九年级上数学圆练习题

合集下载

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 5.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1676.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A .13cmB .12cmC .11cmD .10cm 7.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 8.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 9.已知O 的半径为4,点P 在O 外,OP 的长可能是( )A .2B .3C .4D .5 10.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75° 11.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70° 12.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 二、填空题13.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.14.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.15.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.16.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.17.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.18.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.19.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.20.如图,AB 是O 的直径,CD AB ⊥于E ,24CD =,8BE =,则AB =__________.三、解答题21.如图,在矩形ABCD 中,4AB =,6BC =.E 为CD 边上的一个动点(不与C 、D 重合),⊙O 是BCE 的外接圆.(1)若2CE =,⊙O 交AD 于点F 、G .求FG 的长度;(2)若CE 的长度为m ,⊙O 与AD 的位置关系随着m 的值变化而变化,试探索⊙O 与AD 的位置关系及对应的m 的取值范围.22.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .23.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.24.如图,四边形ABCD 为菱形,且120BAD ∠=,以AD 为直径作O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O 作AB 边的平行线OE ;(2)在图2中,过点C 作AB 边上的高CF .25.如图,在ABC 中,45C ∠=︒,以AB 为直径的O 经过BC 的中点D . (1)求证:AC 是O 的切线;(2)取AD 的中点E ,连接OE ,延长OE 交AC 于点F ,若2EF =,求O 的半径.26.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.C解析:C【分析】根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键. 3.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.4.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.5.B解析:B【分析】过C 作CF ⊥AB 于F ,根据垂径定理得出AD=2AF ,根据勾股定理求BC ,根据三角形面积公式求出CF ,根据勾股定理求出AF 即可.【详解】过C 作CF ⊥AB 于F ,∵CF⊥AB,CF过圆心C,∴AD=2AF.∵△ABC中,∠ACB是直角,AC=4,AB=7,∴由勾股定理得:22227433AB AC-=-=由三角形的面积公式得:AC×BC=AB×CF,即33=7CF,∴433在△AFC中,由勾股定理得:222243316477 AC CF⎛⎫-=-=⎪⎪⎝⎭,∴AD=2AF=327.故选:B.【点睛】本题考查了勾股定理,垂径定理,三角形的面积等知识点的应用,关键是求出AF的长.6.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.C解析:C【分析】首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 8.C解析:C【分析】根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .9.D解析:D【分析】根据题意可以求得OP 的取值范围,从而可以解答本题.【详解】解:∵O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .【点睛】本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围. 10.