液压轴向柱塞泵马达工艺设计及生产线规划

合集下载

毕业设计---轴向柱塞泵设计

毕业设计---轴向柱塞泵设计

XX学院毕业设计题目轴向柱塞泵的设计系别专业班级姓名学号指导教师日期设计任务书设计题目:轴向柱塞泵的设计设计要求系统介绍轴向柱塞泵的概况、原理与结构形式;并详细地分析讨论了轴向柱塞泵的主要性能,主要零部件地制造工艺,以及柱塞泵的使用维护知识。

进行计算机辅助设计和绘图的训练,熟练地掌握了AutoCAD的操作指令。

设计进度要求第一周:确定题目、搜集资料及前期准备工作;第二周:工件基本类型与工艺性分析;第三周:整体及部分零件尺寸计算;第四周:其他零部件的设计和绘制结构尺寸图;第五周:毕业论文电子稿的录入,绘制主要零件和装配图;第六周:毕业论文的校核、修改;第七周:打印装订和毕业答辩;指导教师(签名):摘要液压泵是向液压系统提供一定流量和压力的油液的动力元件,它是每个液压系统中不可缺少的核心元件,合理的选择液压泵对于液压系统的能耗、提高系统的效率、降低噪声、改善工作性能和保证系统的可靠工作都十分重要。

本设计对轴向柱塞泵进行了分析,主要分析了轴向柱塞泵的分类,对其中的结构,例如,柱塞的结构型式、滑靴结构型式、配油盘结构型式进行了分析和设计,还包括的它们的工作原理、加工工艺。

最后还介绍了它的常见损坏原因以及使用与维护的方法。

这样能更好的提高生产效率,使操作维修更加方便。

本次设计对轴向柱塞泵进行了详细的介绍,在学到更多知识的同时开发了自身的潜能,对专业知识的实用性和重要性有了更深的认识!关键词:柱塞泵滑靴配油盘目录设计任务书 (I)摘要 (II)概述 (1)1 轴向柱塞泵演化历程 (2)2 轴向柱塞泵的工作原理及分类 (5)2.1 基本工作原理 (5)2.2斜盘式轴向柱塞泵 (5)2.3 斜轴式轴向柱塞泵 (6)3 轴向柱塞泵的结构、使用与维修 (8)3.1 柱塞泵的结构 (8)3.2 供油形式 (10)3.3 液压泵用轴承 (10)3. 4 三对磨擦副检查与修复 (11)3.4.1 柱塞杆与缸体孔 (11)3.4.2 滑靴与斜盘 (12)3.4.3 配流盘与缸体配流面的修复 (13)3.5 使用注意事项 (14)4 轴向柱塞泵的泵油原理 (15)4.1进油过程 (15)4.2回油过程 (16)4.3 国产系列柱塞式喷油泵 (16)5 轴向柱塞泵的加工工艺 (18)5.1斜盘式轴向柱塞泵的工作原理 (18)5.2柱塞泵损坏原因 (19)5.3修复措施 (19)结论 (21)致谢 (22)参考文献 (23)概述轴向柱塞泵是液压系统中重要的动力元件和执行元件,广泛地应用在工业液压和行走液压领域,是现代液压元件中使用最广的液压元件之一。

轴向柱塞泵和轴向柱塞马达

轴向柱塞泵和轴向柱塞马达

选型案例分析
案例一
某液压系统需要一款高压大流量的轴向柱塞泵,经过计算 和选型,最终选择了某品牌的变量柱塞泵,满足了系统的 使用要求。
案例二
某工程机械需要一款低速大扭矩的轴向柱塞马达,经过计 算和选型,最终选择了某品牌的低速大扭矩马达,实现了 工程机械的高效驱动。
案例三
某船舶推进系统需要一款高速小排量的轴向柱塞马达,经 过计算和选型,最终选择了某品牌的高速小排量马达,满 足了船舶推进系统的要求。
应用
05
轴向柱塞泵:广泛应用于工程机械、机床、冶金、矿山、 船舶等行业的液压系统中,为系统提供动力源。
06
轴向柱塞马达:常用于注塑机、压铸机、船舶甲板机械、 工程机械行走驱动等需要低速大扭矩的场合。
04
轴向柱塞泵与马达的选型 与计算
选型原则及步骤
明确使用条件
了解工作压力、流量、转速等 要求,以及工作环境、介质特
调试方法及步骤
在安装完成后,先进行手动盘车,检查 泵和马达的转动是否灵活,有无卡滞现 象。
在空载运行一段时间后,进行负载试验 ,逐步增加负载至额定负载,观察泵和 马达的性能变化。
逐渐提高转速至额定转速,观察泵和马 达的压力、流量等参数是否符合设计要 求。
按照规定的油液清洁度和粘度要求,向 泵和马达内注入适量的工作油液。
调节转速和扭矩
通过改变进入轴向柱塞马达的油液压力和流 量,可以实现对马达转速和输出扭矩的调节
,从而满足不同负载和工作条件的需求。
07
总结与展望
本次课程总结
轴向柱塞泵和轴向柱塞马达的工作原 理及结构特点:通过本次课程学习, 我们深入了解了轴向柱塞泵和轴向柱 塞马达的工作原理,掌握了它们各自 的结构特点。轴向柱塞泵利用柱塞在 缸体中的往复运动来实现吸油和压油 的过程,具有高压、大流量、高效率 等优点。而轴向柱塞马达则是将液压 能转换为机械能,驱动负载运动,具 有低速大扭矩、平稳运行等特点。

