10KV高压变频与380V变频选择的价格对比

10KV高压变频与380V变频选择的价格对比

关于10KV高压变频方案与380V低压变频方案的对比

1、变频选择表

2、380V和10KV变频、电机的性价比对照

(1)250KW/380V低压变频器价格是250KW/10KV高压变频器的1/3左右,若将10KV改成380V,需在低压变频侧配置10KV/380V变压器,价格

约为10KV高压变频器的1/6;

(2)用250KW/380V低压变频器替代250KW/10KV高压变频器,其投资成本只是10KV高压的一半(即:1/3+1/6=1/2);

(3)另外,250KW/380V低压电机的价格也只是同功率10KV高压电机的60%;而10KV改成380V之后电缆虽然需要加大,但所占比重十分有

限,远不及高、低压电机的差价;

3、总结

对于上述列表中的变频数量,如果采用10KV高压变频方案,则进口品牌总价至少需120万,改成同品牌380V低压变频方案(含变压器柜)则只需60万,可节约成本50%以上!

再者,380V低压变频器故障率远低于10KV高压变频器,运行可靠,维护、尤其维修成本远低于高压变频器,所以就本项目而言,低压变频方案(380V)节约的经济效益是非常可观的。

以上只是价格水平的估算,仅供参考。

最新高压变频器工作原理

高压变频器工作原理 高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n= (1 —s)60f/p=no X (1 一 s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60fp),由于滑差s—般情况下比较小(0?0. 05),电机的实际转速n约等于电机的同步转速n。,所以调节了电机的供电频率f, 就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。 变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜屮的控制单元通过光纤时对功率柜屮的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应得整流、逆变调整,输出满足负荷需求的电压等级。 1移相式变压器

移相变压器的副边绕组分为三组,构成X脉冲整流方式;这种多极移相叠加的整流方式可以大大改善网侧的电流波形,使负载下的网侧功率因数接近1。另外,由于副边绕组的独立性,使每个功率单元的主回路相对独立,这样大大提高了可靠性。 2智能化功率单元 所有的功率模块均为智能化设计具有强大的自诊断指导能力,一旦有故障发生时,功率模块将故障信息迅速返回到主控单元中,主控单元及时将主要功率元件IGBT关断,保护主电路;同时在中文人机界面上精确定位显示故障位置、类别。在设计时已将一定功率范围内的单元模块进行了标准化考虑,以此保证了单元模块在结构、功能上的一致性。当模块出现故障时,在得到报警器报警通知后,可在几分钟内更换同等功能的备用模块,减少停机时间。 6kV电网电压经过副边多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交直流PWM电压源型逆变器结构,相邻功率单元的输出端串联起来,形成Y接结构,实现变压变频的高压直接输出,供给高压电动机。6kV电压等级的高压变频器,每相由六个额定电压为600V的功率单元串联而成,输出相电压最高可达3464V,线电压达6000V左右。改变每相