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.11.D解析:D【分析】连结BC ,则由已知可以求得∠BCD 与∠CBD 的度数,最后由三角形的内角和定理可以得到∠D 的度数.【详解】解:如图,连结BC ,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB 与⊙O 相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB 是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.12.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题13.【分析】过O 作OD ⊥BC 于DOE ⊥AB 于EOF ⊥AC 于F 连接OAOBOC 根据三角形的内心和角平分线的性质得出OE=OD=OF 再根据三角形的面积公式求出即可【详解】如图过O 作OD ⊥BC 于DOE ⊥AB 于解析:4 3【分析】过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,∵O是△ABC内角平分线的交点,∴OE=OF=OD,∵△ABC的面积是20,∴S△AOB+S△BOC+S△AOC=20,∴111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,∴(AB+BC+AC)×OD=40,∵△ABC的周长为30,∴AB+BC+AC=30,∴OD=404303=,∴即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.14.【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.15.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.16.26【分析】先利用圆周角定理得到∠BOC=2∠A=128°然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数【详解】解:∵∠A=64°∴∠BOC=2∠A=128°∵OB=OC∴∠OBC=∠解析:26【分析】先利用圆周角定理得到∠BOC=2∠A=128°,然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数.【详解】解:∵∠A=64°,∴∠BOC=2∠A=128°,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=12(180°-128°)=26°.故答案为26.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.【分析】连接OC由点CD是半圆O的三等分点得到根据垂径定理得到OD⊥AC∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC∵点CD是半圆O的三等分点∴∴OD解析:33 2π-【分析】连接OC,由点C,D是半圆O的三等分点,得到AD CD CB==,根据垂径定理得到OD⊥AC,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC,∵点C,D是半圆O的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵AB =∴∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 18.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 19.【分析】连接CD 由已知可以得到∠B=120°所以∠D=60°然后在Rt △ACD 中计算AC 即可【详解】解:如图所示连接CD ∵∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4∴AC解析:【分析】连接CD ,由已知可以得到∠B=120°,所以∠D=60°,然后在Rt △ACD 中计算AC 即可.【详解】解:如图所示,连接CD∵AB BC =,30BAC ∠=︒∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4 ∴AC=43【点睛】本题主要考查圆的内接四边形对角性质,掌握直径所对的圆周角是90°和圆的内接四边形对角互补是解题的关键.20.【分析】连接OD 设的半径为r 则OE=r-8再根据勾股定理求出r 最后根据直径和半径的关系即可解答【详解】解:如图:设的半径为r 则OE=r-8∵AB ⊥CD 于E 且CD=24∴DE=CD=12在Rt △ODE解析:26【分析】连接OD ,设O 的半径为r ,则OE=r-8,再根据勾股定理求出r ,最后根据直径和半径的关系即可解答. 【详解】解:如图:设O 的半径为r ,则OE=r-8,∵AB ⊥CD 于E ,且CD=24,∴DE=12CD=12, 在Rt △ODE 中,OD=r ,OE=r-8,DE=12,∴OE 2+DE 2=OD 2,∴(r-8)2+122=r 2,解得r=13∴AB=2r=26.故答案为26.【点睛】本题主要考查了垂径定理,正确作出辅助线、构造出直角三角形是解答本题的关键.三、解答题21.