兰州大学——数学物理方法期末试卷A

兰州大学——数学物理方法期末试卷A
兰州大学——数学物理方法期末试卷A

数学物理方法

常用的公式(注:仅供参考):

拉普拉斯算子作用于标量场在圆柱坐标系和球坐标系下的表示:

22

2

222

11

u u u

u

z

ρ

ρρρρ?

??

????

?=++

?

????

??

2

22

22222

111

sin

sin sin

u u u

u r

r r r r r

θ

θθθθ?

?????

????

?=++

? ?

?????

????

勒让德多项式的微分表示:()()

2

1

P1

2!

l

l

l l l

d

x x

l dx

=-

勒让德-傅里叶级数展开:定义在x的区间[]

1,1

-的至少分段光滑函数()

f x可以

展开为广义傅里叶级数:()()

P

l l

l

f x a x

+∞

=

=∑

其中,系数()()

1

1

21

P

2

l l

l

a f x x dx

-

+

=?

勒让德多项式的生成函数:

()()

()()

1

1

P cos,0

P cos,

l

l

l

l

l

l

l

l

r

r R

R

R

r R

r

θ

θ

+∞

+

=

+∞

+

=

?

≤<

?

?

=?

?>

??

在球坐标下下的梯度表示()

()()()

,,,,,,

11

,,

sin

r

u r u r u r

u r e e e

r r r

θ?

θ?θ?θ?

θ?

θθ?

???

?=++

???

一、(本题10分,每小题5分)

(1)证明:()

k r k

??=

,其中

x y z

r xe ye ze

=++

,k

为常矢量。

(2)计算矢量场2

sin

x y z

A xye z ye yz e

=++

的旋度。

二、(本题10分,每小题5分)

将下列复数写成代数形式,其中i 为虚数单位,

(1 (2)cos 23i π??

+ ???

三、(本题10分)

已知解析函数()f z 的实部323u x xy =-,且满足()00f =,求该解析函数()f z 。

四、(本题10分) 将函数()21

32

f z z z =-+以01z =为中心的邻域内做洛朗级数展开。

五、(本题10分) 计算实变函数积分22

12cos dx

I x π

εε=-+?, ()01ε<<

六、(本题10分)

设有一根均匀的柔软的细弦,当它做微小的横振动时,除受内部张力作用外,还受到阻尼力的作用,设阻尼力与速度成正比,比例系数为k ,即单位长度的弦所受阻力()

,du x t f kv k dt

=-=-。试写出带有阻尼的弦振动方程。

七、(本题10分)

将定解问题

()()()

()()()()()22

22200

0,,0 , 0, 0,0, ,sin , ,,0, 0x x l t t u x t u x t a x l t t x n a u x t u x t t l u x t u x t x l t πωω====????-=<<>??????

?==≠? ????

???==<

的边界条件齐次化,设()()(),,,u x t V x t W x t =+,并假设(),V x t 满足齐次边界条件,请写出关于(),V x t 的相应的定解问题。 (注:不必对边条件齐次化后的定解问题进行求解)

八、(本题15分) 求解定解问题的解

()222

1110, 01, 02cos 4cos 4, u u

u ρρρ?πρρρρ???=??????+=<<≤≤? ????????=+?

九、(本题15分)

在均匀电场0E

中放置一个半径为R 并接地的导体球,求导体球放入电场达到静电平衡后,球外各点的电势分布,并算出各点的电场强度和导体表面的电荷分布。

一、(本题10分,每小题5分)

(1)证明:()

k r k ??= ,其中x y z r xe ye ze =++

,k 为常矢量。

(2)计算矢量场2sin x y z A xye z ye yz e =++

的旋度。 (1)

()

()(

)()x

x y y

z

z

k r k e k

e

????=?++?+

+=?+

+

??

()()()x y z x y z x y z x y z k x k y k z k x k y k z k x k y k z e e e x y z

?++?++?++=

++???

(3分)

x x y y z z k e k e k e k =++=

(2分)

(2)解: x

y z

y x x z z

z x y z x y z

e e e A A A A A A A e e e x y z y z z x x y A A A ???????????

??????=

=-+-+- ?

? ??????????????

??