柱塞泵设计 毕业设计

柱塞泵设计  毕业设计
柱塞泵的特点:
1)随着泵内排出量压力增大,泵内泄漏损失加大,泵的实际流量只略有下降;
2)适用于较宽压力、高粘度、较窄的流量范围;
3)随着排出压力增大,轴功率增大泵效率提高;
4)柱塞往复次数底,有脉冲,平均流量恒定,吸入能力好;
5)有摩擦件相对运动;
6)泵效率高,配用功率较小,节约能源。
4.1.2直轴式轴向柱塞泵主要性能参数
本设计对往复式柱塞泵(容积泵)进行了分析,主要分析了柱塞泵部分主要的结构,例如,柱塞的结构型式﹑泵体的结构型式﹑阀体的结构型式等进行了分析,还有对零件的材料选用;工艺的制定与实施,计算机仿真模拟,并通过仿真模拟得出了数控加工程序。并对部件进行草图绘制、CAD画图、三维建模。该设计最后对柱塞泵的优缺点进行了整体的分析,对今后的发展也进行了展望。
关键词:柱塞泵,工艺路线,程序。
柱塞泵毕业设计
1.摘要
2.关键词
3.绪论
4.论文内容
4.1柱塞泵的简介及参数的设定
4.2零件简介
4.3零件的分析
4.4工艺的制定
4.5工艺的实施
4.6夹具的设计
4.7计算机仿真
5总结与展望
6参考文献
7致谢
绪论
随着工业技术的不断发展,液压传动也越来越广,而作为液压传动系统心脏的液压泵就显得更加重要了。在容积式液压泵中,惟有柱塞泵是实现高压﹑高速化﹑大流量的一种最理想的结构,在相同功率情况下,径向往塞泵的径向尺寸大、径向力也大,常用于大扭炬、低转速工况,做为按压马达使用。而轴向柱塞泵结构紧凑,径向尺寸小,转动惯量小,故转速较高;另外,轴向柱塞泵易于变量,能用多种方式自动调节流量,流量大。由于上述特点,轴向柱塞泵被广泛使用于工程机械、起重运输、冶金、船舶等多种领域。航空上,普遍用于飞机液压系统、操纵系统及航空发动机燃油系统中。是飞机上所用的液压泵中最主要的一种型式。

轴向柱塞泵和轴向柱塞马达

轴向柱塞泵和轴向柱塞马达

4A
5 隔墙 A A
D d
轴向柱塞泵的工作原理
斜盘式轴向柱塞泵的工作 原理
γ
a
b
A
隔墙
1-斜 盘 2-柱 塞 3-缸 体 4-传 动 轴 5-配 流 盘
图3-4-2为斜盘式轴向柱塞泵的工作原理图。柱塞安放 在缸体上均布的缸孔之中(缸体上一般均布着7~9个 缸孔),配流盘两腰形槽的对称线与斜盘的上死点(此 时柱塞全部伸出)和下死点(此时柱塞全部缩回)的连 线在一个平面上。在柱塞的底部由柱塞、缸孔和配流盘 形成了多个密封工作腔,由于配流盘隔墙的分隔作用这 些工作腔一部分通过配流盘左边的腰形槽与吸油口相通; 一部分通过配流盘右边的腰形槽与排由口相通;还一部 分处在左右腰形槽之间的过渡区间。
五.斜盘泵主要零件分析
斜盘泵通常有滑靴与斜盘、柱塞与缸孔和缸底与配流盘三对主要的 摩擦副,它们也是泵的易损部位。下面对这三个摩擦副的结构进行 分析。
滑靴与斜盘
一.静压支承的概念
静压支承是在摩擦副中引入外加有压油液,在摩擦面上产生一个 与负载相反的力,如果这个力与负载相平衡,那么摩擦副之间可 以形成油膜而使壁面完全不接触。如果液压反力小于负载,虽然 不能使壁面之间形成油膜而使壁面之间脱离接触,但由于壁面之 间的粗糙度可以渗入有压液体,不仅使压紧力大为减小,而且能 起润滑作用从而改善工作条件。前者称为完全平衡型静压支承, 后者称为不完全平衡型静压支承。
二.轴向柱塞泵的流量计算
三.斜盘泵的流量计算
四.斜盘泵的排量
○ 由3-4-2可知转子转动一周所有的柱塞所形成的密封工作腔都进 行了一次吸油和一次排油。柱塞由上死点运动至下死点完成一次 排油。设柱塞的直径为d、柱塞的分布圆直径为D、斜盘的倾斜 角度为γ,则由上死点到下死点时柱塞相对于缸孔运动的行程L 为