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

高压变频器市场情况分析报告

高压变频器市场情况分析报告 一、高压变频器产品市场概述 高压变频器技术的发展历史较短。在中国,90年代后期高压变频器才开始在电力、冶金等少数行业得到应用,由于产品和技术都由国外厂商垄断,价格高昂,而且进口产品对我国电力运行环境的适应性较差,行业发展缓慢。2000年以后,国内企业的高压变频器技术和生产制造工艺得到了大幅提高,产品运行的稳定性和可靠性显著提升,产品生产成本也大幅下降,高压变频器行业开始进入快速发展时期,行业应用领域被大幅拓宽。 高压变频器总体竞争形势而言,目前仍然是国外品牌垄断高端市场,主要由西门子、ABB、日本三菱垄断,包括炼钢高炉等场合应用的超大功率(8000KW 以上)变频器,轧钢机、机车牵引等应用的特种变频器等,而中小容量产品的低端产品则是国产品牌占据优势。虽然国内品牌在高端市场的影响力及技术水平方面与国外品牌有一定差距,但以利德华福、合康变频为代表的领先品牌已不再满足于产品应用局限于中低端市场的情况,开始向大功率、超大功率等高端应用市场的进军。例如在2008 年11 月份,广州智光电气公司推出的7 000kV A级超大功率高压变频调速系统,将打破高压大功率变频调速系统长期被国外品牌“一统天下”的格局。该设备已通过国家电控配电设备质量监督检验中心检验,这意味着我国高压变频器市场将告别被外国品牌垄断的时代。且随着国内厂家的技术进步和质量稳定性的提升,加上服务和价格方面的优势,预计未来几年高端产品被国外厂家垄断的市场局面将有所改观。 国外高压变频器的技术开发起步早,目前各大品牌的变频器生产商,均形成了系列化的产品,其控制系统也已实现全数字化。几乎所有的产品均具有矢量控制功能,完善的工艺水平也是国外品牌的一大特点。目前,在发达国家,只要有电机的场合,就会同时有变频器的存在。 二、中国高压变频器预计市场规模 根据中国电机系统节能项目组在所著的“中国电机系统能源效率与市场潜力分析”中对于1999年中国分行业用电量与电动机装机容量和耗电量的详细调查分析,中国用电设备的总容量为3.73亿kW,其耗电量为9800亿kW时,占当年全国总用电量的81%;其中由电动机拖动的设备总容量为1.83亿kW,其耗电

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

ATV312施耐德变频器参数设置-(简易)

ATV312施耐德变频器参数设置 MODE ---模式切换 ESC ---退出 键盘中间 ---进入/确认 RUN ---运行 STOP RESET---停止/复位 注:全新变频器默认运程模式(左边3个灯循环闪烁,此模式不可设参数), 按MODE 键3秒至灯不闪烁,进入本地模式才可以设置参数。 每次按键盘中间进入或者确认,按ESC 退出,旋转键盘可选择参数。 必设参数: 1、电机参数(根据电机铭牌设置) drC---nCr (电机额定电流) bFr (电机标准频率) nSP (电机额定转速) UnS (电机额定电压) 2、SEt---ItH 电机热电流 (按电机额定电流1.2倍设置) HSP 上限频率 (默认50HZ,电机是60HZ 的要设置60HZ) 3、FLt---rsf---LI5 故障复位点 一、面板操作 1、CtL --- LAC --- L3 (按键盘中间2秒确定) CHCF -- SEP CdI---LOC (本地) FrI---AIUI rOt--dFr 电机正转(drs ,电机反正) 2、rEF---AIUI 运行频率 (100对应HSP 设置频率,50/60HZ) 进到该参数里面,再旋转键盘可调频率。 二、端子控制 1、CtL --- LAC --- L3 (按键盘中间2秒确定) CHCF -- SEP CdI---tEr (端子控制) FrI---AIUI 2、rEF---AIUI 运行频率 (100对应HSP 设置频率,50/60HZ) 三、压力传感器控制4-20mA (AI3 端子控制) 1、CtL --- LAC --- L3 (按键盘中间2秒确定) CHCF -- SE CdI---tEr (端子控制) FrI---AI3 (给定通道) 2、I-O- --- CrL3 控制最小值9.2 (计算公式:16÷40x 压力+4 ,40是传感器量程) CrH3 控制最大值 11.2 (9.2-11.2对应 13-18MPa ,稳定在15,16MPa ) AOIt-- 4A (传感器接线:上面有 1,2,3,4角,1角是电源线,2角是信号线) 四、恢复出厂设置 DrC --- FCS ---InI (按键盘中间2秒,切换到no)

