4.0代数结构-代数系统
第五章 1代数系统的概念

5-1 代数系统的引入
例2 下面均是二元运算的例子。 (1) A为集合,2A为其幂集。f : 2A×2A →2A 。f 可以 是∩、∪、-、。 (2) A={0,1}。f:AAA。f 可以是∧、∨、、 。
一般地,二元运算用符号“”、“◦”、“•”、 “△”、“◇”、“☆”等等表示,并将其写于 两个元素之间,如Z×Z→Z的加法:
定义5-2.1 设“”,“◦”均为集合A上的二元运 算。 (1) 若x, y∈A,都有xyA,则称“”运算在A 上是封闭的(Closed) 。即
xy( x A y A x y A) 在A上封闭
(2) 若x, y∈A,都有xy=yx,则称“”运算在A 上满足交换律(Commutativity) 。即
离散数学
(Discrete Mathematics)
第五章 代数结构(Algebraic Structure)
❖ 以具体代数为研究对象的经典代数,其研究内容、 基本理论和方法,主要反映在初等代数和高等代数 (工科的线性代数)两部分的现代教育中。
❖ 从19世纪早期由法国数学家Galois(1811-1832)创始, 近200年来经历起伏、逐渐成熟的代数系统,常被 人们冠以代数结构、抽象代数及近世代数(Modern Algebra)等美称。
xy(x A y A x y y x)
在A上可交换
5-2 运算及其性质
(3) 若x, y, z∈A,都有x(yz)=(xy)z,则称“” 运算在A上满足结合律(Associativity) 。即
在A上可结合 xyz( x A y A z A
x(y z) (x y) z)
(4) 若x, y, z∈A,都有x(y◦z)=(xy)◦(xz) ,则称 “”运算对“◦”运算满足左分配律; 若x, y, z∈A,都有(x◦y)z=(xz)◦(yz) ,则称“” 运算对“◦”运算满足右分配律。若二者均成立, 则称“”运算对“◦”运算满足分配律 (Distributivity) 。
代数系统简介

代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.1859年,我国数学家李善兰首次把“algebra”译成“代数”。
第5章 代数系统

5.2.3 利用运算表判断代数运算的性质
5.2.1 二元运算的性质 (Properties of Operations) 定义5.2.1 设“*”,“。”均为集合S上的二元运 算。
(1)若xy z(x,y,z∈S→x*(y*z)=(x*y)*z),则称
“*”运算满足结合律(associativity) 。
根据定义,子代数必为一代数系统,*运算所 满足的性质显然在子代数中仍能得到满足。
5.1代数系统(Algebraic Systems)
【例5.1.6】 在例5.1.5中,对〈N,+〉而言,
〈E,+〉为其子代数,〈N,+〉,〈{0},+〉
为其平凡子代数,〈M,+〉不构成其子代数。
小结:本节介绍了n元运算、 n元代数运算及代数
(4)以集合A的幂集2A为基集,以集合并、交、补
为其二元运算和一元运算,组成一代数系统,记为
〈 2A,∪,∩,-〉。有时为了突出全集A及空集在2A中
的特殊地位,也可将这一代数系统记为〈 2A,∪,∩,-,
A, 〉。这个系统就是常说的幂集代数系统。以上
的(1),(2),(3), (4)均称为具体代数系统。
5.1代数系统 (Algebraic Systems)
(5)设a,b,c∈R,则f(a,b,c)=a+b× c是将R中 的三个数a,b,c映为R中的唯一的一个数。
f : R3 →R是函数。
上述例子都是我们熟悉的数与数的运算,
它们有一个共同特征,就是其运算结果都在
原来的集合中且运算结果是唯一的,它们都 是函数。
表 5.2.2
。
a a a
b a b
a b
从“。”运算表可知, “。”是可交换的。因为 (a。a)。b=a。b=a (a。b)。b=a。b=a 所以“。”是可结合的。 a。(a。b)=a。a=a a。(b。b)=a。b=a
第5章 代数系统-1

o (3)设 是集合A上的关系} (3)设S A = {ρ | ρ 是集合A上的关系},“ ” 是
