高中数学必修三概率3.3.1
高中数学第3章概率3.3几何概型自我检测苏教版必修3

3.3 几何概型自我检测 基础达标 一、选择题1.圆内有一内接正方形,今投射1镖,则落入正方形内的概率是( )A .2π B .π2 C .π1D .π21答案:B2.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( )A .31 B .21 C .32D .97答案:A3.两根相距 6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率为( )A .31 B .32 C .21D .65答案:A4.有1杯10升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,则小杯水中含有这个细菌的概率为( ) A .0.1B .0.01 C .0.001D .0 答案:B 二、填空题5.公交车30 min 一班,在车站停2min ,某乘客到达站台立即乘上车的概率是________. 答案:151 6.某人午觉醒来,发觉表停了,他打开收音机,想听电台报时,假定电台每小时报时一次,则他等待的时间短于10min 的概率为__________. 答案:61 解析:设A={等待的时间不多于10分钟}.我们所关心的事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的概率公式得,P (A )=605060-=61. 三、解答题7.现向如右图所示的正方形内随机地投掷飞镖,求飞镖落在阴影部分的概率.解:由⎩⎨⎧-==--.,10436y y x得A (61,-1). ∵B(1,-1),∴|AB|=1-61=65. 同理,由⎩⎨⎧=--=,,04361y x x 得y=32.∴C(1,32), ∴|BC|=32-(-1)= 35.∴S △ABC =21×65×35=3625.而正方形面积为2×2=4.因此所求概率为1442543625=.8.设A 为圆周上一定点,在圆周上等可能地任取一点与A 连结,求弦长超过半径的概率.解:如右图所示,|AB|=|AC|=OB (半径),则弦长超过半径,相当于动点落在阴影部分所在的扇形圆弧上.由几何概型的概率计算公式,得P=32234=OB OBππ.答:弦长超过半径的概率为32.9.设有一均匀的陀螺,其圆周的一半上均匀地刻上区间[0,1]上的诸数字,另一半均匀地刻上区间[1,3]上的诸数字.旋转这陀螺,求它停下时,其圆周上触及桌面的刻度位于[0.5,1.5]上的概率.解析:如右图,旋转陀螺,其圆周上任一点与桌面的接触是等可能的,因此只要接触点落在阴影部分,就表示圆周上触及桌面的刻度位于[0.5,1.5],由几何概型求概率公式得P=83)8141(22=+=rr S S ππ圆阴更上一层1.一个服务窗口每次只能接待一名顾客,两名顾客将在8小时内随机到达.顾客甲需要1小时服务时间,顾客乙需2小时.求两人都不需要等待的概率. 解:设顾客甲到达的时间为x ,顾客乙到达的时间为y.则 0≤x ≤8 0≤y ≤8无人需要等待所包含的基本事件为y-x ≥1 x-y ≥2试验的每个结果都是等可能的,由几何概型的条件知,只要在阴影部分就表示无人需要等待.∴P=2228621721⨯+⨯=正阴SS=66.4%.2.把长度为a的木棒任意折成三段,求它们可以构成一个三角形的概率.分析:要构成三角形,则必须满足三角形中任意两边之和大于第三边,关键在于确定它所包含的基本事件.解:设其中两段的长为x、y,则所有基本事件:x>0,y>0 x+y<a而构成三角形所包含的基本事件:x<2a,y<2a,x+y>2a.P=4121)22(212=⨯⨯aaa=0.25.答:可构成三角形的概率是0.25.3.从甲地到乙地有一班车在9:30到10:00到达,若某人从甲地坐该班车到乙地转乘9:45到10:15出发的汽车到丙地去,问他能赶上车的概率是多少?思路分析:到达乙地的时间是9.5时到10时之间的任一时刻,汽车从乙地出发的时间是9.75时到10.25时之间的任一时刻,如果在平面直角坐标系内以x轴表示到达乙地的时间,y轴表示汽车从乙地出发的时间,因为到达乙地时间和汽车从乙地出发的时间是随机的,则随机试验的所有结果(x,y)是正方形内等可能的任一点,事件A(他能赶上车)发生的充要条件是x≤y,即对应正方形内阴影部分,事件A发生的概率只与阴影部分的面积有关,适用于几何概型.解析:在平面直角坐标系内,以x和y分别表示到达乙地和汽车从乙地出发的时间,则能赶上汽车的充要条件是x≤y.而(x,y)的所有可能结果是边长为0.5的正方形,而可能赶上车的时间由上图中的阴影所表示.这是一个几何概率问题.由公式得P(A)=2225.021 25.05.0⨯-=0.875.答案:能赶上车的概率为0.875.。
2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.2 均匀随机数的产生 教师配套用书课件(共32张ppt)

§3.3 几何概型
3.3.2 均匀随机数的产生
本节知识目录
3.3.2
明目标、知重点
均匀
填要点、记疑点
探究点一 均匀随机数的产生
随机
数的
探要点、究所然
探究点二 随机模拟方法 探究点三 用模拟法估计面积型的几何概率
产生
当堂测、查疑缺
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
(3)统计出试验总次数N,落在阴影部分的次数N1.
N1 (4)计算频率fn(A)= N 就是飞镖落在小正方形内的概率的近似值.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
3.3.2
探究点二:随机模拟方法
例2 假设你家订了一份报纸,送报人可能在早上 6:30~7:30 之间把报纸送到你
家,你父亲离开家去上班的时间在早上 7:00~8:00 之间,如果把“你父亲在离 开家之前能得到报纸”称为事件 A,则事件 A 的概率是多少? 思考 1 设 X、Y 为[0,1]上的均匀随机数,6.5+X 表示送报人到达你家的时间,7
+Y 表示父亲离开家的时间,若事件 A 发生,则 X、Y 应满足什么关系?
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
3.3.2
探究点一:均匀随机数的产生
思考1 我们常用的是[0,1]上的均匀随机数,如何利用计算器产生0~1之间的均 匀随机数?如何利用计算机产生0~1之间的均匀随机数?
