经编长效蚊帐织物的顶破性能研究

合集下载

纺织学习笔记

纺织学习笔记

纤维与纱线纺织纤维的基本特征:纺织纤维是截面呈圆形或各种异型的、横向尺寸较细、长度比细度大许多倍的(至少为1000倍以上)、具有一定强度和韧性(可绕曲)的细长物体。

棉纤维,横截面腰圆型的,中间有空腔纺织纤维的来源:纺织纤维的原材料来源非常广泛,自然界中许多植物的籽、表皮、梗、茎、叶,动物的毛发、分泌物、壳,海洋生物,矿物等均可以成为纺织纤维的原材料。

石油是最重要的纺织纤维原材料的来源。

纺织纤维的种类:天然纤维化学纤维天然纤维:自然界生长或形成的、具备纺织纤维基本特征的纤维。

植物纤维(天然纤维素纤维):棉、麻等动物纤维(天然蛋白质纤维):羊毛、蚕丝等矿物纤维(天然无机纤维):石棉等化学纤维:是指用天然的或合成的高聚物作为原料,经过化学和机械方法加工制造的,具备纺织纤维基本特征的纤维。

再生纤维(人造纤维):再生纤维素纤维:粘胶纤维、再生蛋白质纤维:大豆纤维、牛奶纤维等再生无机纤维:玻璃纤维、金属纤维合成纤维(石油基纤维):聚酯纤维(涤纶)、聚酰胺纤维(尼龙或锦纶)、聚氨酯纤维(氨纶)、聚丙烯纤维(丙纶)、聚丙烯腈纤维(腈纶)、聚氯乙烯纤维(氯纶)、芳香族聚酰胺纤维(芳纶)、聚四氟乙烯纤维(氟纶)。

合成纤维的原料是石油新型纺织纤维是利用现代生物、化学或物理等高新技术,通过分子结构设计、纺丝工艺技术创新,开发出的或具有多种功能,或具有高性能,或生态友好的一类纤维。

新型纺织纤维主要包括:差别化纤维:超细纤维(一般将单丝线密度小于0.3dtex的纤维称为超细纤维,常规纤维线密度为1.5dtex)…高性能纤维:玄武岩纤维(将玄武岩石料在1450℃~1500℃熔融后,通过铂铑合金拉丝漏板高速拉制而成的纤维,特性除高强度、高模量(需高应力才变化)外,还具有耐高温、抗氧化、抗辐射、绝热隔音等特性)…生物质纤维:大豆纤维(通过剥豆,制豆粕,制作纺丝液,纺丝得到纤维和纱线。

国家具有知识产权)纱线的基本特征:纱线是由纺织纤维平行拉直(或基本平行伸直)排列,利用加捻或其他方式使纤维抱合缠结,形成连续的具有一定强度、韧性和可绕曲性的细长体。

纺织科学技术:纺织面料基础知识考试题预测模拟考试卷.doc

纺织科学技术:纺织面料基础知识考试题预测模拟考试卷.doc

纺织科学技术:纺织面料基础知识考试题预测模拟考试卷 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。

1、填空题 纱线线密度不匀测试的方法有( )、( )、电容式条干均匀度仪试验法。

本题答案: 2、单项选择题 GB18401-2010《国家纺织产品基本安全技术规范》规定,B 类产品pH 值为( )。

A .4.0~7.5 B.4.0~8.5 C.3.5~7.5 D.3.5~8.5 本题答案: 3、单项选择题 羊毛纤维是蛋白质纤维,( )。

A.既不耐酸又不耐碱 B.比较耐碱不耐酸 C.比较耐酸不耐碱 本题答案: 4、名词解释 组织点(浮点) 本题答案:姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线----------------------5、单项选择题条样法测试织物的拉伸强力,其试样的工作尺寸是()。

A.20060B.20050C.30060D.30050本题答案:6、单项选择题用同样的原料纺成的纱线,下列哪个纱最粗()。

A.1特克斯B.1旦尼尔C.1公支本题答案:7、单项选择题耐日晒色牢度测试过程中,假如按照方法4进行,且客户要求检验牢度为4级,()时第一阶段结束。

A.4级蓝标达到灰色样卡3级B.3级蓝标达到灰色样卡4级C.4级蓝标达到灰色样卡4级D.3级蓝标达到灰色样卡3级本题答案:8、名词解释桃皮绒本题答案:9、单项选择题用同样的原料纺成的纱线,下列哪个纱最粗()。

A.1特克斯B.1旦尼尔C.1公支本题答案:10、单项选择题某纤维在遇火燃烧时有烧纸味,产生少量灰白灰烬,根据这些现象,可以说明该纤维不可能是()。

CLOTHS

CLOTHS

CLOTHS各种面料的特点以及鉴别方法。

◇纯棉---- 手感好,使用舒适,易染色,花型品种变化丰富,柔软暖和,吸湿性强,耐洗,带静电少,是床上用品广泛采用的材质;但是容易起皱,易缩水,弹性差,耐酸不耐碱,不宜在100 摄氏度以上的高温下长时间处理,所以棉制品熨烫时最好喷湿,易于熨平。

有条件的话,每次使用后都用蒸汽熨斗将产品熨平,效果会更好。

◇色织纯棉---- 纯棉面料的一种,是用不同颜色的经、纬纱织成。

由于先染后织,染料渗透性强,色织牢度较好,且异色纱织物的立体感强,风格独特,床上用品中多表现为条格花型。

它具有纯棉面料的特点,但通常缩水率更大。

◇高支高密提花纯棉---- 织物的经纬密度特别大,织法变化丰富,因此面料手感厚实,耐用性能好,布面光洁度高,多为浅色底起本色花,格外别致高雅,是纯棉面料中较为高级的一种.◇涤棉---- 品牌产品一般采用65 %涤纶、35 %棉配比的涤棉面料,涤棉分为平纹和斜纹两种。