(1)2FG =;(2)当704m <<时,⊙O 与AD 相离;当74m =时,⊙O 与AD 相切;当744m <<时,⊙O 与AD 相交 【分析】(1)过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG .在Rt BCE ∆中,利用勾股定理求出BE ,再在Rt OMG ∆中求出MG 即可解决问题.(2)如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .求出相切时,m 的值即可判断.【详解】解:(1)解:过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG ,四边形ABCD 是矩形,90C D ∴∠=∠=︒,BE ∴是O 的直径.90C D DMN ∠=∠=∠=︒,∴四边形MNCD 是矩形,MN BC ∴⊥,4MN CD AB ===,BN CN ∴=.OB OE =,ON ∴是BCE ∆的中位线,112ON CE ∴==, 413OM ∴=-=,在Rt BCE ∆中,22210+=BE BC CE1102OG BE ∴==, 在Rt OMG ∆中,221-=MG OG OM ,22FG MG ∴==.(2)解:如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .由(1)易得1122==ON CE m ,142==-OB OM m ,3BN =, 在Rt BON ∆中,222+=ON BN OB ,即22211()3(4)22m m +=-, 解得74m =, ∴当704m <<时,O 与AD 相离, 当74m =时,O 与AD 相切, 当744m <<时,O 与AD 相交. 【点睛】本题考查直线与圆的位置关系,矩形的性质,垂径定理,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.23.(1)相切;(2)94π 【分析】(1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得 22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+, 解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.24.(1)见解析;(2)见解析【分析】(1)连接BD 、AC 交于点E ,连接OE ;(2)连接BD ,则点P 和BD 与O 的交点的延长线与AB 的交点即为F 点.【详解】(1)如图所示,∵四边形ABCD 是菱形,∴E 是BD 中点,∵O 是DA 中点,∴//OE AB ;(2)如图所示,∵120BAD ∠=,∴60ADC ∠=︒,∵AD CD =,∴ACD △是等边三角形,∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥,∴P 是CD 中点,通过如图所示找到的点F 是AB 的中点,∵ABC 也是等边三角形,∴CF AB ⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.25.(1)见解析;(2)22+ 【分析】(1)连接AD ,先由圆周角定理得∠ADB =90°,则AD ⊥BC ,再由线段垂直平分线的性质得AB =AC ,则∠B =∠C =45°,求得∠BAC =90°,即可得出结论;(2)作EH ⊥OF 交AF 于H ,则EH 是⊙O 的切线,先由垂径定理得OE ⊥AD ,AG =DG ,再证出△EFH 是等腰直角三角形,得EH =EF =2,则FH =2EF =2,然后由切线长定理得AH =EH =2,则AF =AH +FH =2+2,最后由等腰直角三角形的性质得OA =AF =2+2即可.【详解】(1)证明:连接AD ,如图所示:∵AB 是⊙O 的直径,∴∠ADB =90°,OA 是⊙O 的半径,∴AD ⊥BC ,∵D 是BC 的中点,∴AB =AC ,∴∠B =∠C =45°,∴∠BAC =180°−45°−45°=90°,∴AC ⊥OA ,∴AC 是⊙O 的切线;(2)解:作EH ⊥OF 交AF 于H ,如图所示:则EH 是⊙O 的切线,∵E是AD的中点,∴OE⊥AD,AG=DG,∵AD⊥BC,∴OF∥BC,∴∠EFH=∠C=45°,∵EH⊥OF,∴△EFH是等腰直角三角形,∴EH=EF2FH2EF=2,∵AC是⊙O的切线,∴AH=EH2∴AF=AH+FH2+2,由(1)得:∠BAC=90°,∴△AOF是等腰直角三角形,∴OA=AF2+2,即⊙O2+2.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识;熟练掌握切线的判定与性质、垂径定理和圆周角定理是解题的关键.26.(1)图见详解,6 ;(2)图见详解,4.5【分析】(1)过C画AB的平行线,过A画BC的平行线,两线交于一点D,根据平行四边形的判定定理可得四边形ABCD是平行四边形,由平行四边形的性质可知∠CBA=∠CDA,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B的特点,作出∠E与∠B互补,然后用割补法求面积即可.【详解】解:(1)如图,S四边形ABCD=3×4-122⨯×2-222⨯-112⨯=6;(2)如图,S四边形ABCE=3×3-122⨯×2-222⨯-112⨯=92.【点睛】此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.。