答 用计算器产生0~1之间的均匀随机数的方法见教材;用计算机的方法如
下:用Excel演示. (1)选定A1格,键入“=rand()”,按Enter键,则在此格中的数是随机产生的 [0,1]上的均匀随机数; (2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2~A100,点击 粘贴,则在A1~A100的数都是[0,1]上的均匀随机数.这样我们就很快就得到 了100个0~1之间的均匀随机数,相当于做了100次随机试验.
高中数学第3章概率3.3几何概型(2)教案苏教版必修3

3.3 几何概型第2课时导入新课设计思路一:〔问题导入〕以下图是卧室与书房地砖示意图,图中每一块地砖除颜色外完全一样,小猫分别在卧室与书房中自由地走来走去.在哪个房间里,小猫停留在黑砖上概率大?卧室〔书房〕设计思路二:〔情境导入〕在概率论开展早期,人们就已经注意到只考虑那种仅有有限个等可能结果随机试验是不够,还必须考虑有无限多个试验结果情况.例如一个人到单位时间可能是8:00 至9:00之间任何一个时刻;往一个方格中投一个石子,石子可能落在方格中任何一点……这些试验可能出现结果都是无限多个.推进新课新知探究对于导入思路一:由于地砖除颜色外完全一样,小猫自由地走来走去,因此,小猫可能会停留在任何一块地砖上,而且在任何一块地砖上停留可能性一样,对于这样一个随机事件概率,有如下结论:对于一个随机试验,如果我们将每个根本领件理解为从某特定几何区域内随机地抽取一点,而该区域内每一点被取到时机都一样,这样就可以把随机事件与几何区域联系在一起.如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型,简称几何概型.几何概型与古典概型一样也是一种等可能事件概率模型,它特点是:〔1〕试验中所有可能出现结果,也就是根本领件有无限多个. 〔2〕根本领件出现可能性相等.实际上几何概型是将古典概型中有限性推广到无限性,而保存等可能性,这就是几何概型.几何概型概率计算方法如下:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内〞为事件A ,那么事件A 发生概率为P(A)= .这里要求D 测度不为0,其中“测度〞意义依D 确定,当D 分别是线段、平面图形与立体图形时,相应“测度〞分别是长度、面积与体积等.对于导入思路二:〔1〕几何概率模型:如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型.〔2〕几何概型概率公式:P 〔A 〕=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . 〔3〕几何概型特点:1°试验中所有可能出现结果〔根本领件〕有无限多个.2°每个根本领件出现可能性相等.应用例如思路1例1 取一个边长为2a 正方形及其内切圆〔如下图〕,随机向正方形内丢一粒豆子,求豆子落入圆内概率.分析:由于是随机丢豆子,故可以认为豆子落入正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,豆子落入圆中概率应该等于圆面积与正方形面积比.解:记“豆子落入圆内〞为事件A ,那么 P(A)=4422ππ==a a 正方形面积圆的面积. 答:豆子落入圆内概率为4π.点评:在解题时,首先要区分是古典概型还是几何概型,这两种随机事件概率类型虽然每一个事件发生都是等可能,但是几何概型是有无数个根本领件情形,古典概型是有有限个根本领件情形.此外,本例可以利用计算机模拟,过程如下:〔1〕在Excel 软件中,选定A1,键入“=〔rand 〔〕-0.5〕*2”. 〔2〕选定A1,按“ctrl+C〞.选定A2~A1 000,B1~B1 000,按“ctrl+V〞.此时,A1~A1 000,B1~B1 000均为[-1,1]区间上均匀随机数.〔3〕选定D1,键入“=power 〔A1,2〕+ power 〔B1,2〕〞;再选定D1,按“ctrl+C〞;选定D2~D1 000,按“ctrl+V〞,那么D列表示A2+B2.〔4〕选定F1,键入“=IF〔D1>1,1,0〕〞;再选定F1,按“ctrl+C〞;选定F2~F1 000,按“ctrl+V〞,那么如果D列中A2+B2>1,F列中值为1,否那么F列中值为0.〔5〕选定H1,键入“FREQUENCY〔F1:F10,0.5〕〞,表示F1~F10中小于或等于0.5个数,即前10次试验中落到圆内豆子数;类似,选定H2,键入“FREQUENCY〔F1:F20,0.5〕〞,表示前20次试验中落到圆内豆子数;选定H3,键入“FREQUENCY 〔F1:F50,0.5〕〞,表示前50次试验中落到圆内豆子数;选定H4,键入“FREQUENCY〔F1:F100,0.5〕〞,表示前100次试验中落到圆内豆子数;选定H5,键入“FREQUENCY〔F1:F500,0.5〕〞,表示前500次试验中落到圆内豆子数;选定H6,键入“FREQUENCY〔F1:F1 000,0.5〕〞,表示前1 000次试验中落到圆内豆子数.〔6〕选定I1,键入“H1*4/10〞,表示根据前10次试验得到圆周率π估计值;选定I2,键入“H2*4/10〞,那么I2为根据前20次试验得到圆周率π估计值;类似操作,可得I3为根据前50次试验得到圆周率π估计值,I4为根据前100次试验得到圆周率π估计值,I5为根据前500次试验得到圆周率π估计值,I6为根据前1 000次试验得到圆周率π估计值.如图:例2 如图,在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC概率.分析:在线段AB上取一点C′,使得线段AC′长度等于线段AC长度.那么原问题就转化为求AM小于AC′概率.所以,当点M 位于以下图中线段AC′上时,AM<AC,故线段AC′即为区域d.区域d测度就是线段AC′长度,区域D测度就是线段AB长度.解:在AB上截取AC′=AC.于是P(AM<AC)=P(AM<AC′)=.2.答:AM小于AC′概率为2变式训练:假设将例2改为:如以下图,在等腰直角三角形ABC 中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC概率.解:此时,应该看作射线CM落在∠ACB内部是等可能.