求复合关系的运算。 求复合关系的运算。它们构成代数系统S 〈
A ,o〉
。
的幂集2 (4)以集合 的幂集 A为基集,以集合并、交、补 )以集合A的幂集 为基集,以集合并、 为其二元运算和一元运算,组成一代数系统, 为其二元运算和一元运算,组成一代数系统,记为 及空集 〈 2A,∪,∩,-〉。有时为了突出全集 及空集在2A中 ∪ 〉 有时为了突出全集A及空集 ∅ 的特殊地位,也可将这一代数系统记为〈 2A,∪,∩,-, 的特殊地位,也可将这一代数系统记为〈 ∪ A, 〉。这个系统就是常说的幂集代数系统。以上 这个系统就是常说的幂集代数系统。 ∅ ),(2),( 的(1),( ),( ), (4)均称为具体代数系统。 ),( ),(3) )均称为具体代数系统。
⊆ 如果对任意元素x T S, 如果对任意元素 1,x2,…,xn∈T, ,
算封闭。 算封闭。
定义5.1.3 设*是S上的 元运算(n=1,2,…), 上的n元运算 定义 是 上的 元运算( = , , )
*(x1,x2,…,xn)∈T,称*运算对 封闭或 关于 运 运算对T封闭或 , ∈ , 运算对 封闭或T 关于*运 为非负偶数集, 为非负奇数集 为非负奇数集, 【例5.1.4】 设E为非负偶数集,M为非负奇数集,那 】 为非负偶数集 么定义于N上的通常数的加法运算对E封闭 对M不 封闭,对 不 么定义于 上的通常数的加法运算对 封闭 上的通常数的加法运算 封闭,乘法运算对E和M都封闭。 封闭,乘法运算对 和 都封闭。 都封闭
【例5.1.3】 】 为基集,加法运算"+ 为二元 为二元, (1)以实数集 R 为基集,加法运算 +"为二元, ) 运算组成一代数系统,记为〈 , 运算组成一代数系统,记为〈R,+〉。 实数矩阵组成的集合M为基集 (2)以全体 ×n实数矩阵组成的集合 为基集 , )以全体n× 实数矩阵组成的集合 为基集, 矩阵加“ +"为二元运算 , 组成一代数系统 , 记为 为二元运算, 矩阵加 “ 为二元运算 组成一代数系统, 〈M,+〉。 〉
代数系统(抽象代数)

6-1 代数结构(系统)的概念
所谓代数结构(系统),无非是有一个运算对象的集合, 和若干个运算,构成的系统。 一. n元运算 如何定义运算,先看几个我们熟悉的例子: 取相反数运算“-”、集合的补运算“~” 以及N上的“+” P(E) ~ P(E) N2 + N I - I 。 Φ Φ。 <0,0>。 。 0 2。 。 -2 <0,1>。 。 {a} 。 。 {a} 1 1。 。 -1 <0,2>。 0。 。 。 0 2 {b} 。 。 {b} -1。 。 1 。 -2。 。 3 <1,0> 。 2 {a,b} 。 。 {a,b} <1,1>。 <1,2>。
九.分配律 设和 都是X上的二元运算,若对任何x,y,z∈X,有 x(yz)=(xy)(xz) ,(yz) x =(y x)(z x) 则称对可分配。 例如: 乘法对加法可分配。 集合的∪与∩互相可分配。 命题的∧与∨互相可分配。 十.吸收律 设和 都是X上的可交换二元运算,若对任何x,y∈X, 有 x(xy)=x ,x(xy)=x 则与 满足吸收律。 例如:集合的∪与∩满足吸收律。 命题的∧与∨满足吸收律。
2.二元运算的运算表 有时用一个表来表示二元 运算的运算规律。 例如令E={a,b}, P(E)上的 ∩运算表如图所示。
∩ Φ 左 Φ Φ 表 {a} Φ 头 元 {b} Φ 素 {a,b} Φ
运算 上 表 头 元 素
{a} Φ {a} Φ {a}
{b} Φ Φ {b} {b}
{a,b} Φ {a} {b} {a,b}
六.可结合性 设是X上的二元运算,如果对任何x,y,z∈X,有 (xy)z =x(yz),则称是可结合的。 例:数值的加法、乘法,集合的交、并、对称差, 关系的复合、函数的复合,命题的合取、析取等。
第5章代数结构

对于代数结构的理解, 需注意以下几点:
(1)A非空;
(2) 是A上的代数(封闭)运算;
(3) 运算f1, f2,…, fk(k 1)在代数结构中是有顺序
的, (A, f1, f2,…, fk) 是(k + 1)元组;
(4)运算的元数ni可以相同.