平纹涤棉布面细薄,强度和耐磨性都很好,缩水率极小,制成产品外型不易走样,且价格实惠,耐用性能好,但舒适贴身性不如纯棉。

此外,由于涤纶不易染色,所以涤棉面料多为清淡、浅色调,更适合春夏季使用。

斜纹涤棉通常比平纹密度大,所以显得密致厚实,表面光泽、手感都比平纹好。

◇真丝---- 外观华丽、富贵,有天然柔光及闪烁效果,感觉舒适,强度高,弹性和吸湿性比棉好,但易脏污,对强烈日光的耐热性比棉差。

近来,由于市场上销售的一些纺织品和服装生产厂家对面料成分名称和含量标注不规范,致使不法商人乘机以次充好,以假充真,欺骗消费者。

为了帮助消费者准确辨认服装面料的主要真实成分,现介绍一下简易识别常识,以供消费者选购服装时参考。

鉴别服装面料成分的简易方法是燃烧法。

做法是在服装的缝边处抽下一缕包含经纱和纬纱的布纱,用火将其点燃,观察燃烧火焰的状态,闻布纱燃烧后发出的气味,看燃烧后的剩余物,从而判断与服装耐久性标签上标注的面料成分是否相符,以辨别面料成分的真伪。

纺织科学技术:纺织面料基础知识考点模拟考试_0.doc

纺织科学技术:纺织面料基础知识考点模拟考试_0.doc

纺织科学技术:纺织面料基础知识考点模拟考试 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。

1、问答题 原棉品质检验的指标有哪几类? 本题答案: 2、名词解释 尺寸变化率 本题答案: 3、名词解释 阳离子 本题答案: 4、单项选择题 蚕丝是蛋白质纤维,( )。

A.既不耐酸又不耐碱 B.比较耐碱不耐酸 C.比较耐酸不耐碱 本题答案: 5、单项选择题 测定织物上的游离甲醛含量常用( )。

A.气相色谱法 B.液相色谱法 C.分光光度法 D.薄层层析法 本题答案: 6、名词解释姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------筘号本题答案:7、名词解释织物组织本题答案:8、填空题纱线的浮长用()表示。

本题答案:9、单项选择题下列()不是双层组织。

A.管状组织B.配色模纹组织C.表里换层组织D.接结组织本题答案:10、名词解释直接染料本题答案:11、单项选择题显微镜观察棉纤维纵向形态时,其特征是()。

A.鳞片B.天然转曲C.天然卷曲D.横节竖纹本题答案:12、名词解释织物重量本题答案:13、名词解释金属丝面料本题答案:14、单项选择题其他条件相同,下列()织物最轻。

A.394102B.306306C.494315本题答案:15、问答题试述透孔组织在织物表面形成孔的原理。

本题答案:16、问答题简述纵条纹设计要点。

本题答案:17、填空题经起花组织通常有()与平纹散点起花两种形式。

本题答案:18、填空题确定方格组织起始点的原则是:()。

本题答案:19、名词解释预调湿本题答案:20、填空题灯芯绒织物的毛绒高度与绒纬浮长所越过的经纱数成()比,与经纱密度成()比。

纺织面料检测技能大赛理论考试参考题库

纺织面料检测技能大赛理论考试参考题库

纺织面料检测技能大赛理论考试参考题库一、名词解释(每题2分)1、检测:是按规定程序确定一种或多种特性或性能的技术操作。

2、特克斯:1000米长的纤维或纱线在公定回潮率时的重量克数。

3、再生纤维:以天然的高聚物为原料制成的,化学组成与原高聚物基本相同的化学纤维。

4、机织物:由相互垂直排列的两个系统的纱线,在织机上按一定的浮沉规律交织而成的织物。

5、测量:是测定被测对象量值的过程。

6、织物上机图:是表示织物上机织造工艺条件的图解。

7、双层组织:由两组以上各自独立的经纱与两组以上各自独立的纬纱交织而成相互重叠两层(或称表里两层)的组织。

8、回潮率:纺织材料中所含水分重量对纺织材料干重的百分比。

9、色牢度:即染色牢度,是指纺织品在印染加工或服用过程中,经受各种外界条件的作用后所引起的颜色变化程度。

10、调湿:纺织品在进行各项性能测试前,应在标准状态下放置一定的时间,使其达到吸湿平衡。

这样的处理过程称为调湿。

11、捻度:纱线单位长度内的捻回数。

12、色织物:指以经过练漂、染色之后的纱线为原料,织造加工出来的织物。

13、平均浮长:组织循环纱线数与一根纱线在组织循环内交错次数的比值。

14、计量:是实现单位统一、量值准确可靠的活动。

15、组织点飞数:同一系统中相邻两根纱线上相对应的组织点之间所间隔的另一方向的纱线数。

16、混纺织物:经纬纱原料相同,均是由两种或两种以上的纤维混合纺制而成的纱线织成的织物。

17、检验:是对产品的一个或多个特性进行测量、检查、试验及计量,并将其结果与规定的要求进行比较,以确定每项特性的合格情况所进行的活动。

18、差别化纤维:经过化学改性或物理变形,从而不同于常规纤维的化学纤维。

19、变形丝:化学纤维原丝经过变形加工使之具有卷曲、螺旋、环圈等外观特性,而呈现膨松性、伸缩性的长丝。

20、尺寸变化率:织物洗后尺寸与洗前尺寸的差占洗前尺寸的百分率。

21、有机棉:在农业生产中,以有机肥、生物防治病虫害、自然耕作为主,不使用化学制品,从种子到农产品全天然无污染生产的棉花。

针刺包内衬革基布产品的设计与加工

针刺包内衬革基布产品的设计与加工

课程设计(论文)题目:针刺包内衬革基布产品的设计与加工学院:纺织与材料学院专业班级:非织造材料与工程10级(01)班指导教师:韩玲职称:讲师学生姓名:李吉双学号:41001040303摘要合成革基布这种材料可以像天然皮革一样进行切割、磨削,并且具有天然皮革所具有的透气、吸湿性能,且其应用范围广、数量大、品种多,已大量取代了资源不足的天然皮革[1]。

由于合成革基布具有这些优良的性能,被广泛的运用于衬材。

本课题是先从合成革基布介绍开始,然后又介绍了非织造各种专用纤维的特点与性能,对其进行比较,从中选出20%的低熔点纤维和80%的聚酯纤维混合作为非织造合成革基布开发的原材料,生产设计具有吸湿透气性能的非织造的产品,用作登山包内衬。

本课题是以聚酯纤维和低熔点纤维为原料通过开松、混合、梳理、铺网、预针刺、倒针刺、主针刺和热轧等工艺流程生产针刺合成革基布,结合生产线设备特点,探讨了各工序的生产工艺及主要技术措施。

