低频电子线路multisim仿真实验报告

低频电子线路multisim仿真实验报告
低频电子线路multisim仿真实验报告

南昌大学

信号与系统实验报告

学生姓名:张盛平学号: 6100211149 专业班级:电子信息工程113班

目录

实验一 Matlab基础上机训练一

实验二 Matlab基础上机训练二

实验三连续时间系统的时域分析

实验四傅里叶变换

实验五周期信号的频谱测试(硬件)

实验六拉普拉斯变换

实验七模拟滤波器频率特性测试(硬件)

实验八傅里叶变换应用于通信系统

实验九连续时间系统的模拟(硬件)

实验十离散时间系统的时域分析

实验十一 Z变换、离散时间系统的Z域分析

南昌大学实验报告

学生姓名:张盛平学号: 6100211149 班级:电子113班实验类型:□验证□综合■设计□创新实验日期:20130425 实验成绩:

实验三连续时间系统的时域分析

clear all

t0=0;

dt=0.05;

t1=1;

tf=5;

t=[t0:dt:tf];

st=length(t);

n1=floor((t1-t0)/dt)

x1=zeros(1,st);

x(n1)=1/dt;

subplot(2,2,1),stairs(t,x1),grid on

x2=[zeros(1,n1-1),ones(1,st-n1+1)];

subplot(2,2,3);

stairs(t,x2);

grid on

w=10;;

u=-0.5;

x3=exp((u+j*w)*t);

subplot(2,2,2),plot(t,real(x3)),grid on;

subplot(2,2,4),plot(t,imag(x3)),grid on;

a=[1,5,6];

b=[2,8];sys=tf(b,a);

t=0:0.1:10;h=impulse(sys,t);figure;plot(h) 冲激响应

g=step(sys,t)

plot(g)

阶跃响应

lsim(sys,sin(t),t) %零输入响应,输入sin(t)

lsim(sys,exp(-t),t) %零输入响应,输入t

e ?

simulink 仿真实验 仿真框图

响应输出图形

南昌大学实验报告

学生姓名:张盛平学号:6100211149 专业班级:电子信息工程113班

实验类型:□验证□综合□设计□创新实验日期:实验成绩:

一、实验项目名称:模拟滤波器频率特性测试(硬件)

二、实验目的:

三、实验说明

四、实验步骤

五、实验数据

RC二阶低通

F(Hz) 766.48 951.28 1348 1822 2595 3276 4115 Vo(v) 1.72 1.4 0.9 0.64 0.36 0.2 0.12 模拟低通滤波器

F(Hz) 766.48 951.28 1348 1822 2595 3276 4115 Vo(v) 1.86 1.38 0.86 0.59 0.42 0.22 0.14 六、数据处理

截止频率:

1000Hz

1 / 2

截止频率:

1000Hz

2 / 2

南昌大学实验报告

学生姓名:张盛平学号:6100211149 专业班级:电子信息工程113班实验类型:□验证□综合□设计□创新实验日期:实验成绩:

实验十离散时间系统的时域特征分析.

(2)线性时不变系统的冲激响应

南昌大学实验报告

学生姓名:张盛平 学号:6100211149 专业班级:电子信息工程113班

实验类型:□ 验证 □ 综合 □ 设计□ 创新 实验日期: 实验成绩:

实验十一 z 变换及离散时间系统的Z 域分析

一、目的

(1)掌握利用MATLAB 绘制系统零极点图的方法

(2)掌握离散时间系统的零极点分析方法

(3)掌握用MATALB 实现离散系统频率特性分析的方法

(4)掌握逆Z 变换概念及MATLAB 实现方法

二、离散系统零极点 线性时不变离散系统可用线性常系数差分方程描述,即

00()()N M

i j i j a y n i b x n j =?=?∑∑ (8-1)

其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的 00()()()

()()

M j j j N i i i b z Y z B z H z X z A z a z ?=?====

∑∑ (8-2) 将式(8-2)因式分解后有: 11()()()M

j j N i

i z q H z C

z p ==?=?∏∏ (8-3)

其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:

● 系统单位样值响应()h n 的时域特性;

● 离散系统的稳定性;

● 离散系统的频率特性;

三、离散系统零极点图及零极点分析

1.零极点图的绘制

设离散系统的系统函数为

()()()