公式中区域D是∠ACB〔内部〕,而区域d求法应该与原题是一样,即在线段AB上取一点C′,使得线段AC′长度等于线段AC长度〔如图〕,那么区域d就是∠ACC′〔内部〕.从而区域d测度就是∠ACC′度数,区域D测度就是∠ACB度数.∠ACC′==67.5°,所以所求事件概率为.点评:由此可见,背景相似问题,当等可能角度不同时,其概率是不一样.此题可参考习题3.3第6题.例3 (会面问题)甲、乙二人约定在12 点到下午5 点之间在某地会面,先到者等一个小时后即离去.设二人在这段时间内各时刻到达是等可能,且二人互不影响.求二人能会面概率.分析:两人相约时间都是5小时,设X ,Y 分别表示甲、乙二人到达时刻,因此,0≤X≤5,0≤Y≤5,这样两人到达时刻就构成一个正方形,而两人能会面必须满足|X -Y|≤1,而这个不等式所表示是一个带状,位于正方形内图形,由于两人到达时刻是随机,而且,在每一个时刻到达可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:记A={二人能会面}.以 X ,Y 分别表示甲、乙二人到达时刻,于是0≤X≤5,0≤Y≤5,即点M 落在图中阴影局部.所有点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能,所以落在正方形内各点是等可能,符合几何概型条件.二人会面条件是:|X -Y|≤1,故正方形面积为5×5=25,阴影局部面积为5-2×21×42259. 点评: 建立适当数学模型,是解决几何概型问题关键.对于“碰面问题〞可以模仿此题建立数学模型.例4 如图,随机投掷一个飞镖扎在靶子上,假设飞镖既不扎在黑色靶心,也不扎在两个区域之间,更不会脱靶,求飞镖扎在以下区域概率:(1)编号为25区域;(2)编号在6到9之间区域;(3)编号为奇数区域.〔每一个小区域面积一样〕分析:由于飞镖是随机投掷到靶子上,并且落在靶子每一个位置可能性一样,因此,符合几何概型特点.解: 假设靶子每一个区域面积为1个单位,那么靶子所在圆面积为28个单位.〔1〕记事件A 为“飞镖扎在编号为25区域〞,那么P(A)= 281. 〔2〕记事件B 为“飞镖扎在编号为6到9之间区域〞,那么P(B)= .〔3〕记事件C 为“飞镖扎在编号为奇数区域〞,那么P(C)=.答:〔1〕飞镖扎在编号为25区域概率为281;(2)飞镖扎在编号在6到9之间区域概率为71;(3)飞镖扎在编号为奇数区域概率为21. 点评:仔细研读题目,从题目提供信息进展分析,寻找适当解题方法,是解决此题要害所在.思路2例1 在1 L 高产小麦种子中混入了一粒带麦锈病种子,从中随机取出10 mL ,含有麦诱病种子概率是多少分析:病种子在这1 L 种子中分布可以看作是随机,取得10 mL 种子可视为区域d ,所有种子可视为区域D.解:取出10 mL 麦种,其中“含有病种子〞这一事件记为A ,那么 P(A)=1001100010==所有种子的体积取出种子的体积. 答:含有麦诱病种子概率为1001. 点评:由于病种子是随机地处在容器中,它可以位于容器任何一个位置,而且在每一个位置可能性一样,符合几何概型特点,所以运用几何概型概率计算方法来解决此题.例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)概率是多少?分析:由于两人到达与离开时刻是随机,而且,在每一个时刻到达或离开可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:如图,以横坐标x表示报纸送到时间,纵坐标y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能,所以符合几何概型条件.根据题意,只要点落到阴影局部,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==87.5%.点评:建立适当数学模型,该模型符合几何概型特点,这是解答此题关键所在.另外我们还可以运用计算机产生随机数来模拟该试验.设X是0到1之间均匀随机数,Y也是0到1之间均匀随机数.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.计算机模拟方法:〔1〕选定A1,键入函数“=rand〔〕〞;〔2〕选定A1,按“ctrl+C〞,选定A2~A50,B1~B50,按“ctrl+V〞.此时,A1~A50,B1~B50均为[0,1]区间上均匀随机数.用A列数加7表示父亲离开家时间,B列数加6.5表示送报人送到报纸时间.如果A+7>B+6.5,即A-B>-0.5,那么表示父亲在离开家前能得到报纸.〔3〕选定D1,键入“=A1-B1”;再选定D1,按“ctrl+C〞,选定D2D50,按“ctrl+V〞.〔4〕选定E1,键入函数“=FREQUENCY〔D1:D50,-0.5〕〞,E1表示统计D列中小于或等于-0.5数个数,即父亲在离开家前不能得到报纸频数.〔5〕选定F1,键入“=〔50-E1〕/50.F1表示统计50次试验中,父亲在离开家前能得到报纸频率.下面是我们在计算机上做50次试验,得到结果是P(A)=0.88,如图:例3 假设一个直角三角形两直角边长都是0到1之间随机数,试求斜边长小于34事件概率.分析:由于直角边长是0到1之间随机数,因此设两直角边长分别为x,y,而x,y满足0≤x≤1,0≤y≤1,斜边长=,x,y可以落在0≤x≤1,0≤y≤1所表示图形任何一个位置,而且在每个位置可能性一样,满足几何概型特点.解:设两直角边长分别为x,y,那么0≤x≤1,0≤y≤1,斜边长=,如右图,样本空间为边长是1正方形区域,而满足条件事件所在区域面积为.因此,所求事件概率为P=.点评:根据条件,构造满足题目条件数学模型,再运用几何概型概率计算方法来计算某个事件发生概率,是一种常用求解概率问题方法.例4 甲、乙两人相约于中午12点到13点之间在某一个地方碰面,并约定先到者等候20分钟后可以离开,试设计模拟方法估计两人能碰面概率.分析:当两人到达碰面地点时间相差在20分钟之内时,两人能碰面.我们可以用两个转盘来模拟两人到达碰面地点时间.解: 运用转盘模拟方法.具体步骤如下:〔1〕做两个带指针〔分针〕转盘,标上刻度在0到60来表示时间,如右图;〔2〕每个转盘各转m 次,并记录转动得到结果,以第一个转盘结果x 表示甲到达碰面地点时间,以第二个转盘结果y 表示乙到达碰面地点时间;〔3〕统计两人能碰面〔满足|x -y|<20〕次数n ;〔4〕计算m n 值,即为两人能碰面概率近似值〔理论值为95〕. 