人教版数学九年级上册《圆》单元测试(带答案)

人教版数学九年级上册《圆》单元测试(带答案)
(1)求证: 是 的切线;
(2)若 的半径为2,求图中阴影部分的面积.
21.如图,AB是⊙O 直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.
(1)求证:BF是⊙O的切线;
(2)已知圆的半径为1,求EF的长.
参考答案
一、选择题(每小题3分,共30分)
A. AC=ABB. ∠C= ∠BODC. ∠C=∠BD. ∠A=∠B0D
3.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A DE=EBB. DE=EBC. DE=DOD.DE=OB
4.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是( )
A DE=EBB. DE=EBC. DE=DOD.DE=OB
【答案】D
【解析】
【详解】解:连接EO.
∴∠B=∠OEB,
∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
∴∠B+∠3∠D,
∴∠D+∠DOE+∠D=3∠D,
∴∠DOE=∠D,
∴ED=EO=OB,
故选D.
4.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是( )
A.55°B.65°C.70°D.75°
7.如图,PA、PB是⊙O 切线,切点分别为A、B,若OA=2,∠P=60°,则 的长为()
A. πB.πC. πD. π
8.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )
16.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.

圆的切线的判定练习题2024~2025学年人教版数学九年级上册++

圆的切线的判定练习题2024~2025学年人教版数学九年级上册++

切线的判定练习题1.如图,⊙O是△ACD的外接圆,CD是⊙O的直径,点B为圆外一点,且∠BAD=∠C.求证:AB是⊙O的切线.2.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.3.如图,在△ABC,AC=BC,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.4.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD;(2)求证:DE为⊙O的切线.5.如图,AB为⊙O的直径,点C,D在⊙O上,AĈ=CD̂=DB̂,DE⊥AC.求证:DE是⊙O的切线.6.如图,AB为⊙O的直径,AC平分∠BAD交⊙O于点C,CD⊥AD,垂足为点D.求证:CD是⊙O的切线.7.如图△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,以点D为圆心,BD为半径作⊙D交AB于点E.(1)求证:⊙D与AC相切;(2)若AC=5,BC=3,试求AE的长.8.如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.求证:直线DE是⊙O的切线.9.如图,在△ABC中,CA=CB,O为AB上一点.以O为圆心,OB长为半径的⊙O过点C,交AB于另一点D.若D是OA的中点,求证:AC是⊙O的切线.10.如图所示,AB为半圆O的直径,C是半圆上一点,AD平分∠CAB交半圆于点D,过点D作DE⊥AC,DE交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,DE=√3,求线段AC的长.11.如图,在△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O交BC于点F,FG⊥AB,垂足为G,求证:FG是⊙O的切线.12.如图,已知AB=AC,以AB为直径的圆O交边BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:DE是圆O的切线;(2)如果∠BAC=120°,求证:DE=14BC.13.如图,已知AB是⊙O的直径,D是⊙O上一点,且∠A=∠CDB=∠COB.求证:CB是⊙O的切线.14.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=6,∠ACB的平分线CO交AB于点O,以OB为半径作⊙O.(1)请判断AC与⊙O的位置关系,并说明理由;(2)求⊙O的半径.。

【学生卷】初中九年级数学上册第二十四章《圆》基础练习(含答案解析)

【学生卷】初中九年级数学上册第二十四章《圆》基础练习(含答案解析)

一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.如图,在ABC 中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F .连接BF ,CF ,若135EDC ∠=︒,2AE =,4BE =,则CF 的值为( ).A .10B .22C .23D .33.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25B .43C .25或45D .23或43 5.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个7.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 8.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 9.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40° 10.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .无法判断 11.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 12.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .213.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .22+1B .22+2C .42+1D .42-2 14.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B 1213C .4D .515.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF与⊙O相切,OD与BE相交于点H.下列结论错误的是()A.BD=CD B.四边形DHEF为矩形C.2=AE DED.BC=2CE二、填空题16.如图,A、B、C是O上顺次三点,若AC、AB、BC分别是O内接正三角形、正方形、正n边形的一边,则n=______.AB=,17.如图,四边形ABCD是O的内接四边形,对角线AC是O的直径,2∠=︒,则O的半径长为_______.ADB4518.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC19.在直径为10cm 的⊙O 中,弦AB=5cm ,则∠AOB 的度数为_______.20.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.21.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,58AOB ∠=,B 是弧AC 的中点,则BDC ∠的度数为___________.22.已知圆心O 到直线l 的距离为5,⊙O 半径为r ,若直线l 与⊙O 有两个交点,则r 的值可以是________.(写出一个即可)23.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.24.如图,⊙O 的半径为3,点A 是⊙O 外一点,OA =6,B 是⊙O 上的动点,线段AB 的中点为P ,连接 OA 、OP .则线段 OP 的最大值是______.25.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为 _____.26.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题27.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.28.已知PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =80°,C 为⊙O 上一点. (Ⅰ)如图①,求∠ACB 的大小;(Ⅱ)如图②,AE 为⊙O 的直径,AE 与BC 相交于点D .若AB =AD ,求∠EAC 的大小.29.如图,AC 为O 的直径,4AC =,B 、D 分别在AC 两侧的圆上,60BAD ∠=︒,BD 与AC 的交点为E .(1)求点O 到BD 的距离及OBD ∠的度数;(2)若2DE BE =,求cos OED ∠的值和CD 的长.30.如图,已知,MON ∠点A 在射线OM 上.根据下列方法画图(用尺规作图). ①以O 为圆心,OA 长为半径画圆,交ON 于点B ,交射线OM 的反向延长线于点C ,连接BC ;②以OA 为边,在MON ∠的内部,画AOP OCB ∠=∠;③连接AB ,交OP 于点E ;④过点A 作O 的切线,交OP 于点F .()1依题意补全图形;()2求证MOP PON ∠=∠;()3若60,10MON OF ∠=︒=,求AE 的长.。