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点 一、高压变频器的基本构成: 1、高压变频器的构成:内部是由十八个相同的单元模块构成,每六个模块为一组,分别对应高压回路的三相,单元供电由移相切分变压器进行供电。(原理图) 2、功率单元构成:功率单元是一种单相桥式变换器,由输入切分变压器的副边绕组供电。经整流、滤波后由4个IGBT 以PWM方法进行控制,产生设定的频率波形。变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计。其控制通过光纤发送。来自主控制器的控制光信号,经光/电转换,送到控制信号处理器,由控制电路处理器接收到相应的指令后,发出相应设的IGBT的驱动信号,驱动电路接到相应的驱动信号后,发出相应的驱动电压送到IGBT控制极,操作IGBT关断和开通,输出相应波形。功率单元中的状态信息将被收集到应答信号电路中进行处理,集中后经电/光转换器变换,以光信号向主控制器发送。 二、高压变频器运行原理:高压变频器的每个功率单元相当于一个三电平的二相输出的低压变频器,通过叠加成为高压三相交流电,变频器中点与电动机中性点不连接,变频器输出实际上为线电压,由A相和B相输出电压产生的UAB输出线电压可达6000V,为25阶梯波。如下图所示,为输出的线电压和相电压的阶梯波形,UAB不仅具有正弦波形而且台阶数也成倍增加,因而谐波成分及dV/dt均较小。 三、多电平单元串联叠加高压变频器在运行后,将输入的工频的三相高压交流电转化为可以进行频率可调节的三相交流电,其电压和频率按照V/F的设定进行相应的调节,保持电机在不同的频率下运行,而定子磁心中的主磁通保持在额定水准,提高电机的转换效率。在变频器输入侧,由于变频器多个副边绕组的均匀位移,如6KV输出时共有+250、+150、+50、-50、-150、-250共6种绕组,变频器原边电流中对应的电流成分也相互均匀位移,构成等效36脉动整流线路,变流转换产生的谐波都相互抵消,湮灭。工作时的功率因数达0.95以上,不需要附加电源滤波器或功率因数补偿装置,也不会与现有的补偿电容装置发生谐振,对同一电网上运行的电气设备没有任何干扰。 四、高压变频器的性能特点: 1、应用范围:调速范转宽,可以从零转速到工频转速的范围内进行平滑调节。在大电机上能实现小电流的软启动,启动时间和启动的方式可以根据现场工况进行调整。频率的调整是根据电机在低频下的压频比系数进行电压和频率的输出,在低转速下,电机不仅是发热量低,而且输入电压低,将使电机绝缘老化速度降低。 2、技术新颖串联多重化叠加技术的应用实现了真正意义的高-高电力变换,无需降压升压变换,降低了装置的损耗,提高了可靠性,解决了高压电力变换的困难。串联多重化叠加技术的应用还为实现纯正弦波、消除电网谐波污染开辟了崭新的途径。 移相变压器 移相变压器是单元串联型多电平高压大功率变频器中的关键部件之一。 用低压电力电子元件做高压变频器通常有两种方法:一是用低压元件直接串联,另一种方法是用独立的 率变频器的主流。 以6kV变频器为例: 它的每相由6个独立的、额定电压为Ve=577V(峰值为816V)的低压功率单元串联而成,输出相电压为3464V线电压可达6000V左右。每个功率单元承受全部输出电流但只提供1/6相电压和1/18的输出功率。每个功率单元分别由变压器的一组二次绕组供电,功率单元之间以及变压器二次绕组之间相互绝缘。 很明显移相变压器在该变频器中起了两个关键的作用:一是电气隔离作用才能使各个变频功率单元相互独立从而实现电压迭加串联,二是移相接法可以有效地消除35次以下的谐波。(理论上可以消除6n-1次以下的谐波, n为单元级数)

高压变频器简介

高压变频器 基本信息 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用的领域和范围也越来越为广范,这使得高效、合理地利用能源(尤其是电能成为了可能。电机是国民经济中主要的耗电大户,高压大功率的更为突出,而这些设备大部分都有节能的潜力。大力发展高压大功率变频调速技术,,将是时代赋予我们的一项神圣使命,而这一使命也将具有深远的意义。 高压大功率变频调速装置被广泛地应用于石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等。 分类与结构 高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。 分类 低压型变频器 产品定义电压等级低于690V的可调输出频率交流电机驱动装置,就归类为低压变频器(如下图。目前,随着低压变频器技术的不断成熟,低压变频的应用场合决定了它不同的分类。单