B z H z A z = 则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为:

p=roots(A)

其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。多项式根的MATLAB 命令举例如下:

A=[1 3/4 1/8];

P=roots(A)

运行结果为:

P =

-0.5000

-0.2500

需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z ?的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。

(1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如

34322()3221

z z H z z z z z +=++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。

(2)()H z 按1z ?的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如

1

1212()11124

z H z z z ???+=++ 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。

用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MATLAB 实用函数ljdt(),同时还绘制出了单位圆。

function ljdt(A,B)

% The function to draw the pole-zero diagram for discrete system

p=roots(A); %求系统极点

q=roots(B); %求系统零点

p=p'; %将极点列向量转置为行向量 q=q'; %将零点列向量转置为行向量 x=max(abs([p q 1])); %确定纵坐标范围

x=x+0.1;

y=x; %确定横坐标范围

clf

hold on

axis([-x x -y y]) %确定坐标轴显示范围

w=0:pi/300:2*pi;

t=exp(i*w);

plot(t) %画单位园

axis('square')

plot([-x x],[0 0]) %画横坐标轴

plot([0 0],[-y y]) %画纵坐标轴

text(0.1,x,'jIm[z]')

text(y,1/10,'Re[z]')

plot(real(p),imag(p),'x') %画极点

plot(real(q),imag(q),'o') %画零点

title('pole-zero diagram for discrete system') %标注标题

hold off

例1:绘制如下系统函数的零极点

(1)32323510()375

z z z H z z z z ?+=?+? (2)1

1210.5()31148

z H z z z ????=++ 解:MATLAB 命令如下

(1) A=[1 -3 7 -5];

B=[3 -5 10 0];

ljdt(A,B)

绘制的零极点图如图8-1(a )所示。

(2) A=[1 3/4 1/8];

B=[1 -0.5 0];

ljdt(A,B)

绘制的零极点图如图8-1(b )所示。

2.离散系统零极点分析

(1)离散系统零极点分布与系统稳定性

《信号与系统》课程已讲到离散系统稳定的条件为:

● 时域条件:离散系统稳定的充要条件为

()n h n ∞=?∞<∞∑,即系统单位样值响应绝

对可和;

● Z 域条件:离散系统稳定的充要条件为系统函数()H z 的所有极点均位于Z 平面

的单位圆内。

对于三阶以下的低阶系统,可以利用求根公式求出系统函数的极点,从而判断系统(a )

b ) 图8-1 离散系统的零极点图

的稳定性,但对于高阶系统,手工求解则显得十分困难,这时可以利用MATLAB 来实现。实现方法是调用前述的函数ljdt()绘出系统的零极点图,然后根据极点的位置判断系统的稳定性。

例2:系统函数如例1所示,判断两个系统的稳定性。

解:由例1绘出的零极点图可以看出两个系统的稳定性分别为:第(1)个系统不稳定;第(2)个系统稳定。

(2)零极点分布与系统单位样值时域特性的关系

从《信号与系统》课程中已经得知,离散系统的系统函数()H z 与单位样值响应()h n 是一对Z 变换对;因而,()H z 必然包含了()h n 的固有特性。

离散系统的系统函数可以写成

11()()()M

j j N i

i z q H z C

z p ==?=?∏∏ (8-4)

若系统的N 个极点均为单极点,可将()H z 进行部分分式展开为:

1()N i i i

k z H z z p ==?∑ (8-5)

由Z 逆变换得:

1()()()N

n i i i h n k p u n ==∑ (8-6)

从式(8-5)和(8-6)可以看出离散系统单位样值响应()h n 的时域特性完全由系统函数()H z 的极点位置决定。从《信号与系统》的学习中已经得出如下规律: ● ()H z 位于Z 平面单位圆内的极点决定了()h n 随时间衰减的信号分量;

● ()H z 位于Z 平面单位圆上的一阶极点决定了()h n 的稳定信号分量;

● ()H z 位于Z 平面单位圆外的极点或单位圆上高于一阶的极点决定了()h n 的随时

间增长的信号分量;

下面以例子证明上述规律的正确性:

