高三物理一轮复习《 万有引力定律》教案

合集下载

高考物理一轮复习专题:第讲万有引力定律及其应用课件

高考物理一轮复习专题:第讲万有引力定律及其应用课件
第一部分
专题整合突破
专题一 力与运动
第4讲 万有引力定律及其应用
1.(2019·全国卷Ⅰ,21)(多选)在星球M上将一轻弹簧竖直固定在水平桌面上,
把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量 x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完 成同样的过程,其a-x关系如图中虚线所示。假设两星球均为质量均匀分布 的球体。已知星球M的半径是星球N的3倍,则( )
3.(2019·全国卷Ⅲ,15)金星、地球和火星绕太阳的公转均可视为匀速圆周运
动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别 为v金、v地、v火。已知它们的轨道半径R金<R地<R火,由此可以判定( )
A.a金>a地>a火
B.a火>a地>a金
A
C.v地>v火>v金 D.v火>v地>v金
2 0 2 1 届高考 物理一 轮复习 专题: 第4讲 万 有 引 力定律 及其应 用 课 件
5.(2019·天津,1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥
四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在 月背刻上了中国足迹”。已知月球的质量为M、半径为R,探测器的质量为m, 引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器 的( )
由 GmRM2 =mvR2得速度 v=
GM R
由于 R 金<R 地<R 火
所以 a 金>a 地>a 火,v 金>v 地>v 火,选项 A 正确。
2 0 2 1 届高考 物理一 轮复习 专题: 第4讲 万 有 引 力定律 及其应 用 课 件

高中三年级物理教案:万有引力

高中三年级物理教案:万有引力

高中三年级物理教案:万有引力万有引力是高中物理课程中的重要内容之一。

通过学习这一主题,学生将能够深入了解物质间相互吸引的基本原理和数值计算方法。

本教案旨在帮助高中三年级的学生全面掌握万有引力的概念、公式和应用。

一、概念导入1. 引出问题:为什么地球和其他行星围绕太阳运动?2. 阐述背景:物质间的相互作用力——引力3. 定义和表述:万有引力是一种质点间距离相关、长程效应特征明显的基本相互作用二、牛顿定律与万有引力公式1. 了解牛顿第三定律:作用力与反作用力2. 理解牛顿第二定律:F=ma3. 牛顿第二定律推导万有引力公式三、万有引力公式的应用1. 行星运动及开普勒定律:行星轨道分析a) 认识开普勒定律:椭圆轨道、等面积法则、调整弦线法则b) 分析行星围绕太阳运动的规律2. 引力势能与机械能守恒a) 势能的定义和表达式b) 万有引力下的机械能守恒定律c) 利用计算进行实例分析3. 地球重力场的特点与应用a) 地球表面上物体的重量和质量关系:W=mgb) 重力加速度的确定方法及其作用c) 利用天平测量物体质量实验演示四、实践活动:万有引力实验设计1. 实验目标:验证万有引力公式中M、m和r之间的关系2. 实验装置及步骤:引导学生设计合理的实验方案并完成实验操作,包括数据收集和分析。

3. 结果分析与总结五、课堂互动讨论1. 进一步探究牛顿运动定律与万有引力定律之间的联系;2. 学生自主提问和解答,深化对于物理概念的理解;3. 讨论如何通过近似计算来处理复杂问题。

六、知识扩展与拓展阅读推荐1. 探索更多的相互作用力:电磁力、强核力和弱核力;2. 了解卫星的工作原理和轨道确定方法;3. 阅读相关科学历史,深入了解牛顿、开普勒等人对于物理学的贡献。