严格控制各生产环节的条件,采用合适的工艺调整措施可以保证产品的质量。

最终制得200g/㎡,,厚度为1㎜针刺密度为刺731.6/cm2规格的革基布产品,可满足包内衬产品使用。

关键词:非织造布,针刺,革基布,针刺工艺设计。

目录第1章绪论 (1)1.1革基布的简介 (1)1.2人造合成革基布的发展趋势 (2)1.3本课题研究的目的和意义 (2)1.4本课题的主要内容 (3)第2章产品的工艺设计与加工 (4)2.1 产品原料的选择 (4)2.1.1 涤纶纤维 (4)2.1.2 粘胶纤维 (4)2.1.3 丙纶纤维 (5)2.1.4 低熔点纤维 (6)2.2 产品设计与加工 (6)2.2.1 产品加工工艺流程 (6)2.2.2 产品加工工艺原理 (6)2.2.2.1 原料开松与混合 (6)2.2.2.2 梳理 (6)2.2.2.3 铺网 (7)2.2.2.4 预针刺 (7)2.2.2.5 倒针刺 (7)2.2.2.6 主针刺 (7)2.2.2.3 热轧 (8)2.2.3 各工艺设备及主要参数设计 (8)2.2.3.1 各工艺设备 (8)2.2.3.2 设备工艺参数的设定 (12)2.3 产品加工过程中出现的问题及解决方案 (14)2.3.1 产品定量偏差 (14)2.3.2 飘网现象 (14)2.3.3 针刺出机拥堵现象 (14)第3章产品测试与分析 (15)3.1 产品定量的测试 (15)3.2 产品厚度的测定 (16)3.3 测试结果分析 (16)第4章结论 (18)4.1 本课题取得的主要结论 (18)4.2 展望 (18)参考文献 (19)第1章绪论1.1革基布的简介我国合成革基布的种类:机织布、针织布、非织造布和复合织物四大类。