方法,因此近世代数也是数学专业的专
业基础课之一。
古典代数 代数系统(系统化:模型及其性质);纯数
学结合计算机应用。
• 计算机科学:计算?
计算过程?——能行性计算模型:抽象与具体化。
• 计算机科学中的代数方法:
形式语言与自动机理论、可计算理论、语义学(模型
论)——模型/语言。
集合代数、逻辑代数
密码学、数据表示理论、数字逻辑
则f是集合Q上的加法运算,f是2元运算。运算
是封闭的。
【例3】设 f : Q×Q×QQ , f (x1,x2,x3)=
x1+x2+ x3,则f是集合Q上的3元封闭运算。
特殊元素
单位元素
设*是A上的2元代数运算,若存在eA,对于任意的xA,下
列条件均成立: e*x=x; x*e=x. 则称e为集合A关于*
x的关于*的逆元素。
对称即是群。
5.1 代数结构简介
1.代数结构的定义
Def 设A是非空集合, f1, f2,…, fk(k 1)是A上的
代数(封闭)运算,则集合A连同其上的代数运算称
为代数结构(algebra structure)或代数系统
(algebra system)或简称代数(algebra),记为(A, f1,
Def 设*是非空集合M上的2元代数运算,若*满
离散数学 第4章 代数系统(祝清顺版)
代数结构的知识体系
半群与群 环与域 格与布尔代数
分类 成分:载体及运算 公理:运算性质 产生 代数系统的构成
子集
子代数
同 种 的 同 类 型 的
等价关系
映射
代数系统的 同态与同构 代数系统间的关系
离散数学 第四章 代数系统 2007年8月20日
商代数 新代数系统
,有限域理论是差错控制编码理论的数学基础,在通讯中发 挥了重要作用。而电子线路设计、电子计算机硬件设计和通 讯系统设计更是离不开布尔代数。
离散数学 第四章 代数系统 2007年8月20日
学习本篇的方法
1、要按照数学的思维方式学习, 即观察客观世界, 抽象出模型 , 再分析、推理揭示内在规律的过程。 2、领会“抽象”性:代数的抽象性不仅体现在元素的抽象上, 还体现在相应运算的抽象上, 是在最纯粹的形式下研究代数结 构中的运算的规律与性质, 从运算的角度来考虑代数结构中的 元素。因此, 初等代数的相应概念、结论不能直接应用在抽象 代数中。如何跨越从直观到抽象是学习抽象代数的重要一步。 3、教材的基本思路是: 首先严格定义什么是代数结构, 并讨 论一般代数结构的基本性质。然后讨论代数结构研究的两个方 面:其一是通过一些基本性质来规定一类特定的代数结构, 并 对这类代数结构的性质进行研究。其二是研究代数结构之间的 各种关系, 通过对代数结构之间关系的研究 , 就可以把一个代 数结构中的某些性质推广到另一个代数结构中。
离散数学
第四章 代数系统
2007年8月20日
例题
例2 实数集R和两个二元运算: 普通加法+和普通乘法 ×, 构成一代数系统, 记作(R, +, ×).
(1) 载体是实数集R.
离散数学-近世代数-代数结构
例:代数系统(N,+,×)。其中+,×分别代表通常数的加法和乘法。
添加标题
是否满足交换律?
添加标题
单位元( 幺元)
一个代数系统(S,*), 若存在一个元素eU,使得对 xS,有:e * x =x * e = x,则称 e 为对于运算“ * ”的单位元,也称幺元 。 注意: 单位元是跟运算有关系的,不同的运算可能单位元是不一样的。
解: 作双射 f:A1A2,f(1)=b, f(2)=d, f(3)=c, f(4)=a
a
b
c
d
a
b
b
b
d
b
a
a
d
b
c
c
b
c
a
d
a
a
c
d
*
1
2
3
4
1
4
1
2
4
2
4
2
3
4
3
1
4
3
3
4
1
2
1
1
设代数系统V1=(A1,*),V2=(A2,º), 其中A1={1,2,3,4}, A2={a,b,c,d}, * 和 º 的运算分别如下表,V1 和 V2 是否同构?