七、课堂小结通过本节课的学习,我们对于万有引力的概念、公式和应用进行了全面的探讨。

我们了解到地球和其他行星围绕太阳运动是由于万有引力的作用;牛顿定律与万有引力公式相互关联,并通过实践活动加深对其理解;机械能守恒在重力场中起到重要作用。

高三物理一轮复习第四章第4讲万有引力定律及其应用课件

高三物理一轮复习第四章第4讲万有引力定律及其应用课件

第二十一页,共三十六页。
1.[估算天体质量] (2018·浙江 4 月选考)土星最大的卫星叫“泰坦”(如图),每 16 天绕
土 则卫星 土星一 星绕周 的土, 质星其 量运公 约动转 为,轨(土B道星半的) 径引约力为提供1.2卫×星10做6 圆km周,运已动知的引向力心常力量,G设=土6星.67质×量10为-11MN,·mG2RM/k2mg2,
约为( C )
代入可得 ρ≈5×1015 kg/m3,故 C 正确.
A.5×109 kg/m3
B.5×1012 kg/m3
C.5×1015 kg/m3
D.5×1018 kg/m3
12/9/2021
第二十三页,共三十六页。
3大“.工慧[天程眼体建”质设卫量捷星和报的密频向度传心的,加综“速合慧度计眼大算”]小卫为习星近a邀=平游(2主T太π席)空2 在r.=2“40Tπ1慧228r,眼年选”新于项年贺2A0词1正7中确年提;6到根月,据1科5G日技M在创r2m酒新=泉、m重卫4Tπ22r
第十四页,共三十六页。
(1)在赤道上:GMRm2 =mg1+mω2R. (2)在两极上:GMRm2 =mg2. (3)在一般位置:万有引力 GMRm2 等于重力 mg 与向心力 F 向的矢量和. 越靠近南北两极 g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引 力近似等于重力,即GRM2m=mg.
12/9/2021
第十七页,共三十六页。
2.[万有引力定律的应用] (2018·高考北京卷)若想检验“使月球绕地球运动的力”与 若“使想苹检果验落“地使的月力球”绕遵地循球同运样动的的规力律”,与在已“知使月苹地果距落离地约的为力地”球遵半循径同60样倍的的规情律况—下—,万需有

2013高考一轮复习优秀课件:第五章万有引力定律及其应用第一单元 第1课时

2013高考一轮复习优秀课件:第五章万有引力定律及其应用第一单元 第1课时

(4)统一性:在表达式中古各物理量均统一使用国际单位制 单位时,万有引力常量才可以取G=6.67×10-11 N· 2/kg2. m
(5)宏观性:在通常情况下万有引力非常小(比如两块磁铁之 间存在磁力,也存在万有引力,但是万有引力远远小于他们之间 的磁力,万有引力可不考虑).只有在质量巨大的星体间或天体 与天体附近的物体间,它的存在才有实际的物理意义.故在分析 地球表面的物体受力时,不考虑地面其他物体对其的万有引力, 只考虑地球对地面物体间的万有引力.
该物体在行星表面上时,有:GMm′/R=m′g行② g卫 m R行2 1 3.62 4 ①②联立解得 : = =81 1 =25. g行 MR卫 4 答案: 25


(1)设天体表面的重力加速度为g,天体的半径为R,不计
天体本身自转的影响,GMm=mg,即 g=GM 2 2
R R
Mm (2)若物体距星球表面高度为h,则 G ,即该处 =mg′ R+h2 M 的重力加速度 g′=GR+h2 ,可以这样理解:g′和星球质量成
正比,和该处到球心距离的平方成反比.
r
(2)计算距地面高度为h处的重力加速度.由于忽略地球自转 和将地球理想化为一球体(其他星球也一样),重力加速度只与高 M 度和地球密度有关.重力加速度与高度h的关系为g′=GR+h2 , 由此看出:距地面越高,物体的重力加速度越小.
3.地球中心处物体所受到的引力大小
万有引力定律适用于质点间引力大小的计算,如对均匀球体, 可视为质量全部集中于球心处的质点.但这并不意味着处在地球 中心处的物体由于与地心间距为零而导致所受到的地球引力趋于 无限大.事实上此时由于对称性的原因,使地球各部分对球心处 的物体的引力的矢量和为零.

高考物理第一轮复习 第五单元 万有引力律 人造地球卫星专题精讲(含解析)

高考物理第一轮复习 第五单元 万有引力律 人造地球卫星专题精讲(含解析)

避躲市安闲阳光实验学校第五单元 万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值) 2.万有引力定律及其应用(1) 内容:(2)定律的适用条件: (3) 地球自转对地表物体重力的影响。

地面附近:G2R Mm= mg ⇒GM=gR 2 (黄金代换式) (1)天体表面重力加速度问题 (2)计算中心天体的质量 (3)计算中心天体的密度 (4)发现未知天体 3、人造地球卫星。

1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。

2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有实际是牛顿第二定律的具体体现3、表征卫星运动的物理量:线速度、角速度、周期等: 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s , 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2月球公转周期30天4.宇宙速度及其意义(1)三个宇宙速度的值分别为(2)当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同5.同步卫星(所有的通迅卫星都为同步卫星) ⑴同步卫星。

⑵特点 『题型解析』【例题1】下列关于万有引力公式221r m m GF =的说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于零时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中万有引力常量G 的值是牛顿规定的【例题2】设想把质量为m 的物体,放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A .2R GMmB .无穷大C .零D .无法确定【例题3】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较A .地球与月球间的万有引力将变大B .地球与月球间的万有引力将减小C .月球绕地球运动的周期将变长D .月球绕地球运动的周期将变短表面重力加速度:轨道重力加速度:【例题4】设地球表面的重力加速度为g ,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为( )A 、1;B 、1/9;C 、1/4;D 、1/16。

高考物理一轮复习讲义:5.4 万有引力定律及其应用(新人教版)

高考物理一轮复习讲义:5.4 万有引力定律及其应用(新人教版)