Particle erosion on CNF coated CF composites

Particle erosion on carbon nanofiber paper coated carbon fiber/epoxycompositesNa Zhang a ,b ,1,Fan Yang a ,1,2,Changyu Shen b ,Jose Castro c ,L.James Lee a ,⇑aDepartment of Chemical and Biomolecular Engineering,The Ohio State University,OH 43210,USA bDepartment of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450052,China cDepartment of Integrative Systems Engineering,The Ohio State University,OH 43210,USAa r t i c l e i n f o Article history:Received 2October 2012Accepted 1May 2013Available online 15May 2013Keywords:A.Carbon fiberB.WearC.Finite element analysis (FEA)D.Electron microscopya b s t r a c tCarbon fiber (CF)woven fabric (52%by weight)reinforced epoxy composite and carbon nanofiber (CNF,12%by weight)paper coated on the surface of the CF/epoxy composite were fabricated by resin transfer molding (RTM).The surface erosion characteristics of molded CF composites were investigated by sand erosion test using silica particles with a size around 150l m as the erodent.The eroded surfaces were examined by scanning electron microscopy (SEM)and weight loss.The CNF paper was able to provide a much stronger erosion resistance compared to the CF reinforced epoxy composites,which is attributed to the high strength of CNFs and their nanoscale structure.Finite element (FE)computer simulations were used to qualitative interpret the underlying mechanisms.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionPolymer composite materials often exhibit poor erosion resis-tance [1–6].Improving erosion resistance of light weight compos-ite materials is crucial for many industrial applications such as wind turbine blades [7–9].Tilly [3–5,10]presented a thorough analysis of various parameters affecting erosion,including particle properties,impact parameters,particle concentration,type of rein-forcement and temperature.For erosive wear resistance,materials can be classified into ductile and brittle categories according to their behavior with respect to the impinging angle and erosion process [12].In brittle erosion,the weight loss increases linearly with time,while in a ductile type the particles may be embedded in the target surface causing a weight gain initially,followed with a linear weight loss as a function of time by further impingement.The maximum weight loss was found at about 90°and 30°impact angles for brittle and ductile erosions,respectively [10–12].Both glass fiber and carbon fiber reinforced epoxy composites show brittle characteristics [12–15].In this study,we present a new approach for improving the erosive resistance of composites using a thin protective layer of paper made of carbon nanofibers (CNFs)on the composite surface.A series of sand erosion experiments were carried out to compare the particle erosion performance of CF based composites with and without surface protection by the CNF puter simulations of finite element (FE)meth-od were used to explain the underlying mechanisms for the ob-served performance difference between the two composites made of microscale CFs and nanoscale CNFs.2.Experimental 2.1.MaterialsThe CNF used in this study was a vapor grown carbon nanofiber,Pyrograf Ò-III (PR-24-XT-HHT),obtained from Applied Sciences Inc.(Cedarville,OH).The length of CNFs is about 30–100l m and the average diameter is about 100nm.The carbon fiber woven fabric used in this work was an IM7-12k,5harness,370g/m 2fabric obtained from Textile Industries,Inc.An epoxy resin,EPIKOTETM RIM 135with an epoxy equivalent weight (EEW)of about 166–185,and a diamine curing agent,EPIKURETM RIM H 137with an amine value of about 400–600mg [KOH]/g,were provided by Hexion Specialty Chemicals (Houston,TX).This is a low tempera-ture and low viscosity resin designed for manufacturing wind tur-bine blades.Silica sand,blocky,sharp edged green particles with a size about 150l m and a hardness of 2600Knoop were selected as the erodent.A scanning electron micrograph of the silica sand is shown in Fig.1.1359-8368/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/positesb.2013.05.003Corresponding author.Address:The Ohio State University,125A Koffolt Laboratories,140West 19th Avenue,Columbus,OH 43210,USA.Tel.:+16142922408;fax:+16142923769.E-mail addresses:zhangna163163@ (N.Zhang),yangyangyang99@ (F.Yang),shency@ (C.Shen),castro.38@ (J.Castro),lee.31@ (L.J.Lee).1These authors contributed equally to this work.2Present address:Department of Mechanical and Industrial Engineering,Univer-sity of Toronto,Toronto,ON,Canada M5S 3G8.2.2.Fabrication of CNF nanopaper and CNF nanopaper coated glass fiber/epoxy compositesA vacuum filtration technique was used for preparing the nano-paper.In this set up,a 90mm diameter glass filter holder with a stainless steel screen membrane support was placed over a conical flask.Once the hydrophilic polycarbonate membrane filter with a pore size of 0.4l m (Millipore Inc.)was placed plain flat in the set up and clamped,it was connected to a vacuum aspirator pump.The nanoparticle solution was prepared as follows:the CNF parti-cles were dispersed in deionized (DI)water and sonicated using a Branson Digital Sonifier [(S450D),75%amplitude]for 30min.The resulting suspension was cooled down for 30min in a refrigerator and sonicated for 30sec again,then filtered through the filtration set up previously described under a pressure of $400kPa.Vacuum was applied for about 20min after all the water was filtered away.The CNF nanopapers were dried overnight at room temperature.The thickness of CNF nanopapers was 0.28±0.02mm with a poros-ity of 94%.Vacuum assisted resin transfer molding (VARTM)was used to impregnate the CF and CNF nanopaper coated CF preforms,which consisted of three layers of CF fabrics with andwithout a single layer of CNF nanopaper.The performs were placed and sealed a vacuum bag.Before mold filling,vacuum was applied to force the bag to press tightly against the fiber stack.The epoxy mixture was degassed in a vacuum chamber for 15min,and the resin was introduced into the fiber preforms.The samples were cured room temperature (around 25°C)for 24hr and post-cured 80°C for an additional 15hr.The CF and CNF nanopaper contents in the composites were controlled at 52and 12wt.%,respectively,measured by a thermo-gravimetric analyzer (TGA).2.3.Particle erosion testRectangular samples of size 12.5Â80mm molded composite plaques for the erosion epoxy and CNF/epoxy composites showed brittle with the maximum erosion rate at normal impinging angle was chosen as 90°in this frame with a rectangular opening was placed the test specimens to keep the eroded area The conditions under which the erosion are listed in Table 1.A standard test procedure each erosion test.Before testing,the samples were burnished to re-move the pollutants from the sample surface.After each test,spec-imens were degreased with acetone,dried in a jet of cold air and weighted with a precision balance (Explore,ep214C).The weight loss by sand abrasion (with an accuracy of 0.1mg)was used to quantify the erosion resistance.Each data point was obtained from the average value of five measurements.Scanning electron microscopy (SEM)images were collected using a field emission scanning electron microscope,Hitachi S-4300(Tokyo,Japan).The samples were gold-sprayed to reduce charging of the surface.3.Finite element simulationTo investigate the mechanisms of particle erosion,Finite ele-ment (FE)simulations were carried out for CF/epoxy composites with and without CNF nanopaper coating.It is difficult to track the actual erosion process which involves a large number of colli-sion events.Most of the existing work simulated only one or a few particle collision events [16–20].However,the trend can still be obtained for the erosion rate as a function of various parameters such as impinging angle,velocity,and target properties [16,19].In this study,one collision event with periodically distributed par-ticles was simulated.Qualitative comparisons were made between the experiments and the simulations.This study aims at providing insights into the mechanisms underlying the particle erosion per-formance of CF and CNF reinforced epoxy composites.Three-dimensional simulations were carried out using the gen-eralized FE codes ABAQUS/EXPLICIT version 6.9.Fig.2illustrates the configuration for the simulation of CF/epoxy composite.The eroding particles were simplified as spheres which were projected to the target surface in periodic arrays.The CF woven fabric has an Fig.1.Scanning electron micrograph of silica sand particles.Table 1Erosion test conditions.Impingement angle (°)90Impingement area (mm 2)600Impingement time (s)15Erodent feed rate (g/min)453.4Test temperature (°C)20Nozzle to sample distance (mm)25.4Nozzle diameter (mm)8Air pressure (MPa)0.47Fig.2.FE configuration of the particle erosion on surface of CF/epoxy composite.Part B 54(2013)209–214Fig.3a.The diameter of the eroding particle is0.15mm according to the experiments.The diameter of the CFs is adjusted so that the carbon content is52%by weight,consistent with experiment mea-surements.The model contained117,153linear solid elements with reduced integration(type C3D8R).Fig.3b shows the RVE for the CNF nanopaper.The dimensions are the same as the CF/epoxy case except the coating thickness,for which a smaller value of 0.05mm was applied.Utilizing the geometric symmetry,the RVE for CNF nanopaper only needs to contain one fourth of the config-uration of that for CF/epoxy composite.The right graph in Fig.3b is a magnification of thefiber skeleton for a small portion of the CNF nanopaper model.Since the randomly interweavedfiber configura-tion in experiments cannot be easily constructed in meshing,a uni-formly distributed orthogonal frame of beams is used instead to represent the highly interlaced CNF network.A square cross sec-tion instead of a circular section is used for CNF for simplicity. Thefiber diameter of CNF in simulation is chosen as0.5l m which is larger than that observed in the experiments.This is because thinner CNFs would needfiner mesh and hence more computa-tional expense.In spite of this,a large number of elements are needed due to the huge difference between the CNF diameter and the dimension of simulation RVE which depends on the size of eroding particles.The CNF inter-space is chosen as2.82l m so that the carbon content would be12%by weight in the nanopaper, consistent with our experiments.The obtained model contains 1,060,428C3D8R elements,corresponding to more than100CPU hours for a typical run on a2.6GHz computer for3l s of simula-tion time.Although this simplified model is different from the actual composites,we expect that it can provide qualitative inter-pretation of the experimental observations.Periodic boundary conditions are applied on the lateral bound-aries by coupling the degrees of freedom of the corresponding nodes on the opposite faces using the linear equations for CF/epoxy version2.1.For all configurations the mesh is refined near theimpinging location so that the eroded mass could be accuratelycaptured.The silica particles are modeled using the linear elastic constitu-tive law.While epoxy,CF and CNF are modeled using the elastic–plastic constitutive law with linear isotropic hardening.The mate-rial parameters are listed in Table2[22–25],where q is the density, E is the Young’s modulus,v is the Poisson’s ratio,r y is the yield stress,E is the Young’s modulus,E p is the hardening modulusand r s is the material strength.The physical meaning of the parameters can be revealed by the stress–strain(r–e)relation for uni-axial stretch deformation in small deformation range as in Eq.