人教版数学九年级上学期《圆》单元测试题(附答案)

人教版数学九年级上学期《圆》单元测试题(附答案)
A.∠APB=30°B.∠APB>30°C.∠APB<30°D.不能确定
10.如图,A B是半圆的直径,点D是弧A C的中点,∠A B C=500,则∠D A B等于( )
A. 55°B. 60°C. 65°D. 70°
二、填空题
11.如图,A C与B D交于P,A D、B C延长交于点E,∠AEC=37°,∠C AE=31°,则∠APB的度数为.
(1)求证:DE∥B C;
(2)若AF=CE,求线段B C的长度.
27.如图,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(-1,0),AE=4.
(1)求点C的坐标;
(2)连接MG、B C,求证:MG∥B C.
[答案]8
12.已知点O到直线l的距离为6,以O为圆心,r为半径作⊙O,若⊙O上只有3个点到直线l的距离为2,则r的值为_____.
13.用一张半径为9Cm、圆心角为120°的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是_________Cm.
14.如图,⊙C与∠AOB 两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=4,则OC的长为____.
A. ∠APB=30°B. ∠APB>30°C. ∠APB<30°D. 不能确定
[答案]C
[解析]
[分析]
连接B C,已知∠AOB=60°,∠AOB与∠A C B为优弧A B所对的圆心角和圆周角,利用圆周角定理求得∠A C B,再利用三角形外角的性质得出答案即可.
[详解]如图,
∵∠AOB与∠A C B为优弧A B所对的圆心角和圆周角,

人教版数学九年级上册《圆》单元综合测试题(含答案)

人教版数学九年级上册《圆》单元综合测试题(含答案)
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
3.下列说法正确的是( )
A.三点确定一个圆
B.度数相等的弧是等弧
C.三角形内心到三边的距离相等
D.垂直于半径的直线是圆的切线
【答案】C
【解析】
【分析】
利用确定圆的条件,等弧的概念,切线的判定,角平分线的性质进行判断即可.
(1)AC与BD的交点是圆O的圆心;
(2)AF与DE的交点是圆O的圆心;
(3) ;
(4)DE>DG,
A.0B.1C.2D.3
10.如图,网格中的小正方形边长都是1,则以O为圆心,OA为半径的弧 和弦AB所围成的弓形面积等于( )
A. ﹣4B. 2π﹣4C. 4π﹣4D. π﹣4
二、填空题
11.如果圆锥 母线为4cm,底面半径为3cm,那么这个圆锥的侧面积为______.
【详解】A为线段OB的中点,当OB=8cm时,得OA= OB=4,
∵r=5,
∴d<r,
∴点A与⊙O的位置关系是点A在圆O内,
故选A.
【点睛】考查点与圆的位置关系,解题的关键是记住:当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.
9.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法,其中正确说法的个数是( )
12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A( ,0),直线y=kx-2k+3与⊙O交于B、C两点,则弦BC的长的最小值为_______.
【答案】8
【解析】
【分析】

九年级数学上学期 24.1 圆的有关性质 同步练习卷 含解析

24.1 圆的有关性质一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.39.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP =12.故选:B.3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆【分析】根据直径、弧、弦的定义进行判断即可.【解答】解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【分析】利用半圆的弧长公式,即可分别求得两个路径的长,然后进行比较即可.【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定【分析】以及等弧所对的弦相等,以及三角形中两边之和大于第三边,即可判断.【解答】解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE 与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,∵CD=DE,∴CE<CD+DE,即CE<2CD=AB,∴CE<AB,∴<.故选:A.8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.3【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD=,由垂径定理得,AB=2AD=4,故选:A.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD =∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于60 度.【分析】先利用PA=PB,∠P=60°得出△PAB是等边三角形,再求出△COA,△DOB也是等边三角形,得出∠COA=∠DOB=60°,可求∠COD.【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【分析】方法一、延长CP交⊙O于K,连接DK,求出当DK为直径时符合,再求出PM即可;方法二、求出C,M,O,P,四点共圆,连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.【解答】解:方法一、延长CP交⊙O于K,连接DK,则PM=DK,当DK过O时,DK最大值为8,PM=DK=4,方法二、连接CO,MO,∵∠CPO=∠CMO=90°,∴C,M,O,P,四点共圆,且CO为直径(E为圆心),连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4,故答案为:4.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26 寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt △OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=36°.【分析】连接BD,根据AB为直径,得出∠ADB=90°,∠ABD=∠ACD=54°,继而可求得∠BAD.【解答】解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到=,把两弧都加上弧AC 得到=,于是得到DC=AB.【解答】证明:∵AD=BC,∴=,∴+=+,即=,∴DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.【分析】利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.【解答】证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵,∴△AOD≌△BOC(SAS).∴AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.。