从技术角度来看,低压变频器的控制方式也在一定程度上表明了它的技术流派。 正弦脉宽调制(SPWM其特点是控制电路结构简单、成本较低,机械特 性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到 广泛应用。 电压空间矢量(SVPWM它是以三相波形整体生成效果为前提,以逼近 电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多 边形逼近圆的方式进行控制的。 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、 Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再 通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、 It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。 直接转矩控制(DTC方式该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。

高压变频器原理与应用

高压变频器原理及应用 1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。 目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和围也越来越为广,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。 2、几种常用高压变频器的主电路分析 (1)单元串联多重化电压源型高压变频器。单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点: a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题; b)所需高压电缆太多,系统的阻无形中增大,接线太多,故障点相应的增多; c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏; d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的部环流,必将引起阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于90%。 (2)中性点钳位三电平PWM变频器。该系列变频器采用传统的电压型变频器结构。中性点钳位三电平PWM变频器的逆变部分采用传统的三电平方式,所以输出波形中会不可避免地

高压变频器的矢量控制原理

摘要:介绍四象限运行高压变频器的矢量控制原理,在煤矿副井绞车中的运用,改造。以及节能等效果 关键词:高压变频器煤矿运用 一、概述 目前矿用交流提升机普遍使用绕线式电机转子串电阻调速控制系统。在减速和重物下放时能量通过转子电阻释放,能量不能回馈回电网,随着变频调速技术的发展,交-直-交电压型变频调速技术已开始在矿井提升机中应用。HIVERT-YVF06/077大功率变频器是北京合康亿盛科技有限公司研发和生产的高压交流电机调速驱动装置。该变频器采用了先进成熟的低压变频技术,以及功率单元串联叠波、矢量控制技术、有源逆变能量回馈技术等。 二、矢量控制原理 HIVERT-YVF采用转子带速度反馈的矢量控制技术。在转子磁场定位坐标下电机定子电流分解成励磁电流与转矩电流。维持励磁电流不变,控制转矩电流也就控制电机转矩。电机转速采用闭环控制。实际运行中给定转速与实际转速的差值通过PID调节生成转矩电流IT。经过矢量变换将IT、IM变换为电机三相给定电流Ia*、Ib*、Ic*,它们与电机运行电流相比较生成三相驱动信号。控制原理框图如图1 图1 控制原理图 1、主回路 HIVERT系列高压变频器采用交-直-交直接高压(高-高)方式,主电路开关元件为IGBT。HIVERT变频器采用功率单元串联,叠波升压,充分利用常压变频器的成熟技术,因而具有很高的可靠性。

图2 HIVERT-YVF06/077高压变频器6kV系列主电路图 主隔离变压器原边为Y型接法,直接与高压相接。组数量依变频器电压等级及结构而定,6kV系列为18,延边三角形接法,为每个功率单元提供三相电源输入。输入侧隔离变压器二次线圈经过移相,为功率单元提供电源,对6KV而言相当于36脉冲不可控整流输入,消除了大部分由单个功率单元所引起的谐波电流,大大抑制了网侧谐波(尤其是低次谐波)的产生。 变频器输出是580VAC功率单元六个串联时产生3450V相电压,线电压6000V,输出Y接,中性点悬浮,得到驱动电机所需的可变频三相高压电源。 图3为6kV六单元变频器输出的Uab线电压波形实录图,图4即为输出电流Ia的实录波形图,峰值电流130A。

利德华福高压变频器

利德华福高压变频器 应用范围 近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。 从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等 冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等 石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等