(1).e¼rE;r<r yrþrÀr yp;r P r y(ð1ÞIt can be seen from Table2that the plastic strain set is very small,reflecting the brittle property of these materials.In order to model the erosion of the target materials,a criterion is needed for the element removal.For the brittle erosion,the mass removal is caused by the spalling mechanism involving the evolu-tion of micro-cracks,which is very difficult to model by the FE method.Some researchers used Johnson–Holmquist model and the corresponding equation of state to model the failure behavior of the brittle materials[21].However,the large amount of ele-ments and the multi-phase properties of composites would cause huge computational expense if complex models are applied.There-fore a simplified criterion based on equivalent stress is applied here for the element removal.The element is removed once the equivalent stress r at its integration point reaches the critical value r cri as in Eq.(2).Here r0is the deviatoric stress tensor, r cri is cho-sen as the material strength r s.This criterion can be simply imple-mented in the dynamic shear failure option available in ABAQUS/Computational RVEs with mesh for(a)CF/epoxy composite and(b)CNF nanopaper.The inset graph shows the enlarged view of the skeleton of CNFs in portion indicated by the square.N.Zhang et al./Composites:Part B54(2013)209–214211r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3r 0:r 0r ¼ rcri4.Results and discussionsImages of the CF woven fabric and CNF Fig.4a and b,respectively.After uniformly stream impacting for a given time,the CF/epoxy was severely eroded while the surface protected by paper coating did not show much erosion.The inspected by SEM (Fig.4c and d).As can be seen,sists of the removal of matrix materials in the resin that the exposed fibers are no longer bonded to when the epoxy matrix fails to support the fibers.fibers could easily break into fragments,removal during erosion.The failure mode in process involving surface matrix removing,surface micro-cracking,fiber/matrix debonding,fiber breakage and material removal [10–12].As shown in Fig.4c,many micro-cracks caused by the im-pact of erodent particles can be seen in carbon fibers,and many small fragments of fibers also can be seen on the eroded surface.For the surface protected by the CNF nanopaper coating,there are few exposed segments of carbon nanofibers after particle ero-sion as shown in Fig.4d.many CNFs can partake the impact force and the fiber network be-haves as a whole shielding during particle collision.While for CF/epoxy composites,the fiber spacing is comparable or even larger than the size of the eroding particles,therefore,the resin matrix is not well protected.The pure epoxy plaque shows a better parti-cle erosion resistance than its CF/epoxy composite,but the resis-tance is not as good as the CNF nanopaper coating.Our FE simulation results further interpret the experimental served differences between CF/epoxy composite with and without nanopaper during particle erosion.The eroded volume is calcu-as the amount caused by the single impingement.The eroded volume for CF/epoxy is about three times as that for CNF nanopaper.addition,the erosion results are more sensitive to the impinging location for CF/epoxy composite than for CNF pares the eroded volume at different impinging positions CF/epoxy composite and CNF nanopaper.The eroded volume plotted versus a surface distance of several times of the REV range utilizing periodicity.Five representative positions A,B,C,D,and investigated for CF/epoxy composites while two positions woven fabric,(b)SEM image of CNF nanopaper,(c)SEM images of eroded CF/epoxy composite surface,composite surface.Fig.5.Mass loss of different materials after 15sec erosion test.212N.and G are investigated for CNF nanopaper as indicated in Fig.6b.For CF/epoxy composite the eroded volume at position E is nearly40% smaller than that at position A.While for CNF nanopaper the rela-tive difference for eroded volume between the two positions is below10%.The largest erosion rate occurs when particle impinges at the resin rich position in both cases.The simulation results pro-vide qualitative explanation to the fact that the eroded surface of CNF nanopaper is much smoother than that of CF/epoxy composite.Comparison of the effect of impinging positions on the eroded volume for CF/epoxy composite and CNF nanopaper.(a)The eroded volume versus curve for CNF nanopaper and right for CF/epoxy;(b)Top view of the different impinging positions,where L is the distance betweenfiberContour plot of von Mises stress for(a)CF/epoxy and(b)CNF nanopaper at maximum erodent indentation,(c)von Mises stress versus the distance from position along the x axis on the target surface.The horizontal dash lines in(c)indicate the critical stresses for CNF/CF and epoxy,respectively.The much smaller erosion rate of CNF nanopaper can be attrib-uted to its nano-sized structure.For CF/epoxy composite thefiber spacing is larger or comparable to the eroding particle size and the relative weak resin cannot be effectively protected.While for the nanopaper thefiber spacing is much smaller,a large number of in-ter-connectedfibers can partake the impact force of the particle to-gether at the impinging position.This effect can be demonstrated by comparing the stress distribution for the two target materials. Fig.7a and b plot the contour of von Mises stress at maximum ero-dent indentation for CF/epoxy composite and CNF nanopaper, respectively.For both targets the erodent impinges at the positions corresponding to the largest erosion,i.e.position A for CF/epoxy composite and F for CNF nanopaper.It shows that for CNF nanopa-per the stress endured by the CNFs is much higher than that by the epoxy resin while for CF/epoxy composite the stresses infiber and resin do not differ much.In both cases,the resin is the main source for eroded volume due to its much lower strength than thefibers. The stress distribution can be more clearly seen in Fig.7c where the von Mises stress on the target surface is plotted against the dis-tance from the initial impinging position along the x axis.For Fig.7c the erosion criteria is switched off in the simulations for comparison convenience.The peaks and valleys on the curve of CNF nanopaper correspond to the high stresses on CNFs and low stresses on epoxy.It can be seen from Fig.7c that although the nanofibers in CNF nanopaper experience very high stress near the impinge location,the epoxy resin actually experiences a lower stress than that in CF/epoxy composite because the stress is mainly endured by the CNFs for CNF nanopaper as indicated by the dark strips in Fig.7b.The intensely distributedfibers play an important role in partaking the impacting force,leading to smaller stress in the weak resin.While for CF/epoxy composite thefiber may be far away from the impinge location due to the largefiber inter-space.The impact force is mainly endured by the weak resin. Fig.7c represents the instantaneous stress distribution for a case study.The nanopaper may not lose any weight at this time point because the endured stresses by both CNF and epoxy are lower than the critical CNF/CF and epoxy stresses marked on Fig.7c.On the other hand,some epoxy near the impinging point of the CF/ epoxy composite may be ablated away because the endured stress there reaches the critical value.Although qualitative,this simpli-fied analysis provides an explanation for the observed differences of particle resistance between the two composite materials.5.ConclusionsIn this study,carbon nanofiber(CNF)nanopaper was prepared by thefiltration method and used to protect the carbonfiber (CF)/epoxy composites through vacuum assisted resin transform molding(VARTM)process.The CNF nanopaper can achieve much better particle erosion resistance than the conventional CF/epoxy composites.Ourfinite element simulations of the particle erosion experiments,although highly simplified,are able to provide qual-itative insight regarding the underlying mechanisms.The CNF nanopaper is indicated as a good protective coating material for wind turbine blades and other related applications in aerospace and transportation industries.AcknowledgementsThefirst author would like to acknowledge the China Scholar-ship Council for theirfinancial support to enable the author to study at The Ohio State University.The authors would like to thank NSF and Nanomaterial Innovation Ltd.for partialfinancial support of this work.Carbonfiber mats were donated by Textile Industries, Inc.and the epoxy resin was donated by Hexion.References[1]Miyazaki N,Takeda N.Solid particle erosion offiber reinforced plastics.JCompos Mater1993;27(1):21–31.[2]Tsiang TH.Sand erosion offiber composites:testing and evaluation.In:ChamisCC,editor.Test Methods and Design Allowables for Fibrous Composites,vol.2.ASTM STP1989:1003;55–74.[3]Tilly GP.Sand erosion of metals and plastics:a brief review.Wear1969;14:241–8.[4]Tilly GP.Erosion caused by airborne particles.Wear1969;14:63–79.[5]Tilly GP,Sage W.The interaction of particles and material behaviour in erosionprocess.Wear1970;16:447–65.[6]Miyazaki N,Hamao T.Effect of interfacial strength on erosion behavior of FRPs.J Compos Mater1996;30(1):35–50.[7]<>.Last accessed on September262012.[8]Dalili N,Edrisy A,Carriveau R.A review of surface engineering issues critical towind turbine performance.Renew Sust Energy Rev2009;13(2):428–38. [9]Barkoula NM,Karger-Kocsis J.Review processes and influencing parameters ofthe solid particle erosion of polymers and their composites.J Mater Sci 2002;37(18):3807–20.[10]Tilly GP.A two stage mechanism of ductile erosion.Wear1973;23(1):87–96.[11]Pool KV,Dharan CKH,Finnie I.Erosive wear of composite materials.Wear1986;107(1):1–12.[12]Patnaika A,Satapathyb A,Chandc N,Barkoulad NM,Biswasb S.Solid particleerosion wear characteristics offiber and particulatefilled polymer composites:a review.Wear2010;268(1–2):249–63.[13]Zhou G,Movva S,Lee LJ.Preparation and properties of nanoparticle and long-fiber-reinforced unsaturated polyester composites.Polym Compos 2009;30(7):861–5.[14]Palmeri MJ,Putz KW,Ramanathan T,Brinson LC.Multi-scale reinforcement ofCFRPs using carbon nanofipos Sci Technol2011;71(2):79–86. [15]Cai ZQ,Movva S,Chiou NR,Guerra D,Hioe Y,Castro JM,et al.Effect ofpolyaniline surface modification of carbon nanofibers on cure kinetics of epoxy resin.J Appl Polym Sci2010;118(4):2328–35.[16]ElTobgy MS,Ng E,Elbestawi MA.Finite element modeling of erosive wear.Int JMach Tool Manu2005;45(11):1337–46.[17]Griffin D,Daadbin A,Datta S.The development of a three-dimensionalfiniteelement model for solid particle erosion on an alumina scale/MA956substrate.Wear2004;256(9–10):900–6.[18]Takaffoli M,Papini M.Finite element analysis of single impacts of angularparticles on ductile targets.Wear2009;267(1–4):144–51.[19]Shimizu K,Noguchi T,Seitoh H,Okadab M,Matsubara Y.FEM analysis oferosive wear.Wear2001;250(1–12):779–84.[20]Bielawski M,Beres W.FE modelling of surface stresses in erosion-resistantcoatings under single particle impact.Wear2007;262(1–2):167–75.[21]Wang YF,Yang ZG.Finite element model of erosive wear on ductile and brittlematerials.Wear2008;265(5–6):871–8.[22]Martienssen W,Warlimont H.Springer handbook of condensed matter andmaterials data.Berlin:Springer;2005.[23]Low KH,Wang Y.Modeling of multi-layer circuit boards by using a model ofbi-phase and elasto-plastic plies.Circuit World2007;33:9–20.[24]Tibbetts GG,Beetz JCP.Mechanical properties of vapour-grown carbonfibres.JPhys D:Appl Phys1987;20(3):292–7.[25]Grace NF,Ragheb WF,Sayed GA.Development and application of innovativetriaxially braided ductile FRP fabric for strengthening concrete pos Struct2004;64(3–4):521–30.214N.Zhang et al./Composites:Part B54(2013)209–214。