点评:实施模拟方法除了转盘模拟方法外,还可以运用现代信息技术即计算机来模拟,具体操作如下:〔1〕新建一个电子表格文件,在A1位置输入:=RAND( )60,产生一个0到60随机数x ;〔2〕将A1位置处表达式复制到B1处,这样又产生一个0到60随机数y ;〔3〕在C1位置处输入:=IF 〔A1-B1<=-20,0,IF 〔A1-B1<20,1,0〕,判断两人能否碰面〔即是否满足|x -y|<20〕,如果是,就返回数值1,否那么返回数值0;〔4〕将第一行三个表达式复制100行,产生100组这样数据,也就是模拟了100次这样试验,并统计每次结果;〔5〕在C101处输入:=SUM(C1:C100)/100统计这100次重复试验中正好两人能碰面频率,即事件“两人能碰面〞发生概率近似值.知能训练课本本节练习4、5.解答:4.设A={射线OA落在∠xOT内}.因为射线OA落在∠xOT内是随机,也就是射线OA可以落在∠xOT内任意一个位置,这符合几何概型条件,区域d测度是60,区域D测度是360,根据几何概型概率计算公式,得P(A)=.5.运用计算机模拟结果大约为2.7左右.点评:根据实际问题背景,判断是否符合几何概型特点,如是那么选择符合题意“测度〞,运用求几何概型概率方法来解决问题,此外我们还可以设计符合问题模拟方法来模拟得到问题近似解.课堂小结在这节课上我们主要是运用几何概型求解一些问题概率,以及运用模拟方法求某一个事件概率近似值.结合上节课内容可以知道,几何概型概率问题仍然是随机事件概率,与古典概型区别是古典概型所含根本领件个数是有限个,而几何概型所包含根本领件个数是无限.对于几何概型我们着重研究如下几种类型:〔1〕与长度有关几何概型;〔2〕与面积有关几何概型;〔3〕与体积有关几何概型;(4)与角度有关几何概型.其中我们对与面积有关几何概型与与体积有关几何概型要求重点掌握.作业课本习题3.3 4、5、6.设计感想几何概型是区别于古典概型又一随机事件概率模型,在解决实际问题时首先根据问题背景,判断该事件是属于古典概型还是几何概型,这两者区别在于构成该事件根本领件个数是有限个还是无限个.在使用几何概型概率计算公式时,一定要注意其适用条件:每个事件发生概率只与构成该事件区域长度成比例.随机数在日常生活中,有着广泛应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣量〔如概率值、常数〕有关,然后设计适当试验,并通过这个试验结果来确定这些量.这种方法也是我们研究问题常用方法.习题详解1.记A={灯与两端距离都大于2 m}.因为把一盏灯挂在绳子上位置是随机,也就是说灯挂在绳子上位置可以是绳子上任意一点,这符合几何概型条件,根据P=,得P(A)= .答:灯与两端距离都大于2 m概率为13.2.记A={所投点落入小正方形内}.由于是随机投点,故可以认为所投点落入大正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入小正方形内概率应该等于小正方形内面积与大正方形面积比,即 P(A)=943222==大正方形面积小正方形面积. 答:所投点落入小正方形内概率为94.3.记A={所投点落在梯形内部}.由于是随机投点,故可以认为所投点落入矩形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入梯形内部概率应该等于梯形面积与矩形面积比,即 P(A)=125)2131(21=⨯⨯+⨯=b a b a a 矩形面积梯形面积. 答:所投点落在梯形内部概率为125. 4.设A={该点落在正方形内}.因为该点落在正方形内是随机,也就是该点可以落在正方形内任意一个位置,这符合几何概型条件,根据几何概型求概率计算公式,得P(A)=. 答:乘客到达站台立即乘上车概率为π21. 5.分析:直接求“硬币落下后与格线有公共点〞概率比拟困难,可以考虑先求“硬币落下后与格线无公共点〞概率,再求“硬币落下后与格线有公共点概率〞.解:因为直径等于2 cm 硬币投掷到正方形网格上是随机,也就是硬币可以落在正方形网格上任意一个位置,这符合几何概型条件.要求“硬币落下后与格线无公共点〞概率,根据几何概型求概率计算公式:P(A)=,因为每个小正方形边长都等于6 cm ,硬币直径为2 cm ,设有n 个小正方形,那么区域d 测度为n·π·12,区域D 测度n·62,故“硬币落下后与格线无公共点〞概率为,而事件“硬币落下后与格线有公共点〞是“硬币落下后与格线无公共点〞对立面,所以事件“硬币落下后与格线有公共点〞概率为1-36π.答:硬币落下后与格线有公共点概率为1-36π.6.贝特朗算出了三种不同答案,三种解法似乎又都有道理.人们把这种悖论称为概率悖论,或贝特朗奇怪论.贝特朗解法如下:解法一:任取一弦AB ,过点A 作圆内接等边三角形〔如图1〕.因为三角形内角A 所对弧,占整个圆周31.显然,只有点B 落在这段弧上时,AB 弦长度才能超过正三角形边长a ,故所求概率是31.解法二:任取一弦AB ,作垂直于AB 直径PQ.过点P 作圆内接等边三角形,交直径于N ,并取OP 中点M 〔如图2〕.容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直弦,如果通过MN 线段,其弦心距均小于QN ,那么该弦长度就大于等边三角形边长,故所求概率是21.解法三:任取一弦AB.作圆内接等边三角形内切圆〔如图3〕,这个圆是大圆同心圆,而且它半径是大圆21,它面积是大圆4141. 图1 图2 图3细细推敲一下,三种解法前提条件各不一样:第一种假设了弦端点在四周上均匀分布;第二种假设弦中点在直径上均匀分布;第三种假设弦中点在小圆内均匀分布.由于前提条件不同,就导致三种不同答案.这是因为在那时候概率论一些根本概念〔如事件、概率及可能性等〕还没有明确定义,作为一个数学分支来说,它还缺乏严格理论根底,这样,对同一问题可以有不同看法,以致产生一些奇谈怪论.。
2020版高中北师大版数学必修3课件:3.3 模拟方法——概率的应用

(3)几何概型中每个基本事件出现的可能性不相等,而 古典概型中每个基本事件出现的可能性相等. ( )
提示:(1)×.几何概型的概率计算与构成事件的区域形 状、位置无关. (2)×.因为区间[-10,10]上的整数只有21个,是有限 的. (3)×.几何概型和古典概型的每个基本事件出现的可能 性都相等.