柱塞泵设计 毕业设计

柱塞泵设计  毕业设计
正如科学技术的发展一样,现阶段科技领域中交叉学科、边缘学科越来越丰富,跨学科的共同研究是十分普遍的事情,作为泵产品的技术发展亦是如此。以屏蔽式泵为例,取消泵的轴封问题,必须从电机结构开始,单局限于泵本身是没有办法实现的;解决泵的噪声问题,除解决泵的流态和振动外,同时需要解决电机风叶的噪声和电磁场的噪声;提高潜水泵的可靠性,必须在潜水电机内加设诸如泄漏保护、过载保护等措施;提高泵的运行效率,须借助于控制技术的运用等等。这些无一不说明要发展泵技术水平,必须从配套的电机、控制技术等方面同时着手,综合考虑,最大限度地提升机电一体化综合水平。
本设计对柱塞泵的结构作了详细的研究,在柱塞泵中有阀配流﹑轴配流﹑端面配流三种配流方式。这些配流方式被广泛应用于柱塞泵中,并对柱塞泵的高压﹑高速化起到了不可估量的作用。可以说没有这些这些配流方式,就没有柱塞泵。但是,由于这些配流方式在柱塞泵中的单一使用,也给柱塞泵带来了一定的不足。设计中对轴向柱塞泵结构中的滑靴作了介绍,滑靴一般分为三种形式;对缸体的尺寸﹑结构等也作了设计;对柱塞的回程结构也有介绍。
柱塞泵的特点:
1)随着泵内排出量压力增大,泵内泄漏损失加大,泵的实际流量只略有下降;
2)适用于较宽压力、高粘度、较窄的流量范围;
3)随着排出压力增大,轴功率增大泵效率提高;
4)柱塞往复次数底,有脉冲,平均流量恒定,吸入能力好;
5)有摩擦件相对运动;
6)泵效率高,配用功率较小,节约能源。
4.1.2直轴式轴向柱塞泵主要性能参数
=
3)实际流量
它是只柱塞泵在某一特定工况下,单位时间内所排出的液体体积。即
Q = Qn-△Q
=
=
上1)2)3)式中
Q -----实际流量(L/min)
Fx-----柱塞的截面积(m2)

轴向柱塞泵设计

轴向柱塞泵设计

轴向柱塞泵设计任务书1.课题意义及目标学生应通过本次毕业设计,综合运用所学过的基础理论知识,对轴向柱塞泵进行分类分析,对柱塞的结构型式﹑滑靴结构型式﹑配油盘结构型式等进行分析设计,并受力分析与计算,确定缸体的材料选用及校核,对零部件建模,了解相关设计规范及设计思想等内容,为学生在毕业后从事相关工作打好基础。

2.主要内容(1)了解机械产品的设计方法。

(2)完成柱塞泵的设计。

(3)完成相应的工程图。

(4)撰写毕业论文。

结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;格式符合机械工程系学位论文格式的统一要求。

3.主要参考资料[1]潘骏,段福斌,杨文华,吴立军.机械设计基础[M].南京大学出版社,2007.05.[2]何存兴.液压元件[M].机械工业出版社,1982.[3]闻德生.开路式柱塞泵[M].航空工业出版社,1998.4.进度安排审核人:年月轴向柱塞泵设计摘要:近年来,轴向柱塞泵由于结构紧凑,单位功率体积小,工作压力高,工艺性好,成本低,寿命长,维修方便等优点,应用日益广泛。

它是液压系统中的主要部件,因柱塞与缸体轴线平行或接近于平行而得名。

轴向柱塞泵靠柱塞在缸体孔内的往复运动改变柱塞腔内的容积来实现吸液和压液的。

此次设计主要是对轴向柱塞泵进行分类分析,对其柱塞的结构型式﹑滑靴的结构型式﹑配油盘的结构型式等进行分析设计,并作受力分析与计算,确定缸体的材料选用以及对其进行校核,压盘和斜盘主要尺寸也有设计,也对变量机构进行了简单分析。