例3:已知如下系统的系统函数()H z ,试用MATLAB 分析系统单位样值响应()h n 的时域特性。

(1)1()1

H z z =?,单位圆上的一阶实极点; (2)21()2cos()18

H z z z π=?+,单位圆上的一阶共轭极点; (3)2

()(1)z H z z =?,单位圆上的二阶实极点; (4)1()0.8

H z z =?,单位圆内的一阶实极点; (5)2

1()(0.5)H z z =?,单位圆内的二阶实极点; (6)1() 1.2

H z z =?,单位圆外的一阶实极点;

解:利用MATLAB 提供的函数impz()绘制离散系统单位样值响应波形,impz()基本调用方式为(其他方式,请读者参看MATLAB 帮助):impz(b,a,N),其中,b 为系统函数分子多项式的系数向量,a 为系统函数分母多项式的系数向量,N 为产生序列的长度;需

要注意的是,b 和a 的维数应相同,不足用0补齐,例如2211()(1)21

H z z z z ==??+的b=[0 0 1],a=[1 –2 1]。下面是求解个系统单位样值响应的MATLAB 命令:

(1)a=[1 -1];

b=[0 1];

impz(b,a,10)

运行结果如图8-2(a )所示。

(2)a=[1 –2*cos(pi/8) 1];

b=[0 0 1];

impz(b,a,50)

运行结果如图8-2(b )所示。

(3)a=[1 -2 1];

b=[0 1 0];

impz(b,a,10)

运行结果如图8-2(c )所示。

(4)a=[1 -0.8];

b=[0 1];

impz(b,a,10)

运行结果如图8-2(d )所示。

(5)a=[1 -1 0.25];

b=[0 0 1];

impz(b,a,10)

运行结果如图8-2(e )所示。

(6)a=[1 -1.2];

b=[0 1];

impz(b,a,10)

运行结果如图8-2(f )所示。

(a )

(b )

四、离散系统频率特性分析

1.离散系统的频率响应()j H e ω

对于某因果稳定离散系统,如果激励序列为正弦序列:

0()sin()()x n A n u n ω=

则,根据《信号与系统》课程给出的结果有,系统的稳态响应为:

()()sin[()]()j ss y n A H e n u n ωω?ω=+

定义离散系统的频率响应为

()()()()j j j j z e H e H z H e e ωωω?ω==

=

其中,()j H e ω——称为离散系统的幅频特性;

()?ω——称为离散系统的相频特性;

()j H e ω是以2π为周期的周期函数,只要分析()j H e ω在ωπ≤范围内的情况,便可分析出系统的整个频率特性。

2.用MATLAB 实现离散系统的频率特性分析方法

(1)直接法

(c ) (d ) (e ) (f ) 图8-2 系统的单位样值响应(续)

设某因果稳定系统的系统函数()H z ,则系统的频响特性为:

()()()()j j j j z e H e H z H e e ωωω?ω===

MATLAB 提供了专门用于求离散系统频响特性的函数freqz(),调用freqz()的格式有以下两种:

● [H,w]=freqz(B,A,N)

B 和A 分别为离散系统的系统函数分子、分母多项式的系数向量,N 为正整数,

返回量H 则包含了离散系统频响()j H e ω在0~π范围内N 个频率等分点的值,向量w 则

包含0~π范围内N 个频率等分点。调用中若N 默认,默认值为512。

● [H,w]=freqz(B,A,N,’whole’)

该调用格式将计算离散系统在0~2π范围内N 个频率等分点的频率响应

()j H e ω的值。

因此,可以先调用freqz()函数计算系统的频率响应,然后利用abs()和angle()函数及plot()函数,即可绘制出系统在0~π或0~2π范围内的频响曲线。

例4:绘制如下系统的频响曲线

0.5()z H z z ?=

解:MATLAB 命令如下:

B=[1 -0.5];

A =[1 0];

[H,w]=freqz(B,A,400,'whole');

Hf=abs(H);

Hx=angle(H);

clf

figure(1) plot(w,Hf)

title('离散系统幅频特性曲线')

figure(2)

plot(w,Hx)

title('离散系统相频特性曲线')

运行结果如图8-3所示。

图8-3 系统的幅频特性曲线和相频特性曲线

通信电子线路实验报告4

大连理工大学 本科实验报告 课程名称:通信电子线路实验 学院:电子信息与电气工程学部专业:电子信息工程 班级:电子0904 学号: 200901201 学生姓名:朱娅 2011年11月20日