类型一 与长度有关的几何概型 【典例】1.某公共汽车站每隔5 min有一辆汽车通过, 乘客到达汽车站的任一时刻都是等可能的,乘客候车 时间不超过3 min的概率是________.
2.已知方程x2+3x+ p +1=0,若p在[0,10]中随机取值,
4
则方程有实数根的概率为________.
【思维·引】1.结合汽车停留时间与乘客到达车站的
D5
即候车时间不超过3 min的概率为 3 .
5
方法二、容易判断这是一个几何概型问题,如图所示.
记A为“候车时间不超过3 min”,以x表示乘客来到 车站的时间,那么每一个试验结果可以表示为x,假定 乘客到车站后第一辆汽车来到的时刻为t,依据题意, 乘客必在(t-5,t]内来到车站,故D={x|t-5<x≤t}, 欲使乘客候车时间不超过3 min必须满足t-3≤x≤t,
§3 模拟方法——概率的应用
1.几何概型的概念 向平面上有限区域(集合)G内随机地投掷点M,若点 M落在子区域G1 G的概率与G1的面积成正比,而与 G的形状、位置无关,则称这种模型为几何概型. 几何概型中的G也可以是空间中或直线上的有限区 域,相应的概率是体积之比或长度之比.
【思考】 几何概型有什么特点?
【思考】 几何概型的概率计算公式中G与G1的度量是否必须一致? 提示:G与G1的度量必须一致,或者都是长度,或者都 是面积,或者都是体积.
高中数学必修三目录人教版

高中数学必修三目录人教版第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题后记高中数学必修三知识点程序框图程序框图的概念:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形;程序框图的构成:一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
设计程序框图的步骤:第一步,用自然语言表述算法步骤;第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图;第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图。
画程序框图的规则:1使用标准的框图符号;2框图一般按从上到下、从左到右的方向画;3除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;4在图形符号内描述的语言要非常简练清楚。
几种重要的结构:顺序结构、条件结构、循环结构。
语句输入语句:在该程序中的第1行中的INPUT语句就是输入语句。
这个语句的一般格式是:其中,“提示内容”一般是提示用户输入什么样的信息。
如每次运行上述程序时,依次输入-5,-4,-3,-2,-1,0,1,2,3,4,5,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。
输出语句:在该程序中,第3行和第4行中的PRINT语句是输出语句。
它的一般格式是:同输入语句一样,表达式前也可以有“提示内容”。
最新人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学必修3讲义 专题3.3 几何概型
第三章概率3.3 几何概型1.几何概型(1)几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的特点①试验中所有可能出现的结果(基本事件)有________多个.②每个基本事件发生的可能性________.(3)古典概型与几何概型的异同点相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的.不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.2.几何概型的概率公式在几何概型中,事件A的概率的计算公式为:()P A ________________.3.均匀随机数的产生(1)均匀随机数的定义在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样,称这样的随机数为均匀随机数.我们常用的是[0,1]上的均匀随机数.(2)均匀随机数的特征由均匀随机数的定义,可得随机数的特征:①随机数是在一定范围内产生的;②在这个范围内的每一个数被取到的可能性相等.(3)[0,1]上的均匀随机数利用计算器的RAND()函数可以产生0~1之间的均匀随机数,试验的结果是区间[0,1]上的任何一个实数,而且出现任何一个实数是等可能的.因此,可以用计算器产生0~1之间的均匀随机数进行随机模拟.用带有PRB功能的计算器产生均匀随机数的方法如图所示:K 知识参考答案:1.(2)①无限 ②相等 2.A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)K —重点 理解几何概型的概念及基本特点,掌握概率的计算公式 K —难点 理解几何概型的概念及基本特点K —易错几何概型中测度的选取容易弄错,导致计算错误1.与长度有关的几何概型的求法求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A 包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A 发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A 的概率.【例1】从区间[]2,2-中随机选取一个实数a ,则函数()1421x x f x a +=-⋅+有零点的概率是A .14B .13C .12D .23【答案】A【解析】()14214221x x x x f x a a +=-⋅+=-⋅+,令20x t =>,则()()221f x g t t at ==-+.若函数()1421x x f x a +=-⋅+有零点,即方程14210x x a +-⋅+=有实根,即方程2210t at -+=有大于零的实根.由根与系数的关系得1210t t =>,故方程的两个根同号,则1220t t a +=>,解得0a >.又因为2440a ∆=-≥,解得1a ≤-或1a ≥.综上所述,满足题意的a 的取值范围是12a ≤≤.故由几何概型可知函数()1421x x f x a +=-⋅+有零点的概率是()211224-=--.故本题正确答案为A【名师点睛】本题考查的是函数的零点和几何概型问题.本题中的函数()1421x x f x a +=-⋅+有零点,通过换元20x t =>,转化为方程2210t at -+=有大于零的实根,由2440a ∆=-≥,1210t t =>且1220t t a +=>,解得12a ≤≤,由几何概型可知函数()1421x x f x a +=-⋅+有零点的概率是14. 2.与面积有关的几何概型的求法求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率.“面积比”是求几何概型的一种重要的方法.【例2】已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是A .π12- B .π13-C .π112-D .