最后根据设计内容及参考资料绘制零件图及装配图,并对主要零部件建模,以求达到仿真效果。

关键词:轴向柱塞泵,柱塞,滑靴,配流盘,缸体The Design Of Axial Piston PumpAbstract:In recent years, the axial piston pump is increasingly widely used because of its compact structure, the small size of specific power, high working pressure, good manufactur ability, low cost, long life and convenient maintenance. It is the main part of the hydraulic system and named on the fact that the plunger piston is in parallel with the cylinder axis or approximatively. It achieves its function of absorption and pressure liquid by the reciprocating movement of plunger piston in the cylinder block hole. This design is aimed at the analyses about classification of axial piston pump and the design of structural style of plunger piston, slipping boots and oil distribution disc, including other task like force analysis and calculation, the material selection of cylinder block. Verification, the size design of platen and swash plate, a brief analysis of variable displacement mechanism, I complete the part drawing and assembling drawing according to the design content and reference material, establish the 3D modeling of main parts to realize the function of emulation.Keywords: Axial piston pump, Plunger, Sliding boots, Port plate, Cylinder目录1绪论 (1)1.1轴向柱塞泵简介 (1)1.2轴向柱塞泵工作原理 (2)1.3给定工作参数 (2)2轴向柱塞泵主要零件设计 (3)2.1柱塞结构设计与计算 (3)2.1.1柱塞的结构型式 (3)2.1.2柱塞的结构尺寸 (3)2.2滑靴结构设计与计算 (6)2.2.1滑靴的结构型式 (6)2.2.2滑靴的结构尺寸 (7)2.3配流盘设计与计算 (8)2.3.1配流盘过渡区设计 (8)2.3.2配流盘尺寸设计与计算 (8)2.4缸体设计计算与校核 (9)2.4.1缸体设计与计算 (9)2.4.2缸体强度校核 (11)3轴向柱塞泵主要零件受力分析 (13)3.1柱塞受力分析 (13)3.1.1作用在柱塞上的力 (13)3.1.2求解F1、F2、F N (14)3.2滑靴受力分析 (15)3.3配流盘受力分析 (16)3.3.1压紧力F (16)y3.3.2分离力F (17)f4其他零部件尺寸的确定 (20)4.1压盘尺寸的确定 (20)4.2斜盘尺寸的确定 (20)5柱塞泵变量机构的设计 (21)5.1变量机构的种类 (21)5.2变量机构的选择 (21)6结论 (25)参考文献 (26)致谢 (27)附录 (28)1绪论1.1轴向柱塞泵简介轴向柱塞泵是柱塞的往复运动方向平行或接近平行于缸体轴线的柱塞泵,并因此而得名。

轴向柱塞泵设计2

轴向柱塞泵设计摘要液压泵是向液压系统提供一定流量和压力的油液的动力元件,它是每个液压系统中 不可缺少的核心元件,合理的选择液压泵对于降低液压系统的能耗、提高系统的效率、 降低噪声、改善工作性能和保证系统的可靠工作都十分重要。

本次设计对轴向柱塞泵进行了分析, 主要分析了轴向柱塞泵的分类, 对其中的结构, 如柱塞的结构型式、滑靴结构型式、配油盘结构型式等也进行了分析和设计,还包括它 们的受力分析与计算。

同时缸体的材料选用以及校核也很关键,本文对变量机构分类型 式也进行了分析,最后利用Solidworks制图软件绘制零件图与组装成装配图,并进行干 涉检验,无误后出图。

本文对柱塞泵今后的发展也进行了展望。

关键词:轴向,柱塞泵,设计计算,SolidworksDESIGN OF AXIAL PISTON PUMPABSTRACTHydraulic pump is the power components which can Provide a certain discharge and pressure of the oil for Hydraulic system. It is indispensable core components for each hydraulic system. It is very important to select a reasonable hydraulic pump, because it can effectively Reduce the energy consumption of the hydraulic system, improve system efficiency, reduce noise, improve performance and ensure reliable operation of the system.This design analysis axial piston pump. It mainly analyzed the classification of axial piston pump, on which the structure, such as the structure type of the plunger, the structure type of slipper and oil pan structure type carried out analyzed and designed, including stress analysis and calculation of their too. At the same time, the selection of materials and checking the cylinder is also critical, the type of variable institutional classification was also analyzed in this paper, finally, Drawing parts drawing and installing Assembly body use the drawing software of solidworks, and drawing them after interference testing. The future development of piston was also discussed in this paper.KEYWORDS: axial, piston pump, design and calculation, solidworks1绪论1.1引言轴向柱塞泵/马达是液压系统中重要的动力元件和执行元件, 广泛地应用在工业液压 和行走液压领域,是现代液压元件中使用最广的液压元件之一。