市政供水:水泵等 污水处理:污水泵、净化泵、清水泵等 水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、 分选器风机、主吸尘风机等 造纸:打浆机等 制药:清洗泵等 采矿行业:矿井的排水泵和排风扇、介质泵等 其他:风洞试验等

系统原理 HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。变频器主要由移相变压器、功率模块和控制器组成。 系统结构 功率模块结构 功率模块为基本的交-直-交单相逆变电 路,整流侧为二极管三相全桥,通过对IGBT逆 [功率单元电路结构]变桥进行正弦PWM控制,可得到单相交流输出。 每个功率模块结构及电气性能上完全一 致,可以互换。(备件种类单一) 输入侧结构 输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为三

高压变频器工作原理

高压变频器工作原理 摘要:近几年来乌鲁木齐市经济快速发展,城市化进程加快,居民住房面积不断增长,随之而来的是供热面积的不断增加。我单位作为本市主要的供暖企业之一,面对不断增长的供热面积,也在不断进行技术改造,提升自身供热能力。现就对我单位高压循环泵电机使用的高压变频器的工作原理做一介绍。 关键词:移相变压器;功率单元;控制器 1.概述 高压变频调速系统,主要应用于风机、泵类等通过调速控制大量节能的场合。具有: (1)高可靠性:采用高—高电压源型变频调速系统,直接高压输入,直接高压输出,无需输出变压器。 (2)高质量的功率输入、输出:输入功率因数高,输入谐波少,无需功率因数补偿/谐波抑制装置。 (3)完善、简易的功能参数设定:完整的通用参数设定功能(频率给定、运行方式设定、控制方式、自动调度等)。 2.工作原理 高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n=(1一s)60f/p=n。×(1一s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60f/p),由于滑差s一般情况下比较小(0~0.05),电机的实际转速n约等于电机的同步转速n。所以调节了电机的供电频率f,就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。 变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜中的控制单元通过光纤对功率柜中的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应的整流、逆变调整,输出满足负荷需求的电压等级。 3.构成

单元串联型高压变频器工作原理是什么 故障处理方法有哪些

单元串联型高压变频器工作原理是什么故障处理方法有哪些利用变频技术驱动电动机可以实现节能,符合我国有关节能减排的要求和社会需求。为了使变频装置应用在高电压等级、大容量的场合,通常会采用高压大容量的开关器件和多电平的拓扑结构;级联型变流器是一种有很好应用前景的多电平变换器,级联型变频器的具体应用如级联型高压变频器拖动风机、水泵等负载,大多工作在比较重要的场合,在生产或生活中的作用和影响较大,对可靠性要求高,一般要求系统能够连续运转,即使在故障后适当降低容量运行,也不能随时停机。在利用高压变频装置驱动电动机实现节能目标的同时,为了保证系统的可靠性,需要高压变频装置具有一定的容错功能,即在发生器件或者单元故障时,能够自动将其屏蔽,通过调整控制方式,使系统继续运行。 单元串联型高压变频器利用若干低压功率单元串联实现高压输出,这种结构使其具有良好的容错性能;将发生故障的单元屏蔽后,通过一定的故障处理方法,可以使系统继续降低容量运行,保证生产的稳定运行。传统的故障处理方法是采用屏蔽掉故障单元与另外两相中相应的非故障单元,以保持变频器的平衡运行,这样势必会造成非故障单元的浪费,因此对级联型变频器正常工作及故障时处理方法的研究很有必要。本文设计的基于PCI-9846的变频器输出性能测试系统主要针对采用三种不同的故障处理方法时,对单元串联型高压变频器输出电能质量的各项指标进行实时监测和分析,尤其是单元发生故障后,系统输出电压的性能指标,应尽量与故障前保持一致,以减小故障对系统工作的影响。该测试系统利用LabVIEW虚拟仪器软件平台搭建系统主控界面,设计了相应的故障处理方法,可以得到不同故障处理方法时的参考波。在多单元级联型变频器仿真模型上进行测试,通过凌华PCI-9846数字化仪采集三相电压信号后进行分析处理,获得三相线电压的幅值,频率,总谐波含量,三相电压相位等主要性能指标,从而检查控制算法在系统正常运行及带故障运行时的输出情况。 一单元串联型高压变频器结构及工作原理 单元串联型高压变频器采用若干个低压功率单元串联的方式实现直接高压输出,采用的变