实验四、调幅系统实验及模拟通话系统 一、实验目的 1.掌握调幅发射机、接收机的整机结构和组成原理,建立振幅调制与 解调的系统概念。 2.掌握系统联调的方法,培养解决实际问题的能力。 3.使用调幅实验系统进行模拟语音通话实验。 二、实验内容 1.实验内容及步骤,说明每一步骤线路的连接和波形 (一)调幅发射机组成与调试 (1)通过拨码开关S2 使高频振荡器成为晶体振荡器,产生稳定的等幅高频振荡,作为载波信号。拨码开关S3 全部开路,将拨码开关S4 中“3”置于“ON”。用示波器观察高频振荡器后一级的射随器缓冲输出,调整电位器VR5,使输出幅度为0.3V左右。将其加到由MC1496 构成的调幅器的载波输入端。 波形:此时示波器上,波形为一正弦波,f=10.000MHz,Vpp=0.3V。 (2)改变跳线,将低频调制信号(板上的正弦波低频信号发生器)接至模拟乘法器调幅电路的调制信号输入端,用示波器观察J19 波形,调VR9,使低频振荡器输出正弦信号的峰-峰值Vp-p 为0.1~0.2V. 波形:此时示波器上,波形为一正弦波,f=1.6kHz,Vpp=0.2V。 (3)观察调幅器输出,应为普通调幅波。可调整VR8、VR9 和VR11,

使输出的波形为普通的调幅波(含有载波,m 约为30%)。 (4)将普通的调幅波连接到前置放大器(末前级之前的高频信号缓冲器)输入端,观察到放大后的调幅波。 波形:前置放大后的一调幅波,包络形状与调制信号相似,频率特性为载波信号频率。f?=1.6kHz,Vpp=0.8V,m≈30%。 (5)调整前置放大器的增益,使其输出幅度1Vp-p 左右的不失真调幅波,并送入下一级高频功率放大电路中。 (6)高频功率放大器部分由两级组成,第一级是甲类功放作为激励级,第二级是丙类功放。给末级丙类功放加上+12V 电源,调节VR4 使J8(JF.OUT)输出6Vp-p左右不失真的放大信号,在丙类功放的输出端,可观察到经放大后的调幅波,改变电位器VR6 可改变丙类放大器的增益,调节CT2 可以看到LC 负载回路调谐时对输出波形的影响。 波形:此时示波器上为放大后的调幅波,f?=1.6kHz,Vpp=8V,m≈30%。 (二)调幅接收机的组成与调试 从GP-4 实验箱的系统电路图可以看出调幅接收机部分采用了二次变频电路,其中频频率分别为:第一中频6.455MHz,第二中频455kHz。由于该二次变频接收机的两个本机振荡器均采用了石英晶体振荡器,其中第一本振频率16.455MHz,第二本振频率6.000MHz,也就是说本振频率不可调。这样实验箱的调幅接收机可以接收的频率就因为第一本振频率不可调而被固定下来,即该机可以接收的已调波的中心频率应该为10.000MHz(第1本振频率-第1中频频率 = 16.455MHz - 6.455MHz =

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

中北大学高频电子线路实验报告 很好的哦

高频电子线路实验 中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器) 一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘

法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。 用1496集成电路构成的调幅器电路图如图5-2所示,图中R P5002用来调节引出脚①、④之间的平衡,R P5001用来调节⑧、⑩脚之间的平衡,三极管V5001为射极跟随器,以提高调幅器带负载的能力。 五、实验内容及步骤 实验电路见图5-2

电子秒表电路实验报告1

电子技术课程设计 报告 设计题目:电子秒表 院(部):物理与电子信息学院 专业班级:电子信息工程 学生姓名: 学号: 指导教师: 摘要

秒表应用于我们生活、工作、运动等需要精确计时的方面。它由刚开始的机械式秒表发展到今天所常用的数字式秒表。秒表的计时精度越来越高,功能越来越多,构造也日益复杂。 本次数字电路课程设计的数字式秒表的要求为:显示分辨率为1s/100,外接系统时钟频率为100KHz;计时最长时间为60min,五位显示器,显示时间最长为59m59.99s;系统设置启/停键和复位键。复位键用来消零,做好计时准备、启/停键是控制秒表起停的功能键。 针对上述设计要求,先前往校图书馆借阅了大量的数字电路设计方面的书籍,以及一本电子元件方面的工具书,以待查阅各种设计中所需要的元件。其次安装并学习了数字电路设计中所常用的Multisim仿真软件,在课程设计过程的电路图设计与电路的仿真方面帮助我们发现了设计电路方面的不足与错误之处。 关键字:555定时器十进制计数器六进制计数器多谐振荡器