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

⼈教版数学九年级上册第⼆⼗四章《圆》知识点及练习题(附答案)《圆》章节知识点复习和练习附参考答案⼀、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离⼤于定长的点的集合; 3、圆的内部:可以看作是到定点的距离⼩于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4、到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。

⼆、点与圆的位置关系1、点在圆内 ? d r < ? 点C 在圆内;2、点在圆上 ? d r = ? 点B 在圆上;3、点在圆外 ? d r > ? 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ? d r > ? ⽆交点;2、直线与圆相切 ? d r = ? 有⼀个交点;3、直线与圆相交 ? d r < ? 有两个交点;四、圆与圆的位置关系外离(图1)? ⽆交点 ? d R r >+;外切(图2)? 有⼀个交点 ? d R r =+;相交(图3)? 有两个交点 ? R r d R r -<<+;内切(图4)? 有⼀个交点 ? d R r =-;内含(图5)? ⽆交点 ? d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆⼼,并且平分弦所对的两条弧;(3)平分弦所对的⼀条弧的直径,垂直平分弦,并且平分弦所对的另⼀条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE = ④弧BC =弧BD ⑤弧AC =弧AD中任意2个条件推出其他3个结论。

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π2.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°5.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3 )A.32B.33C.3π26-D.3π36-6.已知△ABC的外心为O,连结BO,若∠OBA=18°,则∠C的度数为()A.60°B.68°C.70°D.72°7.如图,ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC绕点B顺时针旋转到A B C'''的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形的面积是()平方单位(结果保留)A.254πB.134πC.132πD.136π8.已知⊙O的直径为6,圆心O到直线l的距离为3,则能表示直线l与⊙O的位置关系的图是()A.B.C.D.9.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部10.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒11.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题13.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.16.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.17.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.18.在矩形ABCD 中,43AB =6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图所示,在⊙O中,AB为弦,交AB于AB点D,且OD=DC,P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为_____.三、解答题21.如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=12cm,求阴影部分面积.22.如图,AB是圆的直径,且AD//OC,求证:CD BC.23.已知:△ABC.(1)求作:△ABC的外接圆⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC的外接圆的圆心O到BC边的距离OD=8,BC=12,求⊙O的半径.24.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.求证:AP=BP.25.如图,长方形ABCD的长是a,宽是b,分别以A、C为圆心作扇形,用代数式表示阴影部分的周长L和面积S(结果中保留π).⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).26.如图,在33(1)在图1中,圆过格点A,B,请作出圆心O;=,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】以直线AC为轴旋转一周所得到的几何体的表面积是圆锥的侧面积加底面积,根据圆锥的侧面积公式计算即可.【详解】解:根据题意得:圆锥的底面周长6π=, 所以圆锥的侧面积165152ππ=⨯⨯=, 圆锥的底面积239ππ=⨯=,所以以直线AC 为轴旋转一周所得到的几何体的表面积15924πππ=+=.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.2.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E =3AE =332, 即BF +EF 的最小值为332. 故选:B .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.3.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键.4.D解析:D【分析】连接OB,利用圆周角定理求得∠AOB,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB为O的切线,∴OB⊥PB,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D.【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.5.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.6.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°,故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.7.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得==由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=2290n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.8.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.9.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.D解析:D【分析】连接AC ,根据圆心角、弧、弦的关系求出∠BAC ,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.11.