10KV1000KW_2300KW高压变频器技术协议1

高压变频器 技 术 协 议 甲方:xxx 乙方:xxx

1、总则 1.1 本规范书适用于高压变频器变频装置。它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的技术要求满足甲方的运行要求,卖方应提供符合工业标准和本规范书的优质产品。 1.3 本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 1.4 本设备技术规范书经双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.5 本设备技术规范书未尽事宜,由双方协商确定。 2、技术要求 2.1变频器遵循的主要标准 Q/0800SFD001-2011 JD-BP37/38交流电动机变频器企业标准 GB 156-2003 标准电压 GB/T 1980-1996 标准频率 GB/T 2423.10-1995 电工电子产品基本环境试验规程振动(正弦)试验导则GB 2681-81 电工成套装置之中的导线颜色 GB 2682-81 电工成套装置之中的指示灯和按钮的颜色 GB 3797-89 电控设备第二部分:装有电子器件的电控设备 GB 3859.1-93 半导体电力变流器基本要求的规定 GB 3859.2-93 半导体电力变流器应用导则 GB 3859.3-93 半导体电力变流器变压器和电抗器 GB 4208-93 外壳防护等级的分类 GB 4588.1-1996 无金属化孔单、双面印制板技术条件 GB 4588.2-1996 有金属化孔单、双面印制板技术条件 GB 7678-87 半导体自换相变流器 GB 9969.1-88 工业产品使用说明书总则 GB 10233-88 电气传动控制设备基本试验方法

施耐德变频器故障代码说明(中文版)

附录5: 施耐德变频器故障代码表 故障 代码 故障名称可能故障原因修复措施 1、检查电机、增益和稳定参数 AnF ★负载滑脱 编码器速度反馈与给定值不匹 配 2、添加一个制动电阻器 3、检查电机/变频器/负载的大小 4、检查编码器的机械连轴器及其连线 brF ★机械制动 故障 制动反馈触点与制动逻辑不一 致 1、检察反馈电路以及制动逻辑电路 2、检查制动器的机械状态 bUF ★制动单元 短路 1、制动单元的短路输出; 2、未连接制动单元。 1、检查制动单元与电阻器的连线情况 2、检查制动电阻 ECF ★编码器连 线 编码器的机械连线器断裂检查编码器的机械连轴器 1、检查脉冲数量与编码器类型 EnF ★编码器编码器反馈故障2、检查编码器的机械部分与电气部分的 运行情况,其电源及连线是否正确 FCF1 ★输出接触 器未打开 虽然已满足打开条件,但输出 接触器依保持闭合 1、检查接触器及其连线 2、检查反馈电路 HdF ★IGBT 去饱 和 变频器输出短路或接地 检查变频器与电机之间的电缆连接及电 机的绝缘情况 1、电机控制中参数设置不正确1、检查参数 2、检查变频器/电机/负荷的大小 OCF ★过流2、惯量或载荷太大 3、检查机械装置的状态 3、机械锁定 SCF1★电机短路 SCF2 ★有阻抗短 路 SCF3★接地短路 1、变频器输出短路或接地 2、如果几个电机并联,变频器 输出有较大的接地泄露电流 1、检查变频器与电机之间的电缆连接情 况以及电机的绝缘情况 2、减少开关频率 3、在电机与变频器间加电机电抗器 1、检查电机、增益和稳定性参数 SOF ★超速不稳定或驱动负载太大2、添加一个制动电阻器 3、检查电机/变频器/负载的大小 SPF ★速度反馈 丢失 没有编码器反馈信号 1、检查编码器与变频器的连线情况 2、检查编码器 1、检查变频器/电机连接情况 1、没有达到制动器松开电流 2、检查电机绕组 bLF ▲制动控制 2、当制动逻辑控制被分配时, 仅调节制动闭合频率阀值 3、检查[刹车释放电流(正向)](Ibr ) 与[制动释放电流(反转)](IrD)设置 (bEn ) 4、应用[刹车闭合频率](bEn )的推荐设