轴向柱塞泵泵体加工工艺规程设计及工装夹具设计

轴向柱塞泵泵体加工工艺规程设计及工装夹具设计
包含设计思想、规程设计、可行性分析等
一、简介
轴向柱塞泵泵体加工工艺规程设计和工装夹具设计是由轴向柱塞泵泵体生产系列设计研制的重要工艺规程,是机械零件加工过程中质量控制的重要环节,直接关系到产品质量的好坏,为保证最终产品质量,工艺规程设计和工装夹具设计必须精心进行。

二、设计思想
轴向柱塞泵泵体加工规程设计要充分考虑到充分利用机械设备、节约劳动力、确保质量以及维护有机组织等因素,从而达到规程设计的高效性和可行性。

工装夹具设计要求能够有效帮助加工工艺,有效确保泵体的批量生产,降低加工成本,提高效率,确保质量。

三、工艺规程设计
1.热处理工艺:采用热处理工艺,能有效的提高泵体的抗震性能,提高其使用寿命,减少废料的产生,提高加工的效率。

2.冲压工艺:采用冲压工艺,能精确的完成外形尺寸的加工,减少加工废料,提高加工效率。

3.激光加工:采用激光加工,能够自动完成上部内部的复杂形状的加工,完成精密孔的加工,提高产品质量。

4.上色工艺:采用上色工艺,能够将泵体外壳上色,以达到图纸要求的质量,保证外观质量。

斜盘式液压泵及马达的设计(含图纸)

·1绪论1.1液压系统调速控制的现状在液压控制系统中常常需要对液压泵或液压缸等元件进行调节,来满足工程实际应用的要求,传统的调节方式是人工操作的,如手动变量泵的手动调节方式等。

随着电液控制技术的发展,大量数字液压元件和电子元件的广泛运用,使得电液控制系统实现数字化控制极为方便。

如前所述,高速开关电磁阀是20世纪80年代发展起来的新型数字阀,国内外学者对高速开关阀及由其构成的电液控制系统进行了深入的研究,取得了令人鼓舞的成果.液压泵输出控制。

液压泵的变量调节机构常常采用机械式或纯液压式结构,一般情况下,能够按照系统的要求控制液压泵的流量和压力,但也存在一些固有的局限性。

1.对于工程机械和机床设备的液压系统,采用微计算机控制日益广泛,这些控制器要求电信号和液压系统之间的信号转换接口,而纯液压或机械式调节机构很难适应这种要求。

2.如果负载需要液压泵输出的流量和压力变化比较大,采用纯液压或机械式调节机构将会使液压泵的结构复杂化,而且往往达不到最佳控制效果。

3.液压泵的液压或机械调节机构在泵控制特性、适应性、可靠性以及产品质量等方面很难达到最佳。

4.机械或纯液压调节机构使液压泵的远程控制不但价格昂贵、结构笨重,而且控制特性存在严重的容积滞后,严重时可能造成系统不稳定。

由于这些局限性,在计算机技术和电子器件日益广泛应用的今天,人们不断地致力于液压泵电液控制技术的研究,以求避免上述缺点。

在恒压变量泵系统中,当负载压力与恒压泵调整压力之比愈小时,恒压泵系统效率愈低,如能根据在系统工作过程中不同的负载要求,设计成负载压力和流量有多级,而又在系统工作过程中能自动转换或进行远距离调整的恒压变量泵,将使恒压变量泵能适用于更复杂的系统和达到最佳的节能效果,可实现恒压变量泵输出工作参数的无级控制.针对当前电液控制领域的研究热点,笔者提出了基于高速开关电磁阀控制的新型变量伺服机构,通过计算机采用脉冲宽度调制技术和相关控制策略,实现了恒压变量泵与负载系统耦合时,泵的输出工作参数无级调节控制.1.2液压PWM控制原理液压脉冲宽度控制所用的阀类元件及电气回路比其它控制方式简单,而且与计算机(单片机)的适应性较好。