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.12.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.二、填空题13.【分析】以AC 为直径作圆O 连接BO 并延长交圆O 于点可得BO+O >B 从而可得BO+OE >B 即BE 为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE ⊥l 于点E ∴以AC 为直径作圆O ∵CE 解析:225+【分析】以AC 为直径作圆O ,连接BO ,并延长交圆O 于点E ',可得BO+O E '>B E ',从而可得BO+OE >B E ',即BE 为最大值,再由勾股定理求出BO 的长即可解决问题.【详解】 解:由题意知,CE ⊥l 于点E ,∴以AC 为直径作圆O ,∵CE ⊥AE,∴点E 在圆O 上运动,连接BO ,并延长交圆O 于点E ',如图,∴BO+O E '>B E ',∵OE=O E ',∴BO+OE >B E ',∴BE 的长为最大值, ∵AO=OC=OE ,且AB=AC=4,∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:()3,33 【分析】 如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6,∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF 的边长为2∴正六边形ABCDEF 的面积是:6××22=∠FAB =∠EDC解析:63﹣83π 【分析】 根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题. 【详解】解:∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:6×34×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π, 故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 16.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°,∵3AB =∴3∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 17.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 18.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾解析:4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:34或8. 故答案为:34或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD 内接于⊙O ∴∠A+∠C =180°∴∠C =180°﹣∠A =180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A +∠C =180°,∴∠C =180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴DE=223 2AE AD-=,S△ABE=133 24AB DE=,∵在△ABP中,当点P与点E重合时,AB边上的高取最大值,此时△ABP的面积最大,∴S△ABP的最大值=334.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)30°;(2)6π﹣93【分析】(1)如图,连接OE,OF,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE∥BC,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G处的读数α(0°<α<90°);(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE,OF.∵CD切半圆O于点E,∴OE⊥CD,∵BD为等腰直角△BCD的斜边,∴BC⊥CD,∠D=∠CBD=45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.22.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.(1)作图见解析;(2)10.【分析】(1)分别做AB 、BC 的垂直平分线且交于O ,然后以O 为圆心、OA 为半径画圆即可; (2)如图:连接OB ,然后根据垂径定理求得BD ,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O 即为所求作的外接圆;(2)如图:连接OB∵已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8∵线段BC 的垂直平分线交BC 于点D ,∴BD =CD =12BC=6, 在Rt △BOD 中,OB =2286+=10,∴⊙O 的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.24.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.25.22L b a b π=+-;212S ab b π=-.【分析】由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。

九年级上册数学《圆》单元综合测试题(含答案)

13.如图,在 中, 是弧AB的中点, ,则 的度数为________.
14.已知 的直径为 ,如果圆心到直线 的距离为 ,则直线 与 的位置关系________
15.如果扇形的半径为 ,圆心角是 ,那么它的面积是________.
16.小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是 .
∵CD=2 ,
∴CN= ,
∴CO=2,
∴扇形BOC的面积为: ,
故选A.
【点睛】此题主要考查了圆周角定理、垂径定理和扇形面积公式,关键是掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
10.有一个长为 的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是()
A. B. C. D.
【答案】
【解析】
【分析】
根据弧长公式l= (弧长为l,圆心角度数为n,圆的半径为R)进行计算即可.
【详解】l= = =2.5π.
故答案为2.5π.
【点睛】本题考查了弧长公式,注意计算时把直径化成半径.
12.点 到圆 上的点的最小距离为 厘米,最大距离为 厘米,那么圆 的半径为________.
【答案】 厘米或 厘米
A. B. C. D.
【答案】B
【解析】
【分析】
由弧ABC、弧ADC的长度分别为8π、10π,可得圆的周长为18π,由∠BCD=100°可求得弧BAD= ×18π=10π.
【详解】∵弧ABC、弧ADC的长度分别为为8π、10π,∴圆的周长为18π.
∵∠BCD=100°,∠BCD+∠A=180°,故弧BAD= ×18π=10π.
A.40°B.50°C.60°D.80°
6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上数学圆练习题
九年级上数学圆练习题
下面是店铺帮大家整理的九年级上数学圆练习题,仅供参考,大家一起来看看吧。