(3分)

()2sin x z z y e xe =--

(2分)

二、(本题10分,每小题5分)

将下列复数写成代数形式,其中i 为虚数单位,

(1

(2)cos 23i π??

+ ???

解:(1

1112224i k i k e e ππππ?

??

?++ ?

?

?

??

?== k 为整数

11cos sin 44k i k ππππ???

?=+++ ? ????

? (3分)

当k 11cos sin 44i ππ????

=+= ? ????? (1分)

当k 11cos sin 4422i i

ππππ???

?=+++=-- ? ?????(1分)

(2)2222333311cos 2322i i i i i i i e e e e πππππ????+-+-+- ? ?????

??????+=+=+ ? ? ? ???????

(3

分)

221cos sin cos sin 23333e i e i ππππ-??

??????=++- ? ? ? ????

?????

())())22222222

111224e e e e i e e e e i ----??=++-=+- ? ???

1ch222

i =-

(2分)

三、(本题10分)

已知解析函数()f z 的实部323u x xy =-,且满足()00f =,求该解析函数()f z 。

解:根据科西-黎曼条件:()(),,u x y v x y x y ??=??,()()

,,u x y v x y y x

??=-

?? (2分) 所以有

()()22,,33v x y u x y x y y x ??==-?? (2分)

()()

,,6v x y u x y xy x y

??=-=?? (2分) 即有 ()()()2223,6333dv x y xydx x y dy d x y y =+-=-

所以 ()23,3v x y x y y c =-+ (2分) 由条件()00f =,可得0c = (1分) 所以有()()3223333f z x xy x y y i z =-+-= (1分)

四、(本题10分) 将函数()21

32

f z z z =-+以01z =为中心的邻域内做洛朗级数展开。

解:()()()()()

2111

3212111f z z z z z z z =

==-+----- (3分)

()()()()()1

00

11111111k k k k z z z z z +∞+∞

-===-=--=------∑∑ (7分) ()

1

1k

k z +∞

=-=--∑

()11z -<

五、(本题10分) 计算实变函数积分22

12cos dx

I x π

εε=-+?, ()01ε<<

ix z e =,则有()11

, cos 2

dz dx x z z iz -=

=+ (2分)

则原积分等于

()()()12

11

11z z dz

i

iz dz z z z z εεεε

-===---++??

(3分)

被积函数有两个极点01

, z εε

=

显然

1

ε

在单位圆外,0z ε=在单位圆内,该点的留数为 (2分)

()()()()02Res lim 11z i i

f z z z z εεεεε→??=-= ?---?

? (2分)

所以该定积分等于

()022

22Res 211i i f z i

π

πεπεε

===-- (1分)

六、(本题10分)

设有一根均匀的柔软的细弦,当它做微小的横振动时,除受内部张力作用外,还受到阻尼力的作用,设阻尼力与速度成正比,比例系数为k ,即单位长度的弦所受阻力()

,du x t f kv k

dt

=-=-。试写出带有阻尼的弦振动方程。 解:建立坐标系,如图所示

取弦的平衡位置为x 轴,且令端点坐标为0x =与x l =.

设(,)u x t 是坐标为x 的弦上一点在t 时刻的(横向)位移.在弦上隔离出长为dx 的一小段(弦元).弦元的弦长足够小,以至于可以把它看成是质点.分析弦元受力:它在两个端点x 及x dx +处受到张力的作用.因为弦是完全柔软的,故只受到切向应力张力T 的作用,而没有法向应力。因此有:

()22(s i n )(s i n )x d x x u u

T T k dx dm g dm t t

θθ+??---=??

(cos )(cos )0x dx x T T θθ+-=. (4

分)

小振动近似:

x dx + 与x 两点间任一时刻横向位移之差(,)(,)u x dx t u x t +-与dx 相 比是一个小量,即 1u x

?≤?:

在小振动近似下,

sin tan cos 1

u

x θθθ?≈=?≈

弦的横振动 11tan (

) tan ()x x dx u u

x x

θθ+??==?? 这样,就有

()()0 ()()x dx

x x dx x T T T T ++-=即= (3

分)

于是,

2222()()x dx x u u

u u u u dx T k dx g dx T dx k dx g dx t x

x t x t ρρρ+????????=---=--??????????