主要织物种类,特点

如何辨别织物织物的手感是人们用来鉴识织物的质量质量的一项重要内容。

详细地说,用手触摸织物的感觉在心理上的反响,因为织物的品种不一样,质量高低也各有差别,织物的手感成效,也就有较大差别。

手感有以下几个方面:① 织物身骨能否挺括和废弛;② 织物表面的圆滑与粗拙;③ 织物的柔嫩与坚硬;④ 织物的薄与厚;⑤ 织物的冷与暖;⑥ 织物对皮肤有刺激与无刺少激的感觉。

比如:手抚摸着真丝纺品有凉的感觉;纯毛织物有暖的感觉;手感细而光滑确实良棉织品多是高支纱织拷制成;手感粗拙的多为低支纱的织品。

此外,人们还可借助力的作用,用手拉伸,抓纹等动作,再经过眼的察看,手的感觉,能够判断织物的弹性、强度、抗皱性及纤维类型等。

但总的来说,手感是选购面料和服饰时最重要的手段。

纯棉梭织物1、定义:纯棉梭织物是以棉花为原料,经过织机,由经纬纱纵横沉浮互相交叉而成的纺织品。

2、纯棉织物分为:①本色 xx:一般布面、细布、粗布、帆布、斜纹坯布、原色布。

② 色布:有硫化蓝布、硫化墨布、士林蓝布、士林灰布、色府绸、各色卡叽、各色华呢。

③xx :是印染上各种各种颜色和图案的布。

如:平纹印花布、印花斜纹布、印花哔叽、印花直贡。

④ 色织布:它是把纱或线先经过染色,后在机器上织成的布如条格布、被单布、绒布、线呢、装修布等。

3、纯棉织品的特色:① 吸湿性:棉纤维拥有较好的吸湿性,在正常的状况下,纤维可向四周的大气中汲取水分,其含水率为 8-10%,所以它接触人的皮肤,令人感觉柔嫩而不僵直。