第4讲 万有引力定律及其应用对应学生用书P841.物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比.2.表达式:F =Gm 1m 2r 2,G 为引力常量:G =6.67×10-11N·m 2/kg 2. 3.适用条件(1)公式适用于质点间的相互作用.当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)1.推导过程为:由mg =m v 2R =GMmR2得:v = GMR=gR =7.9 km/s.2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. ●特别提醒(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大的环绕速度等于最小的发射速度(1)在经典力学中,物体的质量是不随运动状态而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观(1)在狭义相对论中,物体的质量是随物体运动速度的增大而增大的,用公式表示为m =m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的.1.人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系GMmr2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ma ―→a =GM r 2―→a ∝1r2m v 2r ―→v =GM r ―→v ∝1rmω2r ―→ω= GM r 3―→ω∝1r3m 4π2T 2r ―→T =4π2r3GM―→T ∝r 3越高越 慢2.同步卫星的五个“一定”轨道平面与赤道平面共面.与地球自转周期相同,即T =24h.与地球自转的角速度相同.由G Mm (R +h )2=m 4π2T 2(R +h )得同步卫星离地面的高度h = 3GMT 24π2-R .v =GMR +h.1.关于万有引力公式F =G m 1m 2r2,以下说法中正确的是( ).A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于0时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中引力常量G 的值是牛顿规定的解析 万有引力公式F =G m 1m 2r 2,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值,是卡文迪许在实验室里实验测定的,而不是人为规定的.故正确答案为C.答案 C2.关于地球的第一宇宙速度,下列表述正确的是( ). A .第一宇宙速度又叫脱离速度 B .第一宇宙速度又叫环绕速度 C .第一宇宙速度跟地球的质量无关 D .第一宇宙速度跟地球的半径无关解析 由于对第一宇宙速度与环绕速度两个概念识记不准,造成误解,其实第一宇宙速度是指最大的环绕速度.答案 B 3.图5-4-1三颗人造地球卫星A 、B 、C 在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知R A <R B <R C .若在某一时刻,它们正好运行到同一条直线上,如图5-4-1所示.那么再经过卫星A 的四分之一周期时,卫星A 、B 、C 的位置可能是( ).解析 由G Mm r2=mr ⎝⎛⎭⎫2πT 2知,T 2∝r 3,卫星离地面越远运行周期越大,则有T A <T B <T C ,又经T A 4后,A 运动过14圆周,且B 、C 依次在其后,故只有C 正确.答案 C4.苹果自由落向地面时加速度的大小为g ,在离地面高度等于地球半径处做匀速圆周运动的人造卫星的向心加速度为( ).A .g B.12gC.14g D .无法确定 解析 地面处:mg =G Mm R 2,所以g =GMR2离地面高R 处:mg ′=G Mm (2R )2,所以g ′=GM4R 2 所以g ′g =14,即g ′=14g .答案 C5.一物体静止在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( ).A.⎝⎛⎭⎫4π3Gρ12B.⎝⎛⎭⎫34πGρ12C.⎝⎛⎭⎫πGρ12D.⎝⎛⎭⎫3πGρ12解析 物体对天体表面压力恰好为零,说明天体对物体的万有引力提供向心力:G MmR2=m 4π2T 2R ,解得T =2π R 3GM ①,又因为密度ρ=M 43πR 3=3M 4πR 3 ②,①②两式联立得T = 3πGρ. 答案 D对应学生用书P85考点一 万有引力定律在天体运动中的应用(小专题) 利用万有引力定律解决天体运动的一般思路 1.一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. 2.两组公式G Mm r 2=m v 2r =mω2r =m 4π2T 2·r =ma mg =GMmR2(g 为星体表面处的重力加速度).【典例1】 (2010·海南卷,10改编)火星直径约为地球的一半,质量约为地球的十分之一,它绕太阳公转的轨道半径约为地球公转半径的1.5倍.根据以上数据,以下说法正确的是( ).A .火星表面重力加速度的数值比地球表面的小B .火星公转的周期比地球的小C .火星公转的线速度比地球的大D .火星公转的向心加速度比地球的大解析 本题考查万有引力定律和有关天体运动的问题,意在考查考生对天体运动中各物理量之间的相互关系的掌握情况和分析比较能力.由mg =GmMR 2得:g 火g 地=M 火M 地·R 地2R 火2=110×⎝⎛⎭⎫212=25,所以选项A 正确;由G M 太M r 2=M 4π2T2r ,得T =4π2r 3GM 太,T 火T 地=r 火3r 地3= 1.53>1,所以选项B 错误;由G M 太M r 2=M v 2r ,得v = GM 太r ,a =v 2r =GM 太r2,所以选项C 、D 都不对.答案 A 【变式1】“嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的16,月球半径为地球半径的14,根据以上信息,下列说法错误的是( ).A .