毕业设计论文—斜盘式轴向柱塞泵设计-精品

斜盘式轴向柱塞泵设计摘要现代液压传动中,柱塞泵是使用最广的液压动力元件之一,其性能好坏是影响液压系统工作性能的关键。

相对于日益提高的高压、大流量、高功率密度、高集成度、多样的控制形式等要求,我国的柱塞泵设计和制造已远远落后于世界先进水平。

本论文在详细分析国内外轴向柱塞泵结构类型及其特点的基础上,设计了一种斜盘式轴向柱塞泵,结构紧凑合理、变量控制灵活多样、集成性好。

完成斜盘式轴向柱塞泵总装图及主要零件图,并利用三维软件Pro/E进行三维建模,用UG完成指定零件加工仿真及数控编程。

对今后进行轴向柱塞泵的研究和设计具有较高的参考价值。

关键词:斜盘式轴向柱塞泵;加工仿真;UGAbstractModern hydraulic transmission, piston pump is the most widely used in hydraulic components, its performance is one of the hydraulic system is the effect of the key work performance. Relative to the rising high pressure, big flow, high power density, high level of integration, various control requirements, our form of piston pump design and manufacturing has lags behind the world advanced level.This thesis on detailed analysis of domestic and international axial piston pump structure based on the types and characteristics, design a kind of swash-plate axial piston pump, compact structure, variable control agile diversity, integration. Complete swash-plate axial piston pump assembly figure and main parts graph, and using three-dimensional software Pro/E 3-d modeling, complete with UG designated parts processing simulation and CNC programming. In axial piston pump research and design is of high reference value.Keywords: swash-plate axial piston pump; Machining simulation; UG目录摘要 (2)Abstract (3)第1章前言 (1)1.1课题背景 (1)1.2液压技术发展历史 (1)1.3 课题提出的意义 (2)1.4 国内外研究开发水平及发展趋势 (2)第2章斜盘式轴向柱塞泵设计方案 (5)2.1 液压泵的原理与分类 (5)2.1.1液压泵的传动和工作原理 (5)2.1.2 液压泵的分类 (6)2.2 斜盘式轴向柱塞泵主体设计方案的确定 (6)2.2.1 斜盘式轴向柱塞泵的的基本分类及其特点 (6)2.2.2主体设计方案的确定....................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压轴向柱塞泵马达工艺设计及生产线规划一、生产纲领Xx液压公司厂房的规划建设、设备选型工作按照公司高层指示,紧密围绕挖掘机配套液压元件批量生产来展开,满足年产1万台小型挖掘机、2万台中型挖掘机配套泵、马达的需求,共计年产泵、马达12万台。

XX液压公司对主泵、马达的各零部件按照工艺路线进行分类、汇总,根据各型产品关键零部件的技术和加工工艺特点,确定了批量生产车间各类型主要零件成组单元的生产工艺方案,达到6型马达、3型泵年产I2万台的生产能力。

在设备选型和工艺布置上参照了川崎、萨奥、纳博等标杆液压件生产厂家生产模式,借鉴了国内外一流标杆企业的冷、热加工和辅助设备。

以精益生产为指导思想,按照典型零件成组分类、成组工艺、制定标准工艺流程,根据同类零件年产量确定了中小批量、大批量两种不同生产模式的设备选型和生产单元布置模式。

投产后可满足l万台小型挖掘机(7.5T)、2万台中型挖掘机( 23.5T、33.5T)主泵、行走马达、回转马达的配套需求。

1、生产产品型谱及产量表l 批量生产产品型谱汇总表2、生产单元零件类型及产量3、工作时间及设备利用率核算原则按设备全年有效工作时间300天,每天3班制,有效工作时间20小时计算,全年有效工作时间6000小时。

4、外协、外购零件类型锻、铸件毛坯热处理、粗加工工序、弹簧、冲压件、简单零件外协;标准件、轴承、密封件外购。

二、厂房工艺布置简述1、批量生产车间制造流程如图l厂房设计、施工时,结合液压件精密制造的工艺要求,各生产单元、辅助间、功能区域等均按其实际使用需求进行设计。

设备基础、防振、恒温、恒湿、防爆、抽风等工艺要求尚需要及厂房的设计部门作充分沟通。

困尚未最终确定设备型号和台数,厂房水电气用量及管网布置暂无法确定。

2.工艺布置原则工艺布置原则简述如下:2. I 成组技术原则:对零件的结构、加工工艺进行分析,对相似的零件和工艺流程进行统计,并布置在同一加工单元,采用同类型生产设备集中生产,减少物流、装夹、换刀等待时间,提高生产效率和设备利用率。