π16-【答案】D 【解析】如图,∵三角形的三边长分别是5,5,6,∴三角形的高4AD =,则三角形ABC 的面积164122S =⨯⨯=.易知蚂蚁距离三角形的三个顶点的距离均超过2对应的区域为图中的阴影部分, 三个小扇形的面积之和为一个整圆的面积的12,又圆的半径为2,则阴影部分的面积为21112π2122π2S =-⨯⨯=-,根据几何概型的概率计算公式可得所求的概率为122ππ1126-=-,故选D.【名师点睛】本题主要考查几何概型的概率计算,根据条件求出相应的面积是解决本题的关键,考查转化思想以及计算能力.求出蚂蚁距离三角形的三个顶点的距离均超过2对应图形的面积及三角形的面积,利用几何概型的概率计算公式即可得到结论. 3.与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.【例3】已知在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,2PA AB ==,在该四棱锥内部或表面任取一点O ,则三棱锥O PAB -的体积不小于23的概率为______. 【解析】如图,取,,,AD BC PC PD 的中点分别为,,,E F G H ,连接,,,,EF FG GH HE 当点O 在几何体CDEFGH 内部或表面上时,23O PAB V -≥.在几何体CDEFGH 中,易知56CDEFGH G CDEF G DEH V V V --=+=, 又83P ABCDV -=,则所求概率为5568163=.【名师点睛】本题主要考查几何概型、棱锥的体积公式,考查了空间想象能力与计算能力. 4.随机模拟的应用(1)求解不规则图形的面积:利用随机模拟试验可以近似计算不规则图形A 的面积,解题的依据是根据随机模拟估计概率()A P A =随机取的点落在中的随机取点频数的总次数,然后根据()P A =A 随机取点的全部结构成事件的区域面果构成的积区域面积列等式求解.(2)估算随机事件的概率:用计算机或计算器模拟试验的方法称为随机模拟.应用随机模拟方法设计模拟试验,可用计算器产生随机数,通过随机数的特征来估计概率.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.【例4】设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成区域的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为__________.【解析】这种随机模拟的方法是在[0,1]内生成N 个点,而在曲线y =f (x )及直线x =0,x =1,y =0所围成的区域内的点有N 1个,所以1N S SN ≈矩形,又矩形的面积是1,所以由随机模拟方法得到S 的近似值为1N N. 【名师点睛】用随机模拟的方法构造几何概型求面积,即可求出所求面积的近似值. 【例5】(1)在边长为1的正方形ABCD 内任取一点M ,求事件“||1AM ≤”的概率;(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x ,y ,统计出两数能与1构成锐角三角形的三边长的数对(,)x y 共有12对,请据此估计π的近似值(精确到0.001). 【解析】(1)如图,在边长为1的正方形ABCD 内任取一点M ,满足条件的点M 落在扇形BAD 内(图中阴影部分),由几何概型的概率计算公式,得π(||1)4ABCDS P AM S ≤==阴影部分正方形, 故事件“||1AM ≤”的概率为π4.(2)以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,任取两个小于1的正实数x ,y ,所有基本事件构成区域01(,)|01x x y y Ω⎧⎫<<⎧⎪⎪=⎨⎨⎬<<⎪⎪⎩⎩⎭,即正方形ABCD 内部;事件N =“以x ,y 与1为边长能构成锐角三角形”包含的基本事件构成区域220101(,)|11x y N x y x y x y ⎧⎫<<⎧⎪⎪⎪<<⎪⎪⎪=⎨⎨⎬+>⎪⎪⎪⎪⎪⎪+>⎩⎩⎭,即扇形BAD 以外正方形ABCD 以内的阴影部分. 由(1)知π()14P N =-,全班56名同学每人随机写下一对都小于1的正实数x ,y ,可以看作在区域Ω中任取56个点;满足“以x ,y 与1为边长能构成锐角三角形”的(,)x y 共有12对,即有12个点落在区域N 中,故其概率为1235614=,用频率估计概率,有π31414-≈,即π11414≈,故1122π4 3.143147≈⨯=≈,即π的近似值为3.143.【方法点睛】本题主要考查了几何概型问题,其中解答中涉及几何概型及其概率的计算、几何概型的应用等知识点,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,此类问题的解答中仔细审题,转化为几何的度量关系是解答的关键. 5.几何概型中测度的选取不正确【例6】在等腰直角三角形ABC 中,直角顶点为C . (1)在斜边AB 上任取一点M ,求AM <AC 的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.(2)在∠ACB 的内部作射线CM ,则所求概率为2AC AC AB AB '==【错因分析】第(2)问的解析中错误的原因在于选择的观察角度不正确,因为在∠ACB 的内部作射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的,则涉及的测度应该是角度而不是长度. 【正解】(1)如图所示,在AB 上取一点C ',使AC '=AC ,连接CC '. 由题意,知AB 2 C.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以()22AC P AM AC AB AC'<===.(2)由于在∠ACB 内作射线CM ,等可能分布的是CM 在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,又1(18045)67.52ACC '∠=-=,90ACB ∠=,所以()ACC P AM AC ACB '∠<==∠的角度的角度67.53904=.【名师点睛】在确立几何概型的基本事件时,一定要选择好观察角度,注意判断基本事件的等可能性.1.有四个游戏盘,将它们水平放稳后,向游戏盘上投掷一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是A B C D2.一个圆及其内接正三角形如图所示,某人随机地向该圆内扎针,则针扎到阴影区域的概率为 A 3B 33C 3D 33.在棱长为3的正方体内任取一个点,则这个点到各面的距离都大于1的概率为A .13B .19C .127D .344.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为A.22B.2π2C.16D.1π65.在长为12 cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形的面积大于20 cm2的概率为A.16B.13C.23D.456.在区间[–π,π]内随机取两个实数,分别记为a,b,则使得函数f(x)=x2+2ax–b2+π有零点的概率为A.78B.34C.12D.147.