绕月与绕地飞行周期之比为3∶ 2B .绕月与绕地飞行周期之比为2∶ 3C .绕月与绕地飞行向心加速度之比为1∶6D .月球与地球质量之比为1∶96 解析 由G MmR 2=mg 可得月球与地球质量之比:M 月M 地=g 月g 地×R 月2R 地2=196,D 正确.由于在近地及近月轨道中,“嫦娥一号”运行的半径分别可近似等于地球的半径与月球的半径,由G MmR 2=m ⎝⎛⎭⎫2πT 2R ,可得:T 月T 地= R 月3M 地R 地3M 月=32,A 正确.由G MmR 2=ma 可得:a 月a 地=M 月R 地2M 地R 月2=16,C 正确.答案 B 【变式2】 (2011·广西模拟)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67×10-11 N·m 2/kg 2,由此估算该行星的平均密度约为( ). A .1.8×103 kg/m 3 B .5.6×103 kg/m 3 C .1.1×104 kg/m 3 D .2.9×104 kg/m 3 解析 近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即:G Mm R 2=m ⎝⎛⎭⎫2πT 2R ①,由密度、质量和体积关系有M =ρ·43πR 3 ②,由①②两式得:ρ=3πGT 2≈5.56×103 kg/m 3.由已知条件可知该行星密度是地球密度的254.7倍,即ρ1=5.56×103×254.7kg/m 3=2.9×104 kg/m 3,D 正确.答案 D考点二 天体表面重力加速度的求解星体表面及其某一高度处的重力加速度的求法设天体表面的重力加速度为g ,天体半径为R ,则mg =G Mm R 2,即g =GMR2(或GM =gR 2)若物体距星体表面高度为h ,则重力mg ′=G Mm (R +h )2,即g ′=GM (R +h )2=R 2(R +h )2g .【典例2】 英国《新科学家(New Scientist)》杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中.若某黑洞的半径R 约45 km ,质量M 和半径R的关系满足M R =c 22G(其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( ).A .108 m/s 2B .1010 m/s 2C .1012 m/s 2D .1014 m/s 2解析 星球表面的物体满足mg =G Mm R 2,即GM =R 2g ,由题中所给条件M R =c 22G推出GM =12Rc 2,则GM =R 2g =12Rc 2,代入数据解得g =1012 m/s 2,C 正确. 答案 C 【变式3】近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和T 2.设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为g 1、g 2,则( ).A.g 1g 2=⎝⎛⎭⎫T 1T 243B.g 1g 2=⎝⎛⎭⎫T 2T 143C.g 1g 2=⎝⎛⎭⎫T 1T 22D.g 1g 2=⎝⎛⎭⎫T 2T 12 解析 由GMm r 2=m 4π2T 2r 知:r 13r 23=T 12T 22,又卫星所在处重力提供向心力mg =m ⎝⎛⎭⎫2πT 2r ,可得:g 1g 2=⎝⎛⎭⎫T 2T 143,故B 正确. 答案 B考点三 卫星的在轨运行和变轨问题 (1)圆轨道上的稳定运行G Mmr 2=m v 2r=mrω2=mr ⎝⎛⎭⎫2πT 2 (2)变轨运行分析当卫星由于某种原因速度v 突然改变时,受到的万有引力G Mmr 2和需要的向心力m v 2r不再相等,卫星将偏离原轨道运动.当G Mmr 2>m v 2r时,卫星做近心运动,其轨道半径r 变小,由于万有引力做正功,因而速度越来越大;反之,当G Mmr 2<m v 2r时,卫星做离心运动,其轨道半径r 变大,由于万有引力做负功,因而速度越来越小.【典例3】如图5-4-2所示,图5-4-2北京飞控中心对“天宫一号”的对接机构进行测试,确保满足交会对接要求,在“神舟八号”发射之前20天,北京飞控中心将通过3至4次轨道控制,对“天宫一号”进行轨道相位调整,使其进入预定的交会对接轨道,等待“神舟八号”到来,要使“神舟八号”与“天宫一号”交会,并最终实施对接,“神舟八号”为了追上“天宫一号”( ).A .应从较低轨道上加速B .应从较高轨道上加速C .应在从同空间站同一轨道上加速D .无论在什么轨道上只要加速就行解析 “神舟八号”要追上“天宫一号”,不能像汽车或飞机那样,对准目标加速飞去,因为在同一轨道上,“神舟八号”一旦加速,它就离开原来轨道,进入另外一条较高的椭圆轨道,为了缩短距离,“神舟八号”应该从较低轨道加速,加速后轨道高度升高,才能与“天宫一号”在同一轨道上完成对接.据G Mmr2=m ⎝⎛⎭⎫2πT 2r ,得T =2πr 3GM,先让“神舟八号”在低轨上运行,“天宫一号”在高轨道上的运动周期大、“神舟八号”在低轨道上的运行周期小,然后“神舟八号”适时加速后做离心运动,使之与“天宫一号”在高轨道上实现对接,故选项A 对B 错.若“神舟八号”在同一轨道上只加速,将要离开原轨道向外,所以只加速不减速是不可能进行对接的,因此选项C 、D 都错.答案 A【变式4】“天宫一号”被长征二号火箭发射后,图5-4-3准确进入预定轨道,如图5-4-3所示,“天宫一号”在轨道1上运行4周后,在Q点开启发动机短时间加速,关闭发动机后,“天宫一号”沿椭圆轨道2运行到达P点,开启发动机再次加速,进入轨道3绕地球做圆周运动,“天宫一号”在图示轨道1、2、3上正常运行时,下列说法正确的是().A.“天宫一号”在轨道3上的速率大于在轨道1上的速率B.“天宫一号”在轨道3上的角速度大于在轨道1上的角速度C.“天宫一号”在轨道1上经过Q点的加速度大于它在轨道2上经过Q点的加速度D.“天宫一号”在轨道2上经过P点的加速度等于它在轨道3上经过P点的加速度解析据v=GMr,可知v3<v1,选项A错误;据ω=GMr3可知ω3<ω1,选项B错误;加速度与万有引力大小有关,r相同,则a相同,与轨道无关,选项C错误,选项D正确.