即 2222u u u

k T g t t x

ρρ???+-=??? (3

分)

其中ρ是弦的线密度(单位长度的质量).

定义:a =

k

b ρ

=

则有 22222u u u b a g t t x

???+-=???

一般情况下弦振动的加速度远远大于重力加速度g ,方程简化为

22

2220u u u b a t t x

???+-=??? 七、(本题10分)

将定解问题

()()()

()()()()()22

22200

0,,0 , 0, 0,0, ,sin , ,,0, 0x x l t t u x t u x t a x l t t x n a u x t u x t t l u x t u x t x l t πωω====????-=<<>???????==≠? ?

???

???==<

的边界条件齐次化,设()()(),,,u x t V x t W x t =+,并假设

()

,V x t 满足齐次边界条

件,请写出关于

()

,V x t 的相应的定解问题。

(注:不必对边条件齐次化后的定解问题进行求解) 解:设

()()()

,,,u x t V x t W x t =+,并令

()()0,0, ,0,

x x l V x t V x t ====

则有

()()0,0, ,sin ,

x x l W x t W x t t ω====

(),()()

W x t A t x B t =+,可得()0B t =,

sin ()t

A t l ω=

所以有()sin ,t

W x t x l ω=

(5

分)

()sin ,t W x t x l ω=

带入原有的定解方程中可得关于(),V x t 的定解问题为

()()()()()()()()222

22200

0,,sin , 0, 0

,0, ,0, ,,0, 0 x x l t t V x t V x t t a x x l t t x l

V x t V x t V x t V x t x x l t l ωωω====????-=<<>????

==??

??

==-<

八、(本题15分) 求解定解问题的解

()222

1110, 01, 02cos 4cos 4, u u

u ρρρ?πρρρρ???=??????+=<<≤≤? ????????=+?

解:设()()(),u R ρ?ρ?=Φ,并且代入方程可得

()()()()

()

2'''''R R R ρρρρ?ρ?+Φ=-

Φ 上式左右两边要相等只能等于同一常数,设为λ 则有()()''0?λ?Φ+Φ=

()()()2'''0R R R ρρρρλρ+-= (4分) 由自然周期边条件()()2??πΦ=Φ+,可得

()()()()

''0

2?λ???πΦ+Φ=???Φ=Φ+?? 解得,本征值2m λ=,本征函数()cos sin m m C m D m ???Φ=+

其中0, 1, 2, 3, m = (3分) 则有()()()22'''0R R m R ρρρρρ+-=

当0m =时,有()()2

'''0R R ρρρρ+=

解得()000ln R E F ρρ=+

由有限性条件()0R <∞可得00E =

所以()00R F ρ= (2分) 当0m ≠时,方程()()()2

2

'''0R R m R ρρρρρ+-=的解为()m

m

m m m R E F ρρρ

-=+

由有限性条件()0R <∞可得0m F =

所以()m

m m R E ρρ= (2分)

综上所述

()()01,cos sin m m m m u a a m b m ρ?ρ??+∞

==++∑

其中000a C F =,m m m a C E =,m m m b D E = (1分) 由边界条件1cos 4cos 4u ρθθ==+可得

()01cos sin cos 4cos 4m m m a a m b m ??θθ+∞

=++=+∑

解得()00, 0, 1, 4m a a m ==≠,0m b =,141, 4a a == (2分) 所以解得有

()4,cos 4cos4u ρ?ρ?ρ?=+ (1分) 九、(本题15分)

在均匀电场0E

中放置一个半径为R 并接地的导体球,求导体球放入电场达到静

电平衡后,球外各点的电势分布,并算出各点的电场强度和导体表面的电荷分布。

解:以球心为原点,0E

方向为极轴方向取球坐标系,显然此问题关于极轴是

对称的,

当导体达到静电平衡时,导体是个等势体,导体表面是个等势面,为了考虑问题的方面,选取导体为电势零点,则有(),0r R u r θ==,根据题意可知在无穷远的处电势为0cos E r θ-

球外各点没有电荷,满足拉普拉斯方程2(,)0 u r θ?= 所以有定解问题为:

20(,)0 (1)(,)0 (,)cos (3)

r R r u r r R u r u r E r r θθθθ=→∞?=>==-→∞ (2)???

????