可实现同类机床多品种批量柔性制造。

2 .2 根据批量大小决定是否采自动上下料机构:根据每种零件的年产量大小、零件重量、装夹定位复杂程度、单件加工时间等决定上下料方式。

年产量小于5万件的零部件属于中小批量生产,年产量大于5万件小于10万问的属于中批量生产,中小批量生产零件选用手工上下料方式。

年产量大干10万件的零件生产属于大批量生产,采用自动上下料方式。

2.3 单机、多机实现柔性制造:对零件重量重、装夹定位复杂、工序如工时间长的零件,采用工序集中原则来减少装夹次数和时间。

同类型零件在一种机床或两种类型机床上全部加工完成。

选用的卧式加工中心、立式车削中心均具备“多工作台+中央刀库+刀具管理+在线尺寸检测+中央生产管理系统”等功能,根据机床工作台数量的多少,可同时加工几种类型品种的零件,采用手工上下料,不需更换夹具,可实现24小时无间断加工2.4 对滚齿、插齿、珩磨、研磨、去毛刺等非杯设备,由于加工零件种类繁多,年生产量均属于中小批量生产,装夹定位方式复杂,采用手动上下料方式。

2. 5 精密磨削单元:采用恒温、无尘、封闭作业。

对于大批量生产的零件采用自动上下料方式,配置自动检测功能,可实现8 -24小时无人化加工。

对于中小批量的零件采用手工上下料方式。

2 .6 各生产单元加工的所有零件的位置尺寸精度采用线后检测。

2 .7 生产单元布置原则:对壳体、端盖类零件采用“一个流”布置原则。

对于中小批量的精密零件生产采用U型布置,实现物流最短、一人多机,采用手动上下料方式,工序和机床之间采用滑道传输。

对大批量牛产的零件实现自动上下料,根据不同零件的加工材料、单件加工成本、一次投资大小等因素综合考虑,决定单元自动化程度。

实现8-16小时无人加工。

2 8 热处理生产线采用同类热处理方法、设备集中组线,实现自动上下料方式。

热处理封闭作业,不影响其它生产单元。

2 9 建立泵、马达装配生产线,采用恒温、无尘、封闭作业。

具备在线尺寸、扭矩、气密性、装配防错、漏装检测等功能,可以实现年装配20万台泵、马达的生产能力。

2.10出厂试验单元建立泵、行走马达、回转马达3条试验线,测试数据计算机自动采集,实现快速装卸,试验台对称布置实现一人两机操作。

2 .11 喷漆单元具备清洗功能,采用机器人自动喷漆,喷漆线采用封闭式作业,采用天然气加热烘干,人工上下料方式,具备年产15万台的生产能力。

三、关键生产单元典型工艺及布置示意图批量车间内各机加单元(壳体、端盖、斜盘(包括制动油缸)、控制阀体、主轴、缸体和球铰、柱塞滑靴、配流盘和回程盘、阀芯阀套等机加单元)、热处理单元、装配单元、试验单元、喷漆和包装单元为批量生产的核心单元。

3.1端盖加工单元3.1.1、端盖类零件年需求量统计3.1.2、单元描述根据端盖单元各品种年需求量统计,共计有X种,年需求量共计XX 万件。

属于多品种中、小批量,根据组线思路的不同,有两种加工模式:3.1.2.1.单机FMS柔性制造模式:设备为单机多托盘形式,殴各及设备间托盘不互相流通,每台设各可以同时装夹几型产品,同类型端盖零件所有加工工序可在一台设备上完成,实现单机柔性制造。

根据端盖类零件的加工特征(单工序加工时间超过30分钟),所以采用手动上下料方式,工装、刀具准备不占用加工时间,可实现24小时不间断加工。

关键尺寸公差可以实现线内自动检测,位置尺寸公差线外手动检测。

3.1.2.2、多机FMS柔性制造模式:设备为多机多托盘形式,所有设备配置双托盘,采用手动上下料方式。

其余托盘都集中在托盘库中,通过多任务管理系统可以将任意一个托盘通过自动输送的方式调配到单元中任何一台设备上进行加工,因此多机多托盘形式的制造单元具备更大的柔性,可实现24小时连续加工。

两种加工模式优劣对比见表3。

3.1. 3、加工零件类型(共计XXX类)图二零件示意3.1.4、工艺流程图图三 端盖各零件典型工艺流程3.1.5、端盖加工单元设备示意图 单机FMS 柔性制造模式图四 端盖单机柔性单元平面布置示意图多机FMS 柔性制造模式图五端盖多机柔性单元平面布置示意图3.1.6、加工模式优劣对比3.1.7、端盖加工单元设备清单3.2 壳体加工单元3.2.1 壳体类零件年产量统计3.2.2 单元描述根据壳体单元壳体品种年产量统计,共计有X种,年产量共计XXX万件。