高压变频器原理及优点

高压变频器原理及优点 功率单元串联多电平型高压变频调速系统 多电平型高压变频器是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,可迅速替换故障模块,采用多个低压的功率单元相互串联的办法实现高压,解决了高压的难题而得名。输入侧的降压变压器采用移相方式,原边Y 形连接,副边采用沿边三角形连接,6kV 系列共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度,可有效消除对电网的谐波污染。输出侧采用多电平正弦PWM 技术,无需输出变压器,更不需要任何形式的滤波器,可适用于任何电压的普通交流电机。另外,在某个功率单元出现故障时,可自动退出系统,而其余的功率单元可继续保持电机的运行,减少停机时造成的损失。整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y 形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。由此可见,单元串联多电平型变频器的市场竞争力是很明显的。 高压电机 高压电源柜高压变频器主控台 控制电源轴编码器接地端 分闸 合闸允许6kVC 6kVB 6kVA 接地端 接地端变频器电流 公共端 公共端 模拟给定 高压就绪 运行指示 故障报警 公共端 公共端 紧急停车 反向启停 正向启停 图1 高压变频调速系统结构图 图2 6kV 和10kV 变频器系列的电压叠加示意图

变频器与PLC 电控硬连接 变频器和PLC 电控采用硬连接:电控把开关量正向起停、反向起停、紧急停机、模拟量频率给定送给变频器,可以控制变频器运行;变频器把开关量运行、故障、就绪、模拟量输出电流、输出频率给电控系统,即可以正常工作。配合如下图所示。 高压电机 高压电源柜 高压变频器主控台 控制电源轴编码器接地端 分闸合闸允许6kVC 6kVB 6kVA 接地端 接地端变频器电流 公共端 公共端 模拟给定 高压就绪 运行指示 故障报警 公共端 公共端 紧急停车 反向启停 正向启停 图3 变频器与PLC 电控硬连接 实施技术方案的优点 ● 启动、制动平稳,不对设备产生冲击,延长设备寿命; ● 制动时,将能量回馈电网,节约能源; ● 低速爬行平稳,定位精度高; ● 降低了运行噪声、发热量及粉尘,改善了值班环境; ● 不需转子电阻及切换柜,减小设备占地空间; ● 自动化程度高,操作简单,降低操作人员劳动强度; ● 转子串电阻调速和变频器调速互为备用。 采用高压变频器技术先进性 矢量控制是全数字技术的,功率部分采用IGBT 的电压源型交流变频传动装置。它给传动装置带来快速性,更高的精度,更高的可靠性,同时效率也更高。 ● 统一的操作界面:该界面对所有变频器都一样,它们具有统一的操作员

高压变频器比较(内部)

800KW/6.3KV高压变频调速装置的性能、可靠性、服务比较及说明

目录 第一章:概述--------------------- 3 第二章:高压大功率变频器的性能--------------------- 4 第三章:技术服务---------------------- 13 第四章:ROBICON公司在国内的业绩---------------------- 16 第五章:高压变频器综合技术参数比较:---------------------- 21