(3分)

由分离变量法,由于是轴对称问题,可令(,)()() u r R r θθ=Θ,代入式(1),

可得方程的解为:(1)0

(,)(cos )l

l l

l l l u r A r

B r P θθ∞

-+=??=

+??∑ (4)

(3分)

由边界条件(3)和根据勒让德函数()l P x 为基的函数的广义傅立叶级数展开,对

()10, 0 1l A E A l =-=≠

(3分)

方程的解(4)变为:()(1)010(,)cos (cos )l l l l u r E rP B r

P θθθ∞

-+==-+∑ (5) 由边界条件(2)可知:()(1)010

cos (cos )0l l

l l E RP B R P θθ∞

-+=-+=∑ 德函数()l P x 为基的函数的广义傅立叶级数展开,对比系数可得:

()310, 0 1l B E R B l ==≠

(2分) 于是可得:()302,cos R u r E r r θθ??

=- ??? (6) (1分)

根据电场强度与电势的关系:

()()()(),,,,,,11,,sin r u r u r u r E u r e e e r r r θ?θ?θ?θ?θ?θθ??????

=-?=-++ ?????? ,

则有 ()303,21cos r u r R E E r r θθ???

=-=+ ???

?

(7) (1分) ()303,11sin u r R E E r r θθθθ???=-=- ???? (8) (1分) 0003cos e r R E E σεεθ=== (1分)

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

扬州大学数学物理方法期末试卷A

院 系 班级 学号 姓名 --------------------------------------装---------------------------------------订-------------------------------------------线----------------------------------------------- 扬州大学试题纸 ( 2010-2011学年第 二 学期) 物 理 学院 微电、物理09级 课程 数学物理方法(A )卷 题目 一 二 三 四 总分 得分 一、填空题(共20分,2分/题) 1. 数量场23 2 2+=x z y z u 在点)1,0,2(-M 处沿24 23=-+ l xi xy j z k 方向 的方向导数为 . 2. 设 A 为一矢性函数, ?表示哈密顿算符, 则()????= A . 3. 在三维直角坐标系中,矢径=++ r xi yj zk ,r r = ,?表示哈密顿算符, 则当0≠r 时,有3?? ??? ??= r r . 4. 在二维平面极坐标系下,调和量?=u . 5.考虑长为l 的均匀细杆的导热问题,若杆0x =的一端保持为恒温零度, l x =的一端绝热,用u 表示温度,则对应的边界条件为 . 6.方程20,(,0)tt xx u a u x t -=-∞<<∞>的通解可以表示为 ()u x,t = . 7. l 阶勒让德多项式的微分表示式为)(x P l = . 8. 设)(x P l 为l 阶勒让德多项式,则积分1 21002001()()-=?x P x P x dx . 9. 常微分方程22(9)0'''++-=x y xy x y 为 阶Bessel 方程. 10. 利用Bessel 函数的递推公式,计算积分1 210()=?x J x dx .

数学物理方法习题答案[1]

数学物理方法习题答案: 第二章: 1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。 (2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2 ,cos(2)sin(2)i e i π ππ+; 32,2[cos(sin(3)i e i π ππ+; ,(cos1sin1)i e e e i ?+ 3、22k e ππ--; (623)i k e ππ+; 42355cos sin 10cos sin sin ?????-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1 ()cos 2 y y ay b e e x e ---- 4、(1) 2214u υ+= 变为W 平面上半径为1 2的圆。 (2)u υ=- 平分二、四象限的直线。 5、(1) z ie iC -+; 2(1) 2i z -; ln i z - (2) 选取极坐标 ,, ()2 2 u C f z ?? υ==+=6、ln C z D + 第三章: 1、 (1) i π (2)、 i ie π-- (3)、 0 (4)、i π (5)、6i π 2、 设 ()!n z z e f n ξ ξ= z 为参变数,则 () 1 220 1 1 () 1(0)2!2! 1()()!!! ! n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξ ξ +=== ====? ? 第四章: 1、(1) 23 23 ()()ln 22z i z i z i i i i i ---+-+- (2)23313 (1) 2!3!e z z z ++++ (3) 211111()()[(1)(1)](1)11222k k k k k k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑ 2、(1) 1 n n z ∞ =--∑ (2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞ ++=-∑ , 34z <<时