目录 1.选题与需求分析 (1) 1.1设计任务 (1) 1.2 设计任务 (1) 1.3设计构思 (1) 1.4设计软件 (2) 2.电子秒表电路分析 (3) 2.1总体分析 (3) 2.2电路工作总体框图 (3) 3.各部分电路设计 (4) 3.1启动与停止电路 (4) 3.2时钟脉冲发生和控制信号 (4) 3.3 设计十进制加法计数器 (6) 3.4 设计六进制加法计数器 (7) 3.5 清零电路设计 (8) 3.7 总体电路图: (10) 4 结束语与心得体会 (12)

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

电子电路实验三 实验报告

实验三负反馈放大电路 实验报告 一、实验数据处理 1.实验电路图 根据实际的实验电路,利用Multisim得到电路图如下: (1)两级放大电路 (2)两级放大电路(闭环)

2.数据处理 (1)两级放大电路的调试 第一级电路:调整电阻参数,使得静态工作点满足:IDQ约为2mA,UGDQ<-4V。记录并计 第二级电路:通过调节Rb2,使得静态工作点满足:ICQ约为2mA,UCEQ=2~3V。记录电 输入正弦信号Us,幅度为10mV,频率为10kHz,测量并记录电路的电压放大倍数 A u1=U o1 U s 、A u= U o U s (2)两级放大电路闭环测试 在上述两级放大电路中,引入电压并联负反馈。合理选取电阻R的阻值,使得闭环电压放大倍数的数值约为10。 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。

输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 3.误差分析 利用相对误差公式: 相对误差=仿真值?实测值 实测值 ×100% 得各组数据的相对误差如下表: 误差分析: (1)由上表可得知,两级放大电路实验中,开环输出电阻Ro及闭环输出电阻Rof仿真值与实测值的相对误差较大;电流并联负反馈电路中,三组数据仿真值与实测值的相对误差均较大。 (2)两级放大电路中,输出电阻测量的相对误差较大,原因可能是实际实验中使用的晶体管与仿真实验中的晶体管的特性相差较大,而且由理论分析知输出电阻会随温度的变化而变化(晶体管rbe阻值随温度的增大而增大),这导致了输出电阻实测值与仿真值相差较大。(3)电流并联负反馈电路中,电压放大倍数测量的相对误差较大,原因也应该是实际实验中的晶体管放大倍数与仿真中的不同,仿真实验中晶体管的β为280,实际实验的相关参数达不到这么大,故电压放大倍数较小。

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

通信电子线路实物实验报告

东南大学电工电子实验中心 实验报告 课程名称:电子电路与综合实验 第一次实物实验 院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130 实验室:高频实验室实验组别: 同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:

实验一常用仪器使用 一、实验目的 1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作 原理; 2.通过实验掌握振幅调制、频率调制的基本概念。 二、实验仪器 示波器(带宽大于 100MHz) 1台 万用表 1台 双路直流稳压电源 1台 信号发生器 1台 频谱仪 1台 多功能实验箱 1 套 多功能智能测试仪1 台 三、实验内容 1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。 答: (1)频谱仪结构框图为: 频谱仪的主要工作原理: ①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。 (2)示波器的测量精度与示波器带宽、被测信号频率之间的关系: 示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。 2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。 答: 上电时间示意图: 工作原理: 捕获这个过程需要示波器采样周期小于过渡时间。示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。这样,就可以利用游标读出电源上电的上升时间。 3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的? 答: 载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数) 已调的瞬时相角为00 t ()()t t c f t dt t k u t dt θωωθΩ =++? ?()= 所以FM 已调波的表达式为:000 ()cos[()]t om c f u t U t k u t dt ωθΩ =++? 当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+ 其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即 m f f U M k Ω=Ω 。这样,调制信号的幅度与频率信息是已加到 FM 波中。