答案 D对应学生用书P868.双星模型R 1和R 2,如图所示.对两天体,由万有引力定律可分别列出G m 1m 2L 2=m m m对应学生用书P871.(2010·重庆理综,16)月球与地球质量之比约为1∶80.有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动的线速度大小之比约为( ).A .1∶6 400B .1∶80C .80∶1D .6 400∶1解析 双星系统中的向心力大小相等,角速度相同.据此可得M v 12r 1=m v 22r 2,Mω2r 1=mω2r 2,联立得v 2v 1=M m =801,故C 项正确.答案 C 2.(2010·天津理综,6)探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比( ).A .轨道半径变小B .向心加速度变小C .线速度变小D .角速度变小解析 探测器做匀速圆周运动由万有引力充当向心力,G Mm r 2=m 4π2T 2r ,G Mm r 2=m v 2r ,G Mmr2=mω2r ,G Mmr2=ma .由以上四式可知,T 减小则r 减小,a 、v 、ω均增大,故仅A 正确.答案 A 3.图5-4-4(2010·山东理综,18改编)1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.如图5-4-4所示,“东方红一号”的运行轨道为椭圆轨道,其近地点M 和远地点N 的高度分别为439 km 和2 384 km ,则( ).A .卫星在M 点的势能大于N 点的势能B .卫星在M 点的角速度大于N 点的角速度C .卫星在M 点的加速度小于N 点的加速度D .卫星在N 点的速度大于7.9 km/s解析 卫星从M 点到N 点,万有引力做负功,势能增大,A 项错误;由开普勒第二定律知,M 点的角速度大于N 点的角速度,B 项正确;由于卫星在M 点所受万有引力较大,因而加速度较大,C 项错误;卫星在远地点N 的速度小于其在该点做圆周运动的线速度,而第一宇宙速度7.9 km/s 是线速度的最大值,D 项错误.答案 B 4.(2010·全国Ⅱ,21)已知地球同步卫星离地面的高度约为地球半径的6倍.若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为( ).A .6小时B .12小时C .24小时D .36小时 解析 设地球半径为R ,平均密度为ρ,同步卫星的周期为T 1,另一行星的半径为r 1,其同步卫星的周期为T 2,对于地球的同步卫星,由GMm r 2=m 4π2T2·r 得:G ρ·43πR 3m (R +6R )2=4π2m (R +6R )T 12,① 对于行星的同步卫星:G 12ρ·43πr 13m (2.5r 1+r 1)2=4π2m (2.5r 1+r 1)T 22,②由①②两式得:T 2T 1=12,T 2=12T 1=12小时,B 项正确.答案 B 5.(2011·江苏卷,7改编)一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v .引力常量为G ,则下列说法错误的是( ).A .恒星的质量为v 3T2πGB .行星的质量为4π2v 3GT 2C .行星运动的轨道半径为v T2πD .行星运动的加速度为2πvT解析 由GMm r 2=m v 2r =m 4π2T 2r 得M =v 2r G =v 3T 2πG ,A 对;无法计算行星的质量,B 错;r =v ω=v 2πT=v T 2π,C 对;a =ω2r =ωv =2πT v ,D 对. 答案 B6.(2011·课标全国卷,19)卫星电话信号需要通过地球同步卫星传送.如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105 km ,运行周期约为27天,地球半径约为6 400km ,无线电信号的传播速度为3×108m/s.)( ).A .0.1 sB .0.25 sC .0.5 sD .1 s解析 根据GMm 同(R +h )2=m 同(R +h )4π2T 同2,GMm 月r 2=m 月r 4π2T 月2,结合已知数据,解得地球同步卫星距地面的高度h ≈3.6×107 m ,再根据电磁波的反射及直线传播得:2h =ct ,得t ≈0.24 s ,故选项B 正确,选项A 、C 、D 错误.答案 B 7.(2011·大纲全国卷,19)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时),然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球.如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比( ).A .卫星动能增大,引力势能减小B .卫星动能增大,引力势能增大C .卫星动能减小,引力势能减小D .卫星动能减小,引力势能增大解析 由GMm r 2=m v 2r 知,E k =12m v 2=GMm2r ,r 越大,E k 越小.r 增大,卫星在升高过程中要克服万有引力做功,引力势能增大.综上所述D 对,A 、B 、C 错.答案 D 8.(2011·山东卷)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是( ).①甲的周期大于乙的周期 ②乙的速度大于第一宇宙速度③甲的加速度小于乙的加速度 ④甲在运行时能经过北极的正上方 A .①② B .③④ C .①③ D .②④解析 地球卫星绕地球做圆周运动时,万有引力提供向心力,由牛顿第二定律知G Mmr2=m 4π2r T 2,得T =2π r 3GM .r 甲>r 乙,故T 甲>T 乙,选项①正确;贴近地表运行的卫星的速度称为第一宇宙速度,由G Mm r 2=m v 2r 知v = GMr,r 乙>R 地,故v 乙比第一宇宙速度小,选项②错误;由G Mm r 2=ma ,知a =GMr 2,r 甲>r 乙,故a 甲<a 乙,选项③正确;同步卫星只能在赤道正上方运行,故不能通过北极正上方.选项④错误. 答案 C。