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方法试题

嘉应学院 物理 系 《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、什么是解析函数?其特征有哪些?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、写出复数2 3 1i +的三角形式和指数形式(8分) 7、求函数 2 ) 2)(1(--z z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) 9、计算实变函数定积分dx x x ?∞ ∞-++1 1 4 2(8分) 10、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 二、计算题(共30分) 1、试用分离变数法求解定解问题(14分) ?? ?????=-===><<=-====0, 2/100 ,000002t t t l x x x x xx tt u x u u u t l x u a u

2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分) ??? ? ? ???? ===-==?====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π 3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。(10分) 嘉应学院 物理 系 《数学物理方法》A 课程考试题 一、简答题(共70分) 1、什么是解析函数?其特征有哪些?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 7、求函数2 )2)(1(1 --z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) t e y y y -=-'+''32

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

武大数学物理方法期末考试试题-2008

2008年数学物理方法期末试卷 一、求解下列各题(10分*4=40分) 1. 长为l 的均匀杆,其侧表面绝热,沿杆长方向有温差,杆的一段温度为零,另一端有热量流入,其热流密度为t 2sin 。设开始时杆内温度沿杆长方向呈2 x 分布,写出该杆的热传导问题的定解问题。 2. 利用达朗贝尔公式求解一维无界波动问题 ?????=-=>+∞<<-∞=-==2||)0,(040 0t t t xx tt u x u t x u u 并画出t=2时的波形。 3. 定解问题???? ???≤≤==∞<<==<<<<=+====) 0( 0,sin )0( 0 ,)0 ,0( ,000a x u x B u y u ay u b y a x u u b y y a x x yy xx ,若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题 4. 计算积分?-+=1 11)()(dx x P x xP I l l 二、(本题15分)用分离变量法求解定解问题 ?????+===><<=-===x x u u u t x u a u t x x x xx t 3sin 4sin 20 ,0)0,0( 0002ππ 三、(本题15分)设有一单位球壳,其球壳的电位分布12cos |1+==θr u ,求球内、外的电位分布 四、(本题15分)计算和证明下列各题 1.)(0ax J dx d 2.C x x xJ x x xJ xdx x J +-=? cos )(sin )(sin )(100 五、(本题15分)圆柱形空腔内电磁振荡满足如下定解问题

???????===<<<<=+=?===0 00),(0,00),(0),(0l z z z z a u u z u l z a z u z u ρρρρλρ 其中2)(c ω λ=,为光速为电磁震荡,c ω。 (1) 若令)()(),(z Z R z u ρρ=,写出分离变量后关于)()(z Z R 和ρ满足的方程; (2) 关于)()(z Z R 和ρ的本征值问题,写出本征值和本征函数; (3) 证明该电磁振荡的固有频率为 ,3,2,1;,2,1,0 ,)()(220==+=m n l n a x c m mn πω 其中0m x 为零阶Bessel 函数的零点。 参考公式 (1) 柱坐标中Laplace 算符的表达式 (2) Legendre 多项式 (3) Legendre 多项式的递推公式 (4) Legendre 多项式的正交关系 (5) 整数阶Bessel 函数 (6) Bessel 函数的递推关系

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z 444244 00000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i ππππωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+-+ (2) y = (3) 求复数2 ?? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23 i i i e r π πππππ θπ??==+=+==-+ ?????=-===+=±± 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ???而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

信息学院2015-2016学年数学物理方法期末考试试题_A

兰州大学2015~2016 学年第1学期 期末考试试卷(A卷) 课程名称:数学物理方法任课教师: 学院:信息学院专业:年级:姓名:校园卡号: 一、填空(共24分,每空2分) 1. = ; 2. 由柯西公式可得= ,其中要求函数是函数; 3.幂级数收敛半径是; 4.积分= ; 5. 是f(z)的奇点,根据洛朗级数展开负幂项的个数可以将奇点分为三类,分别是、、。 6.已知函数f(x, y, z),对于边界,则相应的第一类齐次边界条件可以表示 为。 7. 和,可以构成,与本征值相应的解称为。 8.一般情况下的求解域并不是规则形状,则可以采用法使得求解 域成为规则图形以简化求解。 二、简单计算(共26分,第1、2题每题6分,第3、4题每题7分) 1.在1<|z|<的环域上将函数f(z)= (z+1)/(z2-1)展开为洛朗级数。