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为12,则ADAB=A.12B.14C.3D.78.如图,长方体ABCD–A1B1C1D1中,有一动点在此长方体内随机运动,则此动点在三棱锥A–A1BD内的概率为___________.9.如图所示,在平面直角坐标系内,任作一条射线OA,则射线OA落在阴影内的概率为___________.10.向圆内随机投掷一点,此点落在该圆的内接正n(n≥3,n∈N)边形内的概率为P n,下列论断正确的是A.随着n的增大,P n减小B .随着n 的增大,P n 先增大后减小C .随着n 的增大,P n 增大D .随着n 的增大,P n 先减小后增大11.某同学到公共汽车站乘车去学校,可乘坐8路、23路公共汽车,其中8路车每10分钟一班,23路车每15分钟一班,则该同学等车不超过8分钟的概率为___________.12.一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中AD=2,DC=2,BC=1.它可随机落在该草原上任何一处,若落在扇形沼泽区域ADE 以外,丹顶鹤能生还,求该丹顶鹤生还的概率.13.利用计算机随机模拟方法计算y=4x 2与y=4所围成的区域Ω的面积时,可以执行以下算法步骤:第一步,利用计算机产生两个在[0,1]内的随机数a ,b ; 第二步,对随机数a ,b 实施变换:112-14a a b b =⎧⎨=⎩,得到点A (a 1,b 1);第三步,判断点A (a 1,b 1)的坐标是否满足b 1<421a ;第四步,累计所产生的点A 的个数m 及满足b 1<421a 的点A 的个数n ;第五步,判断m 是否小于M (一个设定的数),若是,则回到第一步,否则,输出n 并终止算法. 若设定的M=150,且输出的n=51,请据此用随机模拟方法估计出区域Ω的面积(结果保留到小数点后两位).14.已知|p|≤3,|q|≤3,点(p,q)均匀分布.(1)点M(x,y)的横、纵坐标由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,求点M(x,y)落在上述区域的概率;(2)求方程x2+2px–q2+1=0有两个实数根的概率.15.已知关于x的一元二次方程x2–2(a–2)x–b2+16=0.(1)若a,b是一枚骰子先后投掷两次所得到的点数,求该一元二次方程有两个正实数根的概率;(2)若a∈[2,6],b∈[0,4],求该一元二次方程没有实数根的概率.16.城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的60名候车的乘客中随机抽取15人,将他们的候车时间作为样本分成五组,如下表所示:组别一二三四五候车时间/min [0,5)[5,10)[10,15) [15,20) [20,25)人数 2 6 4 2 1(1)估计这15名乘客的平均候车时间;(2)估计这60名乘客中候车时间少于10 min的人数;(3)若从第三、四组的6人中选2人进行进一步的问卷调查,求抽到的2人恰好来自不同组的概率.17.(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 318.(2017•新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 19.(2017•江苏)记函数f (x )=26x x +-定义域为D .在区间[–4,5]上随机取一个数x ,则x ∈D 的概率是__________.1 2 3 4 5 6 7 10 17 18 ABCDCBDCAB1.【答案】A【解析】四个选项中小明中奖的概率分别为3111,,,8433,故应选A 中的游戏盘.2.【答案】B【解析】设正三角形的边长为a ,圆的半径为R ,则R=33a ,所以正三角形的面积为34a 2,圆的面积S=πR2=13πa2.由几何概型的概率计算公式,得针扎到阴影区域的概率P=22341π3aa=334π,故选B.4.【答案】D【解析】点P到点A的距离小于等于a可以看作是随机的,点P到点A的距离小于等于a可视作构成事件的区域,棱长为a的正方体1111ABCD A B C D-可视作试验的所有结果构成的区域,可用“体积比”公式计算概率.3314π183π6aPa⨯==,故选D.5.【答案】C【解析】设AC=x cm,则BC=(12–x)cm,若矩形的面积大于20 cm2,则x(12–x)>20,解得2<x<10,故所求概率P=10-212=23.6.【答案】B【解析】由题意,知点(a,b)在边长为2π的正方形边上及内部.要使函数f(x)=x2+2ax–b2+π有零点,需满足4a2+4b2–4π≥0,即a2+b2≥π,a2+b2≥ππ阴影部分所示,所以其面积为4π2–π2=3π2,所以函数f(x)有零点的概率为223π4π=34.8.【答案】16【解析】设事件M 为“此动点在三棱锥A –A 1BD 内”,则P (M )=11111--A A BD ABCD A B C D V V 三棱锥长方体=11111--A ABD ABCD A B C D V V 三棱锥长方体=11111-1·3ABDABCD A B C D AA S V 长方体=1111·32·ABCDABCD AA S AA S 矩形矩形=16.9.【答案】16【解析】以O 为起点的射线OA 等可能地落在坐标系中,区域角度为360°,而射线OA 落在阴影内的区域角度为60°,所以射线OA 落在阴影内的概率是60360︒︒=16. 10.【答案】C【解析】根据几何概型的概率计算公式有P n =n S S 正边形圆,而圆的面积固定,正n 边形的面积随n 的增大而增大,所以P n 也增大. 11.【答案】6875【解析】设该同学到站x 分钟后23路车到站,y 分钟后8路车到站,则0≤x ≤15,0≤y ≤10,如图.若等车不超过8分钟,即8分钟内乘坐8路车或23路车,记为事件M ,则事件M 所对应的区域(如图中阴影部分)的面积为8×8+2×8+7×8=136,整个区域(矩形OABC )的面积为10×15=150,所以所求概率P (M )=136150=6875.12.【答案】1–π10. 【解析】过点D 作DF ⊥AB 于点F ,如图所示.在Rt △AFD 中,因为AD=2,DF=BC=1,所以AF=1,∠A=45°,所以梯形ABCD 的面积S 1=12×(2+2+1)×1=52. 扇形DAE 的面积S 2=π×(2)2×45360︒︒=π4.根据几何概型的概率计算公式,得丹顶鹤生还的概率P=121S S S -=5π2452-=1–π10.13.【答案】S Ω≈5.28.【解析】因为0101a b ≤≤⎧⎨≤≤⎩,且11214a a b b =-⎧⎨=⎩,所以111104a b -≤≤⎧⎨≤≤⎩,依题意区域Ω为如图所示的阴影部分,设区域Ω的面积为S Ω,则ABCDS S Ω矩形≈150-51150, 所以42S Ω⨯≈99150,解得S Ω≈5.28. 14.【答案】(1)14.(2)36π36-.【解析】(1)点M (x ,y )的横、纵坐标由掷骰子确定,第一次确定横坐标,第二次确定纵坐标, 共有36个不同的坐标,而落在已知区域的点M 有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3), (3,1),(3,2),(3,3),共9个,所以点M(x,y)落在已知区域的概率P1=936=14.