假如棉布湿度增大,四周温度较高,纤维中含的水重量会所有蒸发散去,使织物保持水均衡状态,令人感觉舒坦。

② 保湿性:因为棉纤维是热和电的不良导体,热传导系数极低,又因棉纤维自己拥有多孔性,弹性高优点,纤维之间能积蓄大批空气,空气又是热和电的不良导体,所以,纯棉纤维纺织品拥有优秀的保湿性,衣着纯棉织品服饰令人感觉到暖和。

③ 耐热性:纯棉织品耐热能优秀,在摄氏110℃以下时,只会惹起织物上水分蒸发,不会损害纤维 ,所以纯棉织物在常温下 ,衣着使用 ,清洗印染等对织品都无影响 ,由此对提升了纯棉织品耐洗耐穿服用性能。

ul1581中文版.doc

电线电缆和软线参考标准REFERENCESTANDRDFORELECTRICAL WIRESCABLESAND FLEXIBLE CORDSUL1581-2001上海电缆研究所电线电缆信息中心前言A:本标准包含美国保险商实验所(UL)产品的跟踪服务时涉及的产品基本要求,些产品受下列条文的限制,且处于本标准适用范围之内。

这些要求是以可信的工程原理,研究成果。

试验数据和现场经验以及对制造安装和使用的问题的评估为依据而制定的。

这些依据来自向制造商,用户检验机构以及其它具有专业经验的人员咨询或是从他们处获的情报。

上述对产品的要求可能由于经验丰富的研究人员深入而必须或是有必要进行修订。

B:满足本标准对产品的要求是制造商产品继续获得UL认证的条件之一。

C:符合本标准条文的产品如果经检验发现还具有其它有损于本标准的安全水平的性能,则不一定认为符合本标准。

D:采用本标准规定不同的材料制成的产品或是具有与本标准规定不同的结构的产品,可按本标准的要求的含义进行检验和测试,如果性能基本相同,则认为该产品符合本标准。

E:UL按其宗旨履行职能时,不为制造商或是任何一方担当或开脱责任。

UL 的意见和调查结果是代表一种充分考虑到UL标准制定时实际运行的必要限制和工艺水平专业性评定,UL对此不负任何责任。

如果因使用,解释UL标准或是其它依据而造成的损失包括重大损失,UL不负任何责任和义务。

F:本UL标准规定的许多试验本身具有一定的危险性,因此在做些试验时应采取恰当的人员和设备防护措施。

导引1:范围1.1本标准包含橡皮绝缘电线电缆(UL44)热塑性料绝缘电线电缆(UL83)软线装置线(UL62)和用户引入电缆(UL854)等标准对于导体,绝缘,护套及其它护层的要求细则以及对于试样制备。

样品选取,温度处理和测量与计算方法的要求细则。

本标准的条文也被其它标准所引用。

1.2对于特定型号的电线电缆或软线的专用材料、结构、性能和标志的要求,载于相应的成品电缆标准中,本参考标准不包含这些内容。

黄麻纤维混纺纱交织物力学性能分析


棉 混 纺 交 织物 相 比 , 拉 伸 强 力 和 顶破 强 力小 , 其 耐 磨 性 能m - ; 麻 纤 维含 量 的 增 加 使 交 织 物 的拉 伸 强 力 其 但 却较 好 呈黄 i 川
和 顶破 强 力 下 降。
关 键 词 : 黄 麻 纤 维 ; 麻 纤 维 ; 纤 维 ; 织 物 ; 伸 性 能 ; 破 强 力 ; 磨 性 能 亚 棉 交 拉 顶 耐
和 防 紫 外 线 、 菌 性 能 , 顺 应 了 多 功 能 纺 织 品 的 抑 既
主要 把黄麻 纤维 运用 在 产 业用 纺 织 品上 , 麻纤 黄 维在 服用方 面 的市 场潜力 远未得 到有效 开发 。近
年 来 , 国一 直 致 力 于 对 黄 麻 纤 维 的 精 细 化 研 究 , 我 希望 通过对 黄麻纤 维 物 理 和化 学方 面 的 改性 , 从
所用 仪器 为 Y 0 5型 电子织 物 强 力仪 , G6 测试 方法按 照 国家标 准 G / 9 3 1 19 B T3 2 . ~ 9 7织物 拉伸 性能第 1 分 “ 部 断裂 强 力 和 断裂 伸 长率 的测 定 条
样 法 ” 定 执 行 。 试 样 在 温 度 为 2 相 对 湿 度 规 0c c、 6 % 的环境 条件 下预 调湿 4 5 8h后 进 行 测 试 , 样 试 有 效 宽 度 为 5 i , 距 为 2 0m 预 加 张 力 为 2 0l 夹 / a r 0 m, N, 速 拉 伸 速 度 为 1 0r / i。 等 0 m r n a a
1 1 试 验 材 料 .
作 者 简 介 : 文芳 (9 8 , , 师 , 州 ,10 0 彭 17 一) 女 讲 广 50 9
收稿 日期 :0 9 .1 2 0  ̄92
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

针织技术 20l5#-g 4期针织工丛。 经编长效蚊帐织物的顶破性能研究 张泰然.杨昆 (天津工业大学纺织学院,天津300387) 摘要:为研究经编长效蚊帐在使用过程中的顶破性能,采用不同组织与材料编织经编网眼织物,对 这些织物进行顶破性能测试分析。对比各试样顶破强力与顶破伸长的差异,观察织物破裂时结构的瞬间 变化情况。以及研究在试验中织物受力与形变的关系,并建立了一套经编织物顶破性能的观察系统。结 果表明:涤纶和聚乙烯经编网眼织物的力学性能有明显不同;相同材料的网眼织物,纱线线密度越大、织 物克质量越大,抗顶破性能越好;六角网眼结构比四角网眼结构抗顶破性能好,但四角网眼结构能在织 物破裂后更好地阻碍织物的脱散 关键词:蚊帐;顶破强力;顶破伸长;钢球法;网眼结构 中图分类号:TS 184.3 文献标志码:B 文章编号:1000—4033(2015)04—0021—04 