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

大学《模拟电子线路实验》实验报告

大连理工大学网络高等教育《模拟电子线路》实验报告 学习中心:奥鹏教育中心 层次:高中起点专科 专业:电力系统自动化 年级: 学号: 学生姓名:杨

实验一常用电子仪器的使用 一、实验目的 答:1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。 2.了解并掌握数字万用表的主要功能及使用方法。 3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。 二、基本知识 1.简述模拟电子技术实验箱布线区的结构及导电机制。 答:布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。 2.试述NEEL-03A型信号源的主要技术特性。 答:1.输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号; 2.输出频率:10HZ~1HZ连续可调; 3.幅值调节范围:0~10Vp-p连续可调; 4.波形衰减:20db、40db; 5.带有6位数字频率计,即可作为信号源的输出监视仪表,也可以作为外侧频率计使用。 3.试述使用万用表时应注意的问题。 答:使用万用表进行测量时,应先确定所需测量功能和量程。 确定量程的原则: 1.若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。 2.如果被测参数的范围未知,则选择所需功能的最大量程测量,根据粗侧结果逐步把量程下调到最接近于被测值的量程,以便测量出更加精准的数值。 如屏幕显示“1”,表明以超过量程范围,需将量程开关转至相应档位上。 3.在测量间歇期和实验结束后,不要忘记关闭电源。 三、预习题 1.正弦交流信号的峰-峰值=__2__×峰值,峰值=__√2__×有效值。 2.交流信号的周期和频率是什么关系? 答:周期和频率互为倒数。T=1/f f=1/T

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

通信电子线路实验报告三点式振荡

通信电了线路课程设计 课程名称通信电子线路课程设计_________________ 专业___________________ 通信工程 ______________________ 班级___________________________________________ 学号___________________________________________ 姓名___________________________________________

指导教师________________________________________ 、八 刖 现代通信的主要任务就是迅速而准确的传输信息。随着通信技术的日益发展,组成通信系统的电子线路不断更新,其应用十分广泛。实现通信的方式和手段很多,通信电子线路主要利用电磁波传递信息的无线通信系统。 在本课程设计中,着眼于无线电通信的基础电路一一LC正弦振荡器的分析和研究。常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。其中LC振荡器和晶体振荡器用于产生高频正弦波。正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可由集成电路组成。LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式易起振,调整频率方便,可以通过改变电容调整频率而不影响反馈系数。正弦波振荡器在各种电子设备中有着广泛的应用。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 在此次的通信电子线路课程设计中,我选做的是电感三点式振荡设计,通过为时一周的上机实验,我学到了很多书本之外的知识,在老师的指导下达到实验设计的要求指

低频电子线路实验报告

实验报告 实验课程:低频电子线路实验 学生姓名:付容 学号:6100212236 专业班级:电气信息I类126班 2013年12月26日

目录 实验一、仪器放大器设计与仿真 (3) 实验二、逻辑电平信号检测电路设计与仿真 (8) 实验三、三极管β值分选电路设计与仿真 (13) 实验四、宽带放大电路设计与仿真 (22)

南昌大学实验报告 学生姓名: 付容 学 号: 6100212236 专业班级:电一126班 实验类型:□ 验证 ■ 综合 □ 设计 □ 创新 实验日期: 2013.12 实验成绩: 实验一 仪器放大器设计与仿真 一、实验目的 1、 掌握仪器放大器的设计方法 2、 理解仪器放大器对共模信号的抑制能力 3、 熟悉仪器放大器的调试功能 4、 掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信号发生器等虚拟仪器的使用 二、实验原理 仪器放大器是用来放大差值信号的高精度放大器,它具有很大的共模抑制 比,极高的输入电阻,且其增益能在大范围内可调。 下图是由三个集成运放构成的仪器放大器电路。其中,集成运放U3组成减法电路,即差值放大器,集成运放U1和U2各对其相应的信号源组成对称的同相放大器,且 。 图中所示是有三个运放构成的仪器放大器。其中,集成运放U3组成差值方法器,集成运放U 1和U4组成对称的同相放大器,且R 1=R 2,R 3=R 5,R 4=R 6。由于v -错误!未找到引用源。v +,因而加在RG (即R1)两端的电压为错误!未找到引用源。,相应通过RG 的电流i G =错误!未找到引用源。,由于i -错误!未找到引用源。0,因而

