x aq x bg x =++,在(0,)+∞上有最大值5,则

在(,0)-∞上()f x 有( )。

A.最小值—5

B.最小值-2

C.最小值﹣3

D.最大值﹣5

2.2 已知()y f x =是偶函数,且在[0,]+∞上是减函数,则2

(1)f x -的单调递增区间是( )。

A.[0,]+∞

B.(,0)-∞

C. [1,0][1,)-+∞

D.[,1][0,1]-∞-

解析:本题三个考点:1、偶函数单调性的特征2、复合函数[()]f g x 单调性的特征3、二次函数单调性的特征。 1、 偶函数左增右减或左减右增

2、 复合函数增增得增,渐渐地增,减增得减,增减得减

3、 二次函数是初中知识

2.3 已知定义域为R 的函数()f x 在(8,)+∞上为减函数,且函数(8)y f x =+为偶函数,则( )

A.(6)(7)f f <

B.(6(9)f f >

C.(7)(9)f f >

D.(7)(10)f f >

解析(8)f x + 是偶函数,∴(8)(8)f x f x -+=+,∴

()f x 关于8x =对称。其余请画草图研究大小。

2.4 定义域在R 上的偶函数()f x 满足:对任意的

1212,[,0)()x x x x ∈-∞≠,有

2121()[()()]0x x f x f x -->,则( )

。 A.(3)(2)(1)f f f <-< B.(1)(2)(3)f f f <-< C .(2)(1)(3)f f f -<< D.(3)(1)(2)f f f <<- 解析:若21x x >,则必有21()()f x f x >。所以函数在

[,0)-∞上是增函数,所以函数在(0,]+∞是增函数。其余

请画草图研究大小。

2.5 设()f x 是连续的偶函数,且当0x >时()f x 是单调函数,则满足3

()(

)4

x f x f x +=+的所有x 之和为( )。 A.﹣3 B.3 C.﹣8 D.8

解析:第一种情况自变量部分相等 第二种情况自变量部分互为相反数。 3、分段类奇偶函数。

3.1 设()f x 为定义在R 上的奇函数,当0x ≥时, ()22()x f x x b b =++为常数,则(1)f -=( )。 A.3 B.1 C.﹣1 D.﹣3

解析:求(1)(1)f f -=-即可。请自行研究0x <是函数的解析式。

3.2 设()f x 是定义在R 上的奇函数,当0x ≤时,函数

解析式为2

()2f x x x =-,则(1)f = 。

解析:本题方法要求同3.1. 4、 抽象函数奇偶性的讨论。

4.1 若定义在R 上的函数()f x 满足:对任意12,x x R ∈,有1212()()()1f x x f x f x +=++,则下列说法一定正确的是( )。

A.()f x 为奇函数

B. ()f x 为偶函数

C. ()f x +1为奇函数

D. ()f x +1为偶函数 解析:令0x =,得(0)(0)(0)1,(0)1f f f f =++=-

()()()1(0)1

()1()1

f x x f x f x f f x f x -=+-+==-∴+=---

∴()f x +1为奇函数

4.2 已知函数()f x 是定义在R 上的不恒为零的偶函数,

且对任意实数x 都有(1)(1)()xf x x f x +=+,则5

()2

f 的值是( )。

解析: 1

(1)()51

()(11)22

x f x f x x

f f ++=

=++

4.3 若()f x 得最小正周期是2T ,且(

)()f x T f T x +=-对一切实数x 恒成立,则()f x 是( )。 A 奇函数 B 偶函数 C 既是奇函数又是偶函数

D 既不是奇函数又不是偶函数 解析:

()(2)()

[()]()

f x T f x T T f x T f T x f T x +=+-=-=--=-

∴函数为偶函数 5、 几道解答题

5.1 已知函数()f x 是定义在(0,)+∞上的增函数,且满足

()()(),(2)1f xu f x f y f =+=。

(1)求(1)f ;

(2)求满足()(3)2f x f x +-≤的x 的取值范围。

5.2设()f x 是定义在R

+

上的增函数,且

(

)()().

x

f f x f y y

=- (1)求证:(1)0,()()()f f xy f x f y ==+;

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学,函数图形考点及题型全归纳

第五节 函数的图象 ? 基础知识 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式; (3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换 ①y =f (x )的图象――――――――→a >0,右移a 个单位 a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→ b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f (x )整体上加减. (2)对称变换 ①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1 a 纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