(2)因为方程x2+2px–q2+1=0有两个实数根,所以Δ=(2p)2–4(–q2+1)≥0,解得p2+q2≥1,又|p|≤3,|q|≤3,故由图易知满足条件的点(p,q)所在区域的面积为36–π,所以方程x2+2px–q2+1=0有两个实数根的概率P2=36π36.(2)试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16.设“该一元二次方程没有实数根”为事件B,则构成事件B的区域Ω'={(a,b)|2≤a≤6,0≤b≤4,(a–2)2+b2<16},其面积为S(Ω')=14×π×42=4π,故所求的概率为P(B)=4π16=π4.【名师点睛】几何概型和古典概型中每个基本事件发生的可能性都是相等的,古典概型要求基本事件有有限个,而几何概型要求基本事件有无限个,且几何概型多与事件的区域面积(长度或体积)有关.16.【答案】(1)10.5(min).(2)32.(3)8 15.【解析】(1)这15名乘客的平均候车时间约为115×(2.5×2+7.5×6+12.5×4+17.5×2+22.5×1)=115×157.5=10.5(min ). (2)这15名乘客中候车时间少于10 min 的频率为2615+=815,所以这60名乘客中候车时间少于10 min 的人数大约为60×815=32.17.【答案】A【解析】如图:设BC =2r 1,AB =2r 2,AC =2r 3,∴r 12=r 22+r 32,∴S Ⅰ=12×4r 2r 3=2r 2r 3,S Ⅲ=12×πr 12–2r 2r 3,S Ⅱ=12×πr 32+12×πr 22–S Ⅲ=12×πr 32+12×πr 22–12×πr 12+2r 2r 3=2r 2r 3,∴S Ⅰ=S Ⅱ,∴P 1=P 2,故选A . 18.【答案】B【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S =2π,则对应概率P =24π=8π,故选B .19.【答案】59【解析】由6+x –x 2≥0得x 2–x –6≤0,得–2≤x ≤3,则D =[–2,3],则在区间[–4,5]上随机取一个数x , 则x ∈D 的概率P =()()3254----=59,故答案为:59.。
蝶变笔记高中数学目录
蝶变笔记高中数学目录必修1第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修2第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式必修3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型必修4第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应3.4生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆位置关系第三讲圆锥曲线性质探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应选修4-7第一讲优选法第二讲试验设计初步。
人教A版高中数学选择性必修第一册3.3.1抛物线及其标准方程
2.抛物线的标准方程
图形
标准方程
__y_2_=__2_p_x_(p_>_0_)_
焦点坐标
__F_p2_,__0__
准线方程
_x_=__-__p2__
__y_2=__-__2_p_x_(_p_>_0_)
F-2p,0
___x=__p2____
图形
标准方程
_x_2_=__2_p_y(_p_>_0_)__
课堂 小结 提素 养
1 . 焦 点 在 x 轴上的抛 物线, 其标准 方程可 以统设 为 y2= mx(m≠0),此时焦点为 Fm4 ,0,准线方程为 x=-m4 ;焦点在 y 轴上 的抛物线,其标准方程可以统设为 x2= my(m≠0) ,此时焦点为 F0,m4 ,准线方程为 y=-m4 .
2.设 M 是抛物线上一点,焦点为 F,则线段 MF 叫做抛物线的 焦半径.若 M(x0,y0)在抛物线 y2=2px(p>0)上,则根据抛物线的定 义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以 焦半径|MF|=x0+p2.
[跟进训练] 1.根据下列条件分别求出抛物线的标准方程: (1)准线方程为 y=23; (2)焦点在 y 轴上,焦点到准线的距离为 5; (3)经过点(-3,-1); (4)焦点为直线 3x-4y-12=0 与坐标轴的交点.
[解] (1)因为抛物线的准线交 y 轴于正半轴,且p2=23,则 p=43, 所以所求抛物线的标准方程为 x2=-83y.
抛物线定义的两种应用 (1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦 点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距 与点线距的相互转化,从而简化某些问题. (2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和 的最小值时,往往用抛物线的定义进行转化,即化折线为直线解决最 值问题.
北师大版高中数学必修第一册3.3.1指数函数的概念及其图象课件
方法归纳 与指数函数有关的复合函数的定义域、值域的求法(a>0,且a≠1): (1)函数y=af(x)的定义域与f(x)的定义域相同; (2)求函数y=af(x)的值域,需先确定f(x)的值域,再根据指数函数y= ax的单调性确定函数y=af(x)的值域;
(3)求函数y=f(ax)的定义域,需先确定y=f(u)的定义域,即u的取值 范围,亦即u=ax的值域,由此构造关于x的不等式(组),确定x的取值 范围,得y=f(ax)的定义域;
状元随笔 底数a与1的大小关系决定了指数函数图象的“升”与 “降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数 函数的图象是“下降”的.
基础自测 1.判断正误.(正确的画“√”,错误的画“×”) (1)函数y=-2x是指数函数.( × ) (2)函数y=2x+1是指数函数.( × ) (3)函数y=ax是指数函数.( × ) (4)因为a0=1(a>0,且a≠1),所以y=ax(a>0,且a≠1)的图象恒过点 (0,1).( √ )
答案:CD
(2)若直线y=2a与函数y=|ax-1|+1(a>0,且a≠1)的图象有两个公 共点,则实数a的取值范围是________.
方法归纳 识别指数函数图象问题应注意: (1)根据图象“上升”或“下降”确定底数a>1或0<a<1; (2)在y轴右侧,指数函数的图象从下到上相应的底数由小到大;在y 轴左侧,指数函数的图象从下到上相应的底数由大到小; (3)根据“左加右减,上加下减”的原则,确定图象的平移变换,从 而确定指数型.
变式2 (变条件,变设问)若将本例(3)的函数增加条件“0≤x≤2”, 再求函数的值域.
解析:∵0≤x≤2,∴1≤2x≤4,∴y=4x+2x+1+2=(2x)2+2×2x+2=(2x+1)2 +1.