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

通信电子线路实验报告解析

LC与晶体振荡器 实验报告 班别:信息xxx班 组员: 指导老师:xxx

一、实验目的 1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。 2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。 3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。 4)、比较LC 与晶体振荡器的频率稳定度。 二、实验预习要求 实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。 三、实验原理说明 三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。 1、起振条件 1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质 的电抗,且它们之间满足下列关系: 2)、幅度起振条件: 图1-1 三点式振荡器 式中:q m ——晶体管的跨导, F U ——反馈系数, A U ——放大器的增益, LC X X X X Xc o C L ce be 1 |||| )(= -=+-=ω,即)(Au 1 * 'ie L oe m q q q Fu q ++ >

q ie——晶体管的输入电导, q oe——晶体管的输出电导, q'L——晶体管的等效负载电导, F U一般在0.1~0.5之间取值。 2、电容三点式振荡器 1)、电容反馈三点式电路——考毕兹振荡器 图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。 L1L1 (a)考毕兹振荡器(b)交流等效电路 图1-2 考毕兹振荡器 2)、串联改进型电容反馈三点式电路——克拉泼振荡器 电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

低频实训实验报告

附:总结格式-封面 低频电子线路实训课程总结题目: 学院:电子工程学院 专业: 学号: 2013127 姓名: 指导教师:黄国现 2015年月

附:总结格式-正文 要求:1、页面设置:页边距上下左右均为2厘米,纸张大小为A4;2、全文用宋体,题目用三号字体,其它全部用小四号字体;3、正文格式段落行间距为1.5倍行距;4、文内的公式要用公式编辑器输入。 低频电子线路实训总结 专业:学号:姓名: 一、设计电路原理图及工作原理 图1设计电路原理图 (要求简述工作原理) 二、电路板设计制作过程 1、软件简要介绍 Altium Designer 提供了唯一一款统一的应用方案,其综合电子产品一体化开发所需的所有必须技术和功能。Altium Designer 在单一设计环境中集成板级和FPGA系统设计、基于FPGA和分立处理器的嵌入式软件开发以及PCB版图设计、编辑和制造。并集成了现代设计数据管理功能,使得Altium Designer成为电子产品开发的完整解决方案-一个既满足当前,也满足未来开发需求的解决方案。 2、PCB图设计要求和注意事项 答:(1)要求: 1,要考虑PCB的尺寸大小,然后我们要对设计方案有一个初步的规划,如电路板是什么形状,它的尺寸是多大,使用单面板还是双面板或者是多层板。2其次导入网络报表及元件封装。3,元件布局:元件的布局可以使用Protel 软

件自动进行,也可以进行手动布局。4,根据元件引脚之间的电气联系,对PCB 板进行布线操作。 (2)注意事项:1.按照电路的流程安排各个功能电路单元的位置,使布局便于信号流畅,并使信号尽可能保持一致的方向。 2.以每个功能电路的核心元件为中心,围绕它来布局。元件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元件之间的引线和连接。 3.在高频下工作的电路,要考虑元件之间的分布参数。一般电路应尽可能使元件平行排列。这样不但美观,而且焊接容易,易于批量生产。 4.位于电路板边缘的元件,离电路板边缘一般小于2mm。电路板的最佳形状为矩形,长宽比为3:2(或4:3)。电路板面尺寸过大时,应考虑板所受到的机械强度。 1 3、PCB板制作过程 (1).根据电路功能需要设计原理图。原理图的设计主要是依据各元器件的电气性能根据需要进行合理的搭建,通过该图能够准确的反映出该PCB电路板的重要功能,以及各个部件之间的关系。原理图的设计是PCB制作流程中的第一步,也是十分重要的一步。通常设计电路原理图采用的软件是AD。 (2).原理图设计完成后,需要更近一步通过AD对各个元器件进行封装,以生成和实现元器件具有相同外观和尺寸的网格。 (3).正式生成PCB。网络生成以后,就需要根据PCB面板的大小来放置各个元件的位置,在放置时需要确保各个元件的引线不交叉。放置元器件完成后,最后进行DRC检查,以排除各个元器件在布线时的引脚或引线交叉错误,当所有的错误排除后,一个完整的pcb设计过程完成。 (4)利用专门的复写纸张将设计完成的PCB图通过喷墨打印机打印输出,然后将印有电路图的一面与铜板相对压紧,最后放到热交换器上进行热印,通过在高温下将复写纸上的电路图墨迹粘到铜板上。 (5)调制溶液,将硫酸和过氧化氢按3:1进行调制,然后将含有墨迹的铜板放入其中,等三至四分钟左右,等铜板上除墨迹以外的地方全部被腐蚀之后,将铜板取去,然后将清水将溶液冲洗掉。