一次函数题型总结

一次函数题型总结 1、判断下列变化过程存在函数关系的是( ) A.y x ,是变量,x y 2±= B.人的身高与年龄 C.三角形的底边长与面积 D.速度一定的汽车所行驶的路程与时间 2、已知函数1 2+= x x y ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.2 1 3、下列各曲线中不能表示y 是x 的函数是( )。 1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( ) A 、y=3x -2 B 、y=(k+1)x C 、y=(|k|+1)x D 、y= x 2 2、如果y=kx+b ,当 时,y 叫做x 的正比例函数 3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数 1、下列函数关系中,是一次函数的个数是( ) ①y=1x ②y=x 3 ③y=210-x ④y=x 2 -2 ⑤ y=13x +1 A 、1 B 、2 C 、3 D 、4 2、若函数y=(3-m)x m -9是正比例函数,则m= 。 3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数 1.一次函数y=-2x+4的图象经过第 象限,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 . 2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= . 3.已知k >0,b >0,则直线y=kx+b 不经过第 象限. 4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( ) A. 1- B. 1 C. 4 1 - D. 41

高中数学各大题型详细方法总结

一三角函数 三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。 1.解三角形 不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。 所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。 2.三角函数 然后求解需要求的。套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。 解决方法就是,首先利用“和差倍半”对式子进行化简。化简成:

掌握以上公式,足够了。 关于题型,见下图: 二立体几何 立体几何的相关题目,稍微复杂一些,可能会卡住一些人。 这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。 这类题目的解题方法有两种:空间向量法和传统法。这两种方法各有利弊。

向量法: 使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。缺点就是计算量大,且容易出错。 使用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c),然后进行后续证明与求解。 箭头指的是利用前面的方法求解。如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法: 在学立体几何的时候,有很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。 所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

高中数学必修一函数题型方法总结

这份资料是全部内容已经完成的一部分, 写中。此资料是必修一函数部分的总结, 同学有所帮助。 路。部分题目仅仅是题目。 的题目,总结这一类题目的思路与方法。活学活用。 第一部分典型例题解析 一、函数部分 一、函数的值域:求函数值域的常用方法有 方法、判别式、换元、分离常数法、方程法)。 1、函数y=的值域是()。A、[0,+ B、[0,4) C[0,4] D(0,4) 解析:本题是指数函数与幂函数复合, 各自的取值范围。所以本题我们用直接分析法。 [) 40160 0160,4 x x x x ∴∴≥ ≤ Q>16-4<;要根号有意义,16-4 综上可知:16-4< 2、若函数() y f x =的值域是 1 ,3 2 ?? ?? ?? ,则函 1 ()() () F x f x f x =+的值域是()。 11051010 .,3.2,.,.3, 23223 A B C D ???????? ???????? ???????? 解析:本题是复合函数求值域,可变 11 (),()(),,3 2 f x t F x F t t t t ?? ===+∈?? ?? 。 方法一:定义求单调区间 21 212121 2112 212112 12 12 12 1212 12 12 11 (),()(),,3,, 2 111 ()()()()(1). 1 011 1 11(1)0 1 1111 1 (1)0 f x t F x g t t t t t t g t g t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ?? ===+∈?? ?? ∴-=+-+=-- -∴? - ? - Q 令> >,∴>。当>时,求得< <,<。此时<,函数递减。 当<时,求得>>,>。 此时>,函数递增 [] 1 ,1,1,3.. 2 151010 (),(1)2,(3).()2,. 2233 x x g g g F x ?? ∴∈∈ ?? ?? ?? ∴===∴∈?? ?? 。 时函数递减.时函数递增 学了不等式的话,我们可以由基本不等式求单调 11 0,2, 1. 1 1 ,3 2 t t t t t t t ∴+≥=?= = = 此时 时,函数取得最小值。然后判断 时的函数值即可。 2 34 x y x = - 的值域是() 44 ,)(,) 33 -∞+∞ U B. 22 (,)(,) 33 -∞+∞ U C.R 24 ,)(,) 33 -∞+∞ U 分离常数法。希望同学自己探究分离常数的方法。 22882 .0,. 3439129123 22 ,, 33 x y x x x =+≠∴≠ --- ???? ∈-∞+∞ ? ? ???? Q U 24 .(34)2.. 3432 2 320. 3 22 ,, 33 x y y x x x x y y y ?∴-=?= -- ∴-≠?≠ ???? ∈-∞+∞ ? ? ???? U 2 1 22 x y x x + = ++ 的值域是()。 11 (,) 22 - B.(11 ,,) 22 ?? -∞-+∞ ?? ?? U C. 11 , 22 ?? -?? ?? ]1,1 - () 2 2 2 2 2 (21)210. 22110, , (21)210 11 =40.,. 22 ) yx y x y x x R y x y b a c y ?+-+-= ++=++≠ ∈ +-+-= ?? -≥∈-?? ?? 方程有意义。 在R上有根。 解得 讨论一元一次方程情况 1 1 (1) 1 y x x = ++ + ,参考例题2两个方法。 R的函数() y f x =的值域为[],a b,则函数