Study of Bursting Properties on Warp Knitted Long Lasting Mosquito-proof Net 

Zhang Tairan,Yang Kun (College of Textile,Tianjin Polytechnic University,Tianjin 300387,China) Abstract:In order to study the bumting properties of warp knitted long lasting mosquito-proof net,several warp fabrics with diferent stitches and fibers were knitted and tested in this paper.Diference between the bursting prop— eaies of those fabrics such as bursting strength and elongation were compared,and the fabric changes at the burst— ing break point were observed,the relationship between stress and strain were analyzed,observing systems of the warp fabric’s bursting behaviors were established.The results show that there is obvious difference between the bursting properties of polyester fibre and PE fabrics;under the conditions of the same materials,the density of yam is bigger,and the gram weight of fabric is larger,then the bursting strength of the fabric is bigger;fabric has good bursting properties with hexagonal mesh structure,but fabrics with four comers mesh structure can resist lad- dering better. Key words:Long Lasting Mosquito—proof Net;Bursting Strength;Bursting Elongation;Steel Ball Method;Mesh Structure 

经过长效杀虫剂处理的长效 防虫蚊帐(LLINs)被广泛用于世界 卫生组织fWHO)主导的全球疟疾 防治工作…。目前这类蚊帐主要由 经编网眼织物制成.且网眼形状多 为四角和六角.网眼大小可调。蚊 帐的防蚊能力主要由杀虫剂的残 留量以及蚊帐的完整性所决定[2-3]. 有破洞的蚊帐防蚊能力将下降或 消失 。 顶破性能是体现针织物力学 性能的主要指标.它能较好地模拟 针织物在大多数使用环境和使用 过程中的失效情况.因此评价蚊帐 的顶破性能对于提高其使用寿命 十分重要。有研究表明.针织物的 作者简介:张泰然(1990一),男,硕士研究生。主要从事针织结构理论研究。 通讯作者:杨昆(1967一),男,副教授。E-mail:tjkyang@126.130111。 性能不仅与编织所用的纱线性能 相关.还与织物结构密切相关 5_. 因此研究蚊帐的织物结构、原料与 顶破性能之间的关系就显得非常 重要 当前针织物的顶破性能研究 主要集中在测试参数对力学性能 指标的影响上.以及不同结构或材 料织物的力学性能指标的区别上. 

. 21 . 钎钽工 。2015年第4期 注:直线 为一条经过夹持圆的直径;A、 两点为过 做垂直于夹持圆平面的截面 与球冠圆的交点;D为球冠圆的中心;A’、 B 、O 为A、B、O点落在 上的竖直投影。 图6顶破机构侧视图 

Z 暖 圣 隧 

织物面积/mm2 *.1#织物;+.2撵织物;]卜.3群织物; +.4#织物; .5#织物;廿.6#织物。 图7顶伸强力与织物面积的关系 

的线性回归方程见表2。表2中. 各公式线性方程的判定系数 z 均大于0.99.这说明各试样的强 力与面积变化的关系基本呈线性 相关 

表2各试样顶伸强力与织物面积线 性回归方程及判定系数 试样编号 线性回归方程 R 1 y=0.43x+8.80 0.997 8 2 y=0.63x+18.40 0.991 4 3 y=0.5 +9.1O 0.994 3 4 v=O.35x+9.98 0.993 9 5 r=0.39x+3.93 0.999 0 6 r=0.36x+1.79 0.996 4 

这可能是由于织物拉伸应变 的各向异性.以及从织物中心到外 延的受力不均匀.当织物中大部分 纤维的伸长尚处在弹性变化范围 内时织物的某一根纱线就已经断 裂了.随着这根纱线的断裂.巨大 应力造成的线圈脱散将导致织物 破裂 因此在图7中没有观察到 

. 24 . 

纱线断裂时所具有的应力屈服阶 段.而是呈现一种类似胡克定律的 线性关系。根据文献[6]和[8]的研 究.材料的特性如初始模量等对织 物的力学性能有直接影响.故材料 初始模量越大.图7中对应曲线的 斜率也越大。 3结论 3.1对于经编网眼织物来说.织物 顶破强力的大小主要和纱线材料、纱 线粗细以及织物克质量有关。织物 的顶破伸长主要与纱线材料有关。 3.2在经编网眼织物顶破断裂的 过程中.织物的破裂并不出现在顶 破中心.而是在靠近钢球与织物接 触边缘的位置。 3-3经编网眼织物在顶伸过程中. 织物面积的增加与钢球的应力呈 线性正相关.而此线性关系的斜率 主要与纱线材料、纱线粗细有关。 参考文献 [1]SKOVMAND O,BOSSELMANN R. Strength of bed nets as function of de— nier,knitting pa ̄ern,texturizing and polymer[J].Malaria Journal,2011(1O): 87. [2]SMITH S C,JOSHI U B,GRABOW- SKY M,et a1.Evaluation of bednets af- ter 38 months of housedhold use in Nor- thwest Ghana[J].American Journal of Tro一 

针织技术 pical Medicine and Hygiene,2007,77 (6):243—246. [3]ASIDI A N,GUESSAN R,K0Fn A A.et a1.Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos—methy1)or a pyrethroid (1ambdacyhalthrin)alone and in a com— bination against insecticide・-resistant ano-・ pheles gambiae and eulexquinquefaseia- tus mosquitoes[J].Malaria Journal,2005 (4):25. [4]IRISH S R,GUESSAN R,BOK0 P M.et a1.Loss of protection with insecti— eide-treated nets against pyrethroid-re— sistant culexquinquefasciatus mosquitoes once nets become holed:an experimen. tal hut study[J].Parasit Vectors,2008(1): 17. [5]PAN N,TAO H,YI P.Relationship between fibre and yam strength[J].Tex— tile Research Joumal,2001,7(1):960- 964. 『6]王戎戎.针织物的变形与服用性能 的研究[D].上海:东华大学,2001. [7]李育民,陈黎曦,蒋素婵,等.试论织 物和针织物的顶破面积增加率和顶破 强度折算系数[J].针织工业,1983(5): 1-5. f8]商欣萍.土工织物拉伸力学性能的 应用研究[D].上海:东华大学,2003. 

收稿日期2014年11月13日

相关文档
最新文档