等幂律
设 * 是定义在集合A上的一个二元运算,如果对于任意的xA,都有x * x = x,则称 * 运算是等幂的。 例: S={1,2,4},在集合 p(S) 定义两个二元运算,∩,∪,分别表示集合的“并”运算和集合的“交”运算,∩,∪是等幂的? 解:对于任意的A p(S) ,有A∩A=A;A∪A=A 因此运算∩,∪都满足等幂律。
性质、定理
定理 一个代数系统,其零元若存在,则唯一。 定理 一个代数系统(S,),若集合 A 中元素的个数大于1,且该代数系统存在幺元 e 和零元θ,则θe。 证明:用反证法,设θ=e,则对于任意的xA,必有 x = ex = θx =θ= e, 即对于A中所有元素都是相同的,这与A中含有多个元素相矛盾。
第五章代数结构
称二元运算+k为模k加法。
2020/7/21
8
Nk上的二元运算×k定义为:对于Nk中的任意两个元素i和 j,有
ij
ijk
ikj ij除k以 的余i数 jk
称二元运算×k为模k的乘法。 模k加法+k和模k乘法×k是两种重要的二元运算。 在N7=0,1,2,3,4,5,6中,有4+72=6,4+75=2。如果把N7
一角硬币和二角五分硬币,而所对应的商品是桔子水、可口
可乐和冰淇淋。当人们投入上述硬币的任何两枚时,自动售
货机将按表5-1.1所示供应相应的商品。
表格左上角的记号*可以理解为一个二元运算的运算符。
这个例子中的二元运算*就是集合{一角硬币,二角五分硬币}
上的不封闭运算。
表 5-1.1
*
一角硬币 二角五分硬币
2020/7/21
15
二、可交换性
定义5-2.2 设*是定义在集合A上的二元运算,如果对于 任意的x,yA,都有x*y=y*x,则称二元运算*在A上是可 交换的。
【例5.2.2】设Q是有理数集合,Δ是Q上的二元运算,对任 意的a,bR,aΔb=a+b-a·b,问运算Δ是否可交换。 解:因为 aΔb=a+b-a·b=b+a-b·a=bΔa
a
为:aA,f(a)= 1 。容易看出f是A上的一元运算。
a
又如,f:N×N→N,定义为:m,nN,f(m,n)=m+n,
f是自然数集合N上的二元运算,它就是普通加法运算。普通 减法不是自然数集合N上的二元运算,因为两个自然数相减 可能得到负数,而负数不是自然数。所以普通的减法不是自 然数集合N上的二元运算。
第3篇代数系统
二.二元与一元运算的表示 1.算符 用 、* 、· 、 、 等符号表示二元或一 元运算,称为算符。 若f:S×S→S为S上的二元运算, 如果任意 x,y ∈S , x与y运算结果是z,即 f(x, y)=z; 用符号 表示二元运算, 可记做x y=z。
表示二元或一元运算的方法有两种:解析公式和运算表。
?是定义在非空有限集1运算?的封闭性当且仅当运算表中每个元素都属于s2运算?的可交换性当且仅当运算表关于主对角线对称3运算?的幂等性当且仅当运算表中主对角线元素与它所在的行列的表头相同4s关于运算?有幺元e当且仅当运算表中表头e所在的行与表头一行相同
第3篇
代数系统篇
非负整数集与普通加法 +构成的代数系统中,没有 单位元。 ( ) 设N为自然数集合,<N,>在xy=x+y-2*x*y运算下 构成代数系统。
例3-1-2.6 对于代数系统<Nk,+k>,其中k是正整数, Nk={0,1,2,„,k-1},+k是定义在Nk上的加法运算, 定义如下:∀x,y∈ Nk
x +k y =
x +y ,
若x+y<k 若x+y≥k
x +y - k ,
问是否每个元素都有逆元? 解: +k是一个可结合的二元运算, Nk中关于+k运算的幺元是0 每个元素都有逆元,0-1=0,x-1=k-x (x≠0)
K=6时,计算每个元素的逆元
若<S,◯>是代数系统, ◯是定义在非空有限集 合S上的二元运算,则运算◯的部分性质可由运算表 看出:
(1) 运算◯的封闭性 当且仅当运算表中每个元素都属于S (2) 运算◯的可交换性 当且仅当运算表关于主对角线对称 (3) 运算◯的幂等性