高一物理万有引力教案5篇

高一物理万有引力教案5篇编写教案要依据教学大纲和教科书。

从学生实际情况出发,精心设计。

一般要符合以下要求:明确地制订教学目的,具体规定传授基础知识、培养基本技能﹑发展能力以及思想政治教育的任务。

这里由小编给大家分享高一物理万有引力教案,方便大家学习。

高一物理万有引力教案篇1【教学目标】(一)知识与技能1.明确电场强度定义式的含义2.知道电场的叠加原理,并应用这个原理进行简单的计算.(二)过程与方法通过分析在电场中的不同点,电场力F与电荷电量q的比例关系,使学生理解比值F/q反映的是电场的强弱,即电场强度的概念;知道电场叠加的一般方法。

(三)情感态度与价值观培养学生学会分析和处理电场问题的一般方法。

重点:电场强度的概念及其定义式难点:对电场概念的理解、应用电场的叠加原理进行简单的计算【教学流程】(-)复习回顾——旧知铺垫1.库仑定律的适用条件:(l)真空(无其它介质);(2)点电荷(其间距r>>带电体尺寸L)——非接触力。

2、列举:(l)磁体间——磁力;(2)质点间一一万有引力。

经类比、推理,得:电荷间的相互作用是通过电场发生的。

(电荷周围产生电场,电场反过来又对置于其中的电荷施加力的作用)引出电场、电场力两个概念。

本节课,我们主要研究电场问题,以及为描述电场而要引入的另一个崭新的物理量——电场强度。

(二)新课教学1.电场(l)电场基本性质:电场客观存在于任何电荷周围,正是电荷周围存在的这个电场才对引入的其它电荷施加力的作用。

(2)电场基本属性:电场源于物质(电荷),又对物质(电荷)施力。

再根据“力是物质间的相互作用”这一客观真观,毫无疑问,电场是一种物质。

(3)电场基本特征:非实体、特殊态——看不见、摸不着、闻不到(人体各种感官均无直接感觉)。

电场是一种由非实体粒子所组成的具有特殊形态的物质。

自然界中的物质仅有两种存在的形态,一种是以固、液、气等普通形态存在的实体物质;而另一种,就是以特殊形态存在的非实体物质——场物质。

高中高一下册物理教案范文:万有引力定律

高中高一下册物理教案范文:万有引力定律教案名称:万有引力定律学科:物理年级:高一下册教学目标:1. 掌握万有引力定律的内容和公式。

2. 理解力学量的概念和计算方法。

3. 能够运用万有引力定律解决实际问题。

4. 培养学生的观察、实验、推理和解决问题的能力。

教学重点:1. 万有引力定律的内容和公式。

2. 万有引力定律在实际应用中的运用。

教学难点:1. 如何理解和应用万有引力定律求解问题。

2. 将万有引力定律与其他物理概念联系起来。

教学准备:1. 教学PPT。

2. 实验装置和实验材料。

3. 学生实验笔记。

教学过程:Step 1:导入(5分钟)教师通过提问和展示图片等方式,激发学生对万有引力定律的兴趣和好奇心,引导学生回忆并思考地球上物体的运动、行星的运动等现象,并引导学生思考这些运动背后的力是什么。