华中科技大学电子线路实验报告

专业:通信工程班级:姓名:指导老师: _______________ 实验名称:Pspice仿真1 ――单级共射放大电路 实验目的:学习用Papice仿真软件设计电子电路 实验原理:一、Orcad 功能简述电子线路的计算机辅助分析(或仿真)与设计是指用计算机来模拟电路设计者在实验板上搭接电路,并对电路的特性进行分析和仿真,以测量电路及模拟仪器测量电路性能指标等工作。 1、OrCAD的主要功能模块包括Capture CIS(电路原理图设计)、PSpice A/D (模数混合仿真)、PSpice Optimize r (电路优化)和Layout Plus (PCB设计)。 (1)Capture CIS(电路原理图设计)该模块除了可以生成各类电路原理图 外,在工业版中还配备有元器件信息 系统,可以对元器件的采用实施高效管理,还具有ICA功能,可以在设计电路 图的过程中从Internet 的元器件数据库中查询、调用上百万种元器件。 (2)PSpice A/D (模数混合仿真) 该模块可以对各类电路进行仿真分析和模拟,比如静态工作点分析、瞬态分析(时域分析)、交流小信号分析(频域分析)、直流扫描分析、直流小信号传递函数值分析、直流小信号灵敏度分析、统计特性分析(蒙特卡罗分析和最坏情况分析)。 (3)PSpice Optimize r (电路优化) 该模块可以对电路进行优化设计。OrCAD 的运行环境:Intel Pentium 或等效的其他CPU硬盘为200M以上,内存为32M以上,显示其分辨率为 800 X 60以上,操作系统为Windows 95、Windows 98 以上或Windows NT 以上。 2、Oread集成环境有:模拟和模数混合电路仿真环境、PCB板仿真环境、可编程数字逻辑器件分析设计环境。 二、PSpice仿真步骤 1. 创建工程项目文件(创建的目录名和文件名中不能有汉字、空格等!)。

通信电子线路实验报告刘紫豪

实验报告 课程名称通信电子线路 专业通信工程 班级1301 学号21 姓名刘紫豪 指导教师张鏖烽 2015年11 月10 日 实验一 OrCAD系统基本实验1、实验目的 掌握OrCAD电子设计自动化(EDA)软件的应用。 掌握基本的电子电路仿真实验方法。

2、实验环境 P4微机; OrCAD 10.5工具包。 3、实验内容 (1)实验相关的基本知识掌握 认真阅读本实验指导书的第一部分; 掌握OrCAD 10.5电子设 计自动化(EDA)软件系统 中的电子电路原理图设计包 ——Capture CIS的使用方法 和基本操作,为今后的实验 和研究作技术上的准备。 (2)给定实验内容 A. 按本实验指导书的 第一部分中介绍的方法,使 用OrCAD 10.5完成二极管限 幅电路的计算机仿真实验。 B. 利用Capture CIS为 本实验建立一个新的 PSpice项目,项目名可以自 行选取。 C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。仿真电路中各元器件的参数如下表: 元件代号值仿真库备注 D1 D1N3940 DIODE.OLB D2 D1N3940 DIODE.OLB R1 1K ANALOG.OLB R2 3.3K ANALOG.OLB R3 3.3K ANALOG.OLB R4 5.6K ANALOG.OLB C1 0.47u ANALOG.OLB 0 SOURCE.OLB 零接地 V1 5V SOURCE.OLB Vin 0V SOURCE.OLB V2 SINE SOURCSTM.OLB 后面实验需要 V3 VAC SOURCE.OLB 后面实验需要 D. 完成本电路的偏置点分析参数设置(参见本指导书的6.2.1节),运行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;

相关文档
最新文档