壳体单元属于多品种中、小批量生产模式,壳体零件单序加工时间较长(介于15--40分钟),所以采用手动上下料、起重设备辅助的方式。

所有设备选用双工作台或多工作台形式,装夹、上下料不占用加工时间,从而实现连续不间断加工。

根据零件结构和产量,本单元预布置3条生产线(见图9或图10)。

卧式加工中心的选型有单机多工作台和多机多工作台两种形式,具体分析参照端盖单元。

清洗等设备及端盖单元共用,设备及设备之间采用滑道传输。

壳体单元的立车造型具有两种模式,根据零件重量选用不同立式车削中心。

(1)对零件加上装夹夹具较重(中挖行走壳体、回转壳体、中挖主泵中间体及斜盘座超过50KG)的选用单机多工作台立式车削中心;(2)对零件加上装夹夹具较轻(中挖回转端盖、小挖行走、回转壳体、小挖主泵壳体、端盖)的选用双主轴双工作台立车。

并在设备选型的时候注重单机多工作台立式车削中心和双主轴双工作台立车的通用性,这两类设备都能覆盖9种零件,保证设备的通用性,批量生产中如单机设备发生故障,生产任务可及时调配。

立车具加工模式优劣对比见表5。

3.2.3 壳体单元加工零件图3.2.4 壳体典型工艺流程图图7 中挖壳体类工艺流程图8 小挖壳体、泵盖及小挖行走、回转壳体、中挖壳体工艺流程3.2.5 单元设备布置示意图 单机柔性模式表5 立车方案优劣对比表3.2.7 壳体加工单元设备清单表6 小挖生产线壳体加工单元设备清单表7 中挖生产线壳体加工单元设备清单3.3 斜盘类加工单元3.3.1 斜盘类零件年需求统计3.3.2 单元描述斜盘单元零件共计种,最大单品种零件年需求量为万件,其余单件品种零件产量为万件。

属于多品种、中、小批量生产模式,采用手动上下料方式。

为提高设备对多品种生产的适应性,本单元选用设备类型为数控车床、立式加工中心、外圆磨床、平面磨床、平面研磨机等,为了减少装夹占用时间,选用双工作台+四轴立加。

上下工序、不同设备间的物流传输采用滑道。

3.3.3 斜盘加工单元零件图11 斜盘加工单元加工零件示意图3.3.5 斜盘加工单元布置示意图3.3.6 斜盘单元加工设备清单表8 斜盘单元加工设备清单3.4 控制阀体加工单元3.4.1 控制阀体加工单元年需求量统计3.4.2 单元描述控制阀体单品种产量小于万件,属于多品种小批量生产模式,要求生产设备具备柔性制造能力。

本单元采用多工作台卧式加工中心,采用手工上下料方式,上下料不占用设备加工时间。

阀体在一台设备上两序加工完成,减少物流量。

珩磨、清洗等特种加工设备及端盖加工单元台用,设备及设备之间采用滑道传输。

3.4.3 阀体加工单元典型零件图 15 典型阀体类零件示意图3.4.4 典型工艺流程图图17 阀体加工单元设备布置示意图3.4.6 阀体加工单元设备清单表9 阀体加工单元设备清单3.5 主轴加工单元3.5.1 主轴加工单元年需求量统计3.5.2 单元描述根据主轴单元年产量统计,主轴有两种加工模式:(1)工序相对分散,采用手动上、下料,选用数控车床加工(见工艺流程图19);(2)工序相对集中,车削加工采用自动上、下料方式,选用双主轴、取刀塔车削中心(见工艺流程图20),所有车削工序一次加工完毕。

滚(插)齿、去毛刺、清洗等工序所需设备均为非标特种设备,优先采用国产数控高速加工设备。

非标特种设备采用手动上、下料,设备之间采用滑道输送,实现一人多机生产。

3.5.3主轴加工单元单元典型零件图18主轴加工单元典型零件图3.5.4主轴加工单元典型工艺流程3.5.6 主轴加工单元设备清单两种布置模式优劣对比见表10表10 主轴单元布置模式优劣对比表表11 主轴加工单元设备清单(工序分散)表12 主轴加工单元设备清单(工序集中)3.6 缸体加工单元3.6.1 缸体年需求量统计3.6.2 单元描述3.6.2.1 缸体加工单元根据零件材料的不同布置为两条生产线:铸铁材料缸体生产线(含小挖泵马达、中挖回转)和双台金材料缸体生产线(含中挖泵、行走),详细流程见工艺流程图2。

两条生产线热处理前由车铣复合、拉床、滚齿机完成零件外形、柱塞孔、内外花键的加工,后续根据材料的不同,配置不同的设备进行柱塞孔和球面或平面的精加工。

3.6.2.2其中车铣复合及拉床的布置模式可分为两种:3.6.2.2.1 组线模式:车铣复合的下料、拉床的上料采用龙门式机器手完成,实现“车铣+拉削”组线加工,实现全自动加工;3.6.2.2.2独立模式:车铣复合、拉床采用手工上下料,并独立完成加工。

相关文档
最新文档