Step 2:引入知识(10分钟)教师通过PPT向学生介绍万有引力定律的概念、公式和基本性质。

教师结合图片和实例,讲解引力的概念、特点和研究对象,并引导学生推理出引力与质量、距离的关系,最终引出万有引力定律的公式。

Step 3:实验探究(30分钟)教师组织学生进行实验,通过测量不同质量和距离下两个物体之间的引力大小,验证万有引力定律。

实验结束后,教师与学生一起讨论实验结果,并引导学生总结实验过程中出现的问题和解决方法。

Step 4:巩固练习(15分钟)教师布置一些与万有引力定律有关的计算题目,让学生在班内完成,并进行讲解。

教师可以通过发放小组竞赛题目,增加学生的参与热情和学习兴趣。

Step 5:拓展应用(10分钟)教师以地球上物体的自由下落和行星的运动为例,向学生展示万有引力定律在实际应用中的重要性和普遍性。

教师引导学生思考如何利用万有引力定律解决与行星运动相关的问题,并鼓励学生提出更多实际应用的例子。

Step 6:归纳总结(5分钟)教师帮助学生归纳总结本节课学到的知识,强调万有引力定律的重要性和应用价值。

2020高中物理万有引力定律教案范文

2020高中物理万有引力定律教案范文高二时孤身奋斗的阶段,是一个与寂寞为伍的阶段,是一个耐力、意志、自控力比拚的阶段。

但它同时是一个厚实庄重的阶段。

由此可见,高二是高中三年的关键,也是最难把握的一年。

为了帮你把握这个重要阶段。

接下来是小编为大家整理的2020高中物理万有引力定律教案范文,希望大家喜欢!2020高中物理万有引力定律教案范文一教学设计思路:一、背景分析及指导思想:本节课是针对应届高三学生的第一轮复习而设置。

在本节之前学生在高一已经学习了万有引力定律这一章的相关知识,但知识的系统性不强,对“表面模型”和“环绕模型”及二者特点有了一定的掌握,但解决问题的方法性不强,对部分的重点和难点的分析不透彻。

因此在设计时我们兼顾了本章的知识特点、高考大纲要求和学生特点,在教学过程中设置提问,重在提升学生的思维能力和解决问题的能力。

二、高考特点分析:本部分是高考考查的重点内容之一,每年的高考试题中都会出现,频率较高,命题的立意包括:万有引力定律与其他知识的综合;应用万有引力定律解决一些实际问题,一般以选择题、填空题或计算题(新课标后计算题出现频率较低)的形式考查。

由于航天技术、人造地球卫星属于现代科技发展的重要领域,有关人造卫星问题的考查频率会越来越高,加上2012年载人航天的成功、中国北斗卫星导航系统的建成和完善、中国探月计划的实施、美国火星计划的实施,这些都是命题的热点。

三、内容设置与方案:鉴于本部分的内容特点及在高考中的地位,设计这节复习课时,我们打破常规复习课以梳理知识为主的模式,重点突出模型教学与“问题式”方法教学。

本节课设计了三个教学环节,第一个环节是知识梳理,以梳理基础知识;第二个环节是模型探究,以“地表”和“天上”两条线为引,突出圆和椭圆两类问题,并能解决相应的实际问题——(包括质量估算和简单变轨问题)的基本技能;第三个环节从高考的考点入手,有效的抓住高考的得分点,引导学生构建从基本概念、基本规律出发应用所学知识分析、解决实际问题的能力。

高三物理一轮复习教案

高三物理一轮复习教案 万有引力定律及其应用课时安排:2课时教学目标:1.掌握万有引力定律的内容2.理解宇宙速度的概念3.会用万有引力定律和牛顿运动定律解决天体的运动问题本讲重点:1.宇宙速度2.用万有引力定律和牛顿运动定律解决天体的运动问题本讲难点:宇宙速度、人造卫星的运动 考点点拨:1.测天体的质量及密度2.行星表面重力加速度、轨道重力加速度问题 3.人造卫星、宇宙速度 4.双星问题第一课时一、考点扫描 (一)知识整合 1.万有引力定律(1)内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力的大小跟它们的_______ 成正比,跟它们的 成反比。

(2)公式:F= ,其中G=6.67×10-11N m 2/kg 2,叫 。

(3)适用条件:公式适用于 。

当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。

均匀的球体也可以视为质点,r 是 。

2.万有引力定律的应用(1)地球、行星表面的重力加速度及在轨道上的重力加速度问题 表面重力加速度:2M m GR=mg ,所以2RGM g =轨道上的重力加速度:2()h G M mm g R h =+,所以2)(h R GM g h +=(2)天体的质量M ,密度ρ的估算测出卫星绕天体做匀速圆周运动的半径R 和周期T ,由 2M m G R=22()m R Tπ 可得天体质量为:该天体密度为 :3233343M M RVG T R R πρπ===(R 0为天体的半径)。