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

一次函数知识点总结及典型试题(用)

一次函数知识点总结及经典试题 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

初中数学一次函数考点归纳及例题详解

一次函数考点归纳及例题详解 考点1:一次函数的概念. 相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 【例题】 1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3 x C .y=2x 2 D .y=-2x+1 2.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,?该函数的解析式为_________. 3.已知一次函数k x k y )1(-=+3,则k = . 4.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数. 考点2:一次函数图象与系数 相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上,0

A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 一次函数y = 3 x + 2的图象不经过第 象限. 4. 一次函数2y x =+的图象大致是( ) 5. 关于x 的一次函数y=kx+k 2+1的图像可能是( ) 6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). 7.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 . 8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( ) >0,n <2 B. m >0,n >2 C. m <0,n <2 D. m <0,n >2 9.已知关于x 的一次函数y mx n =+的图象如图所示, 则||n m -可化简为__ __. 10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。 考点3:一次函数的增减性 相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0

高中数学极坐标与参数方程高考题型全归纳题型部分

2019极坐标与参数方程高考题型全归纳 一.题型部分 (一) 极坐标与直角坐标的转化、参数方程与普通方程的转化,极坐标与参数 方程的转化 1. 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ= 。 2. 参数方程: 直线参数方程:0 0cos () sin x x t t y y t θ θ =+?? =+?为参数 00(,) x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量; 圆锥曲线参数方程: 圆的参数方程:cos ()sin x a r y b r θθθ =+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆2 2221x y a b +=的参数方程是cos ()sin x a y b θ θθ =??=?为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ =?? =?为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=? =?为参数 (二)有关圆的题型 题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= ,算出d ,在与半径

比较。 题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= 第二步:判断直线与圆的位置关系 第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d = 题型三:直线与圆的弦长问题 弦长公式2 22 d r l -=,d 是圆心到直线的距离 延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义” (三)距离的最值: ---用“参数法” 1.曲线上的点到直线距离的最值问题 2.点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 例如:在直角坐标系xOy 中,曲线1 C 的参数方程为()sin x y α αα?=?? =?? 为参数,以坐标原 点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

一次函数的应用题型总结(经典实用!!!!)

一次函数的应用题型总结(经典实用) 用一次函数的解决实际问题。 类型一根据题目中信息建立一次函数关系式或找出符合题意的图像,再根据函数的性质解决问题; 1、学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的() 2、.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y?(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是() 3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的() 1 / 7

4、从甲地到乙地,汽车先以速度,行驶了路程的一半,随后又以速度()行驶了余下的一半,则下列图象,能反应汽车离乙地的距离(s)随时间(t)变化的函数图象的应为() 5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间 t(时)的函数关系的图象是( ) (A) (B) (C)( 6、为加强公民的节水意识,某市对用水制定了如下的收费标准,每户每月用水量不超过l0吨时,水价每吨l.2元,超过l0吨时,超过部分按每吨1.8元收费。该市某户居民,8月份用水吨 (),应交水费元,则与的关系式为__________ 7、购买作业本每个0.6元,若数量不少于13本,则按8折优惠. (1)写出应付金额y元与购买数量元之间的函数关系式: (2)求购买5本、20本的金额; (3)若需12本作业本,怎样购买合算? 8、一个蓄水池有153m的水,用每分钟3 5.0m的水泵抽水,设蓄水池的含水量为) (3 m Q, 抽水时间为分钟) (t。 ⑴写出Q关于t的函数关系式⑵求自变量t的取值范围⑶画出函数图象 2 / 7

相关文档
最新文档