2. 以勒让德多项式为基,在区间[-1, 1]上将函数展开为广义 傅里叶级数。 注: 3. 利用留数定理求。 4. 解析函数知识在求解某些势函数时有很大的帮助。我们已知复势表达式为 ,并且 , ,求复势 , 并写成关于z 的表达式。 三、 简答(共23分,前3题每题5分,第4题8分) 1. 简述解析函数的性质。 2. 施图姆-刘维尔型方程为 拉盖尔方程表示为施图姆-刘维尔型如下式所示 与勒让德方程相似,拉盖尔方程的解可以由拉盖尔多项式 表出。试根据 所学过的施图姆-刘维尔本征值问题的相关性质,最少写出拉盖尔方程的三条性质。 3. 写出柱坐标系下的Bessel 方程,Bessel 方程一般有哪几种解的形式,并写出方程的一种通解。 4. 在电路中会经常使用到矩形脉冲信号 试在初始边界条件f (0)=0的条件下,利用傅里叶积分的知识进行计算,简要说明如何通过简单的正弦信号获得该信号。 四、 综合题(共27分,第1题15分,第2题12分) 1. 有一个沿z 轴无限长的矩形波导,如右图所示,横截 面长为a ,宽为b ,左、右、底面三面接地,顶面电 a

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方法期末考试试题典型汇总

Mathematical methods for physics 一、 单项选择题(每小题2分) 1.齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A)Λ3,2,1 sin =n nx B) Λ,2,1,0 cos =n nx C)Λ2,1,0 )21sin(=+n x n D) Λ2,1,0 )2 1cos(=+n x n 2.描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3.半径为R 的圆形膜,边缘固定,其定解问题是???? ?????====?-??===)(| ),(|0|0),(),(0t 02222ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ ==100)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(20222 t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0t ak m C )0m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2202=+'+''R k R R m ρρρ 4.)(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2=+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5.根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(120x J x J x J '=- B ))()()(1 11x J x x J x xJ '=+ C ))(2)()(210x J x x J x J = - D ))(2)()(120x J x x J x J '=+ 二、 填空题(每题3分)

数学物理方法试卷答案

《数学物理方法》试卷答案 一、选择题(每题4分,共20分) 1.柯西问题指的是( B ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( D ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ??? ??=??=?Γ f n u u ,02 有解的必要条件是( C ) A .0=f . B .0=Γu . C . 0=?Γ dS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( B ) A .) cos , (2 x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2 x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2 x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( D ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u .

二、填空题(每题4分,共20分) 1.求定解问题??? ? ? ????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是(x t cos sin 2). 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( 0))(,(),(2))(,(22=++dx y x c dxdy y x b dy y x a ). 3.二阶常微分方程0)()43 41()(1)(2'''=-++x y x x y x x y 的任一特解=y ( )21 (2 3 x J 或0). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( r 1 ). 5.已知x x x J x x x J cos 2 )( ,sin 2)(2 12 1ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( )s i n )(1(2)cos sin 1(223 x x dx d x x x x x x ππ-=- ). 三、(15分)用分离变量法求解如下定解问题 222220 00, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???? ???==>? ????==≤≤?? 解:第一步:分离变量 (4分) 设)()(),(t T x X t x u =,代入方程可得

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数学物理方法期末考试试题-2006

一、单项选择题(每小题2分) 1. 齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A) 3,2,1 sin =n nx B) ,2,1,0 cos =n nx C) 2,1,0 )21sin(=+n x n D) 2,1,0 )2 1cos(=+n x n 2. 描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3. 半径为R 的圆形膜,边缘固定,其定解问题是???? ?????====?-??===) (| ),(|0|0),(),(0t 02222ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ ==100)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(20222 t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0t ak m C )0m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2202=+'+''R k R R m ρρρ 4. )(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2 =+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5. 根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(1 20x J x J x J '=- B ))()()(111x J x x J x xJ '=+ C ))(2)()(210x J x x J x J =- D ))(2)()(120x J x x J x J '=+ 二、填空题(每题3分)

相关文档
最新文档