当卫星沿天体表面绕天体运行时,R=R 0,则ρ= 。

(3)卫星的绕行速度、角速度、周期与半径的关系 由22GM m vmrr=得,v= ,所以R 越大,v 。

由2M mGr = m ω2r 得,ω= ,所以R 越大,ω 。

2G M m r=22()m r Tπ得,T = ,所以R 越大,T 。

(4)三种宇宙速度第一宇宙速度:v 1=7.9km/s 2,是物体在地球表面附近绕地球做匀速圆周运动的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

芯衣州星海市涌泉学校郯城第三中学高三
物理一轮复习万有引力定律
★教学目的
a) 体会物理研究中猜想与验证的魅力,可以踏着牛顿的足迹理解月地检验。

b) 进一步大胆地推导得出万有引力定律。

c) 理解引力常量的测量及意义。

★教学重点
1. 万有引力推导的过程。

2. 万有引力公式的体会及应用。

3. 引力常量的有关知识。

★教学难点
(一)
万有引力推导的过程。

(二)
万有引力公式的体会及应用。

★教学过程
一、引入
师:通过上节课的学习我们理解到:行星绕太阳做匀速圆周运动的向心力是由太阳与行星间的引力提供的,引力大小为2
r Mm G F =,与两星体质量的乘积成正比,与两星体间隔的平方成反比。

师:牛顿接着又考虑:月球绕地球做匀速圆周运动的向心力是不是类似地由地球与月球间的引力提供?地球和月球间的引力与太阳和行星的引力会不会是同一性质的力,遵循同一规律2r Mm G F =呢? 师:正当牛顿在考虑这个问题时,苹果偶然落地引起了他的遐想。

苹果之所以会落回地面是因为地球对苹果的吸引力,还有即使把苹果放到最高的建筑物或者者最高的山顶上,苹果的重力也不会明显地减弱,说明地球对苹果的吸引力必定延伸到远得多的地方。

那假设把苹果放到月球所在的位置,它们
应该还会受到地球给它的重力。

按这样的说法,月球肯定会受到地球给它的重力的,那我先前考虑的地球对月球的引力就应该就是月球受到的重力,月球绕地球做圆周运动的向心力就是由月球受到的的重力提供的。

于是牛顿作了一个大胆的猜想:地球对苹果的力、地球对月球的力及太阳对行星的力可能是同一种性质的力,它们可能遵循一样的规律。

二、月地检验
师:猜想必须由事实来验证。

由于当时已经可以准确测定地球外表的重力加速度g=9.8m/s2,也能比
较准确地测定月球与地球的间隔为60倍地球半径,r=*108m ;月球公转的周期为2天。

所以牛顿就想到了月地检验。

师:假设你是牛顿,你如何利用这些量对你的猜想进展验证呢?
学生考虑,教师巡视,应该有不少学生可以考虑出来一点头绪。

假设它们是同一种性质的力,满足同一规律那么对于苹果必有
g R M G R m M G g m 地
地地果
地果=⇒=22 对于地球对月球的引力即向心力
3600)60(2g m R m M G F 月地月地==,那么向心加速度为23/107.23600s m g m F a -⨯===
而根据实验观测数据T=2天,r=*108m ,用公式232
2/107.24s m r T a -⨯==π 【实验结论】:实验说明,地面物体所受地球的引力,月球所受地球的引力,以及太阳与行星间的引力,真的遵循的规律2r
Mm G F
= 三、万有引力
师:在月地检验后,牛顿作了更大胆的设想:是否任意两个物体之间都存在这样的引力?很可能是一般物体的质量比天体质量小得多,它们之间的引力我们不易觉察罢了。

于是牛顿将结论大胆推广到宇宙中的一切物体:自然界中任何两个物体之间都互相吸引,引力大小与m1m2乘积成正比,与r2成反
比,即
2
r
Mm
G
F。

师:尽管这个推广是什么自然的,但仍要承受事实的直接或者者间接的检验。

本章后面的讨论说明,由此得出的结论与事实相符,于是它成为科学史上最伟大的定律之一——万有引力定律。

它于1687年发表在牛顿的传世之作自然哲学的数学原理中。

师:万有引力定律清楚地向人们提醒,复杂运动的后面隐藏着简洁的科学规律,它明确地向人们宣告,天上和地上的物体都遵循着完全一样的科学法那么。

师:万有引力定律的发现有着重要的物理意义:它对物理学、天文学的开展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化开展起到了积极的推动作用,解放了人们的思想,给人们探究自然的奥秘建立了极大信心,人们有才能理解天地间的各种事物。

注意:
(一)此公式适用于可视为质点的两物体间的引力的计算。

〔1〕假设两物体间的间隔远远大于物
体本身大小,那么两物体看作质点;(2)对于均匀球体,可视为质量集中于球心。

(二)对于不能视为质点的物体,可以将物体无限分割成无数个点。

(三)太阳对地球的吸引力与地球对太阳的吸引力哪个大?。

相关文档
最新文档