一、概述 1、常用高压变频器分类 1.1.按输出电压方式: 高高型:直接输出3kV 或6KV 高压,变频器输出没有升压变压器;其特点是可靠性高、效率高、价 格贵。 高低高型:使用低压变频器输出2300V 或690V ,再增加升压变压器升到3KV 或6KV ;其特点是相对 效率低(系统效率为95%)、高可靠性、价格便宜、维护成本低。 1.2.按中间环节类型: 电压源:中间直流环节为电容。 电流源:中间直流环节为电感。 1.3.按电路结构型式: 三电平(中心点钳位):输出电压有3个电平。 功率单元电压串联结构:6KV 系列输出电平有13电平。 2、变频器基本结构 整流电路 直流滤波环节 逆变电路的 控制 3、变频器拓扑结构 一般都由三部分组成: 整流电路: AC to DC(交流-直流); 中间直流环节:滤波和能量储存; 逆变器:DC to AC(直流-交流). 输出的电压(电流)和频率进行协调控制 二、高压大功率变频器的性能 高压大功率变频器有输入谐波、输入功率因素、输出波形质量、可靠性 四项重要性能指标 AC-DC Conversion DC-AC Conversion DC Link AC Input; fixed Frequency, fixed Voltage AC Output; variable Frequency, variable Voltage Motor Capacitor or Inductor

高压变频器原理(第1讲)

1 高压变频器中,什么是高高方式?什么是高-低-高方式? 答:高高方式高压变频器是指变频器直接使用高压电源作为输入,且直接输出高压供高压电机使用(输入输出不需要升降压变压器)。高高方式主要用在大功率高压电机变频调速节能场合。 高低高方式变频器是高压电源经降压变压器降压后,用低压变频器进行变频控制,再用升压变压器把电压升到所需电压,供高压电机使用,高低高方式主要用在小功率高压电机变频调速节能场合。 2 高压变频器中,什么是交-直-交方式?什么是交-交方式? 答:无论是电流源型还是电压源型变频器,其原理都是将电网交流电经全波整流电路整流成直流电。然后又经逆变电路“逆变”成频率和电压均可调的三相交流电作为三相异步电动机的变频电源。可见,在变频器的输入和输出之间,经历了“交流原直流原交流”的过程,故称为“交原直原交”变频。 如图1 所示,交原交方式变频器主要分为晶闸管交原交变频器和矩阵式变换器两种,其特征是将交流电源不经过整流环节,而是直接通过控制开关器件的导通和关断来获取频率可变的交流电压,中间没有直流环节,所以成为交原交方式。 3 什么是电压源型变频器?什么是电流源型变频器?各有哪些优缺点? 答:根据直流电路中滤波方式的不同,变频器被分为电压源型和电流源型两种,如图 2 所示。 1)电压源型变频器直流电路采用电容器滤波。在波峰(电压较高)时,由电容器储存电能场,在波谷(电压较低)时,电容器将释放电场能来进行补充,从而使直流电压保持平稳。直流电路是一个电压源,故称为电压源型。其特点是: (1)直流侧并联大电容,相当于电压源。直流电压基本无脉动,直流回路呈现低阻抗。(2)由于直流电压源的箝位作用,交流侧输出的电压波形为矩形波,并且与阻抗角无关。而交流侧输出的电流波形和相位因负载阻抗情况的不同而不同。

高压变频器工作原理.

高压变频器工作原理 高压变频器(在国外称中压变频器)自上个世纪九十年代中期开始在国内推广,经过十年的发展,今天已经普遍为市场所接受,估计今年的市场容量在10亿到20亿元人民币之间。 本文将从产品技术和市场两方面分析高压变频器的特点。 一、高压变频器的产品和技术特点 上世纪八十年代到九十年代初,高压电机要实现调速,主要采用三种方式: (1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节; (2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。 (3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。上述三种方式,发展到目前都是比较成熟的技术。液力耦合器和串级调速的调速精度都比较差,调速范围较小,维护工作量大,液力耦合器的效率相比变频调速还有一定的差距,所以这两项技术竞争力已经不强了。至于高低方式,能够达到比较好的调速效果,但是相比真正的高压变频器,还有如下缺点:效率低,谐波大,对电机的要求比较严格,功率较大时(500KW以上),可靠性较低。高低方式的主要优势在于成本较低。 目前,主流的高压变频器产品主要有三种类型:

相关文档
最新文档