九年级上数学圆练习题1
1、一种压路机的前轮直径是1.5米,每分转8圈,压路机每分前进多少米?
2、一个圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?
3、一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?(车身的长度忽略不计)
4、一根铁丝可以围成一个半径是3厘米的半圆。

这根铁丝有多长?它所围成半圆的面积有多大?
5、用席子围成一个地面周长是18.84米的圆柱形粮囤。

这个粮囤占地面积有多大?
6、公园里有一个直径为16米的圆形花圃,在它的周围环绕着一条2米宽的走道。

现将走道也改成花圃,现在花圃的面积是多少?
7、一块正方形草地,边长8米。

用一根长3.5米的绳拴住一只羊到草地上吃草。

羊最多能吃到多少面积的草?
九年级上数学圆练习题2
1、一个圆的直径是8分米,它的周长是( )分米,面积是( )平方分米、
2、笑笑要画圆,圆规两脚尖张开( )厘米,能画出一个周长是18.84厘米的圆、
3、一个圆的半径扩大到原来的3倍,它的直径扩大到原来的( )倍,周长扩大到原来的( )倍,面积扩大到原来的( )倍、
4、在一张长15厘米,宽10厘米的长方形纸上画一个最大的圆,这个圆的周长是( )厘米、面积是( )平方厘米、剩下面积是( )平方厘米、
5、将一个直径是4分米的圆分成若干等分剪开,再拼成一个近似的长方形,这个长方形的长是( )分米,面积是( )平方分米、
6、小圆半径6厘米,大圆半径8厘米。

大圆和小圆半径的比是( );直径的比是( );周长的`比是( );面积的比是( )。

7、大圆的半径等于小圆直径,则大圆面积是小圆面积的( )倍,小圆周长是大圆周长的( )。

8、在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画( )个、
9、一个圆的半径是8厘米,这个圆面积的是( )平方厘米。

10、圆周率表示同一圆内( )和( )的倍数关系,它用字母( )表示,保留两位小数后的近似值是( )。

11、在同一个圆内可以画( )条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是( )厘米。

九年级上数学圆练习题3
一、口算。

(8分)
200-31.4= 10.28×198.2≈
8÷0.2= 0.36+0.2=
二、计算。

(9分,能用简便方法的要用简便方法)
8-2+1 4.38÷0.2+3.62
三、细心填写。

(共16分)
1、在同一个圆内,所有的( )和( )的长度分别相等,半径的长度是直径的( )。

2、如果一个圆的半径扩大4倍,它的直径扩大( )倍,面积扩大( )倍。

3、把一个半径3cm的圆拼成近似长方形,周长增加( )cm。

4、画一个周长为62.8厘米的圆,圆规两脚间的距离是( )厘米。

5、把一根铁丝围成一个圆,半径正好是5分米,如果把这根铁丝改围成一个正方形,它的边长是( )分米。

6、圆周率是( )除以( )的商。

在对圆的研究作出杰出贡献的中国古代科学家中,( )用“割圆术”得到圆周率的近似值是3.14,( )
最早算出π的值在3.1415926至3.1415927之间。

7、树上拴着一只羊,拴羊的绳子长2米,羊的周围全是草,羊能吃到最多的草的面积是( )平方米。

8、在长24cm,宽15cm的长方形中,能剪( )半径为3cm的圆。

9、在一个边长为2cm的正方形中画出一个最大的圆,圆的面积占正方形面积的( )%。

四、你一定能选对!请把正确答案前的字母填在括号里。

(6分)
1、把一张长为5分米,宽为4分米的长方形纸片剪成一个最大的圆,它的周长是( )分米。

A、6.28
B、15.7
C、12.56
2、大圆的半径等于小圆的直径,那么大圆面积是小圆面积的( )倍,大圆周长是小圆的( )倍。

A、2
B、4
C、3.14
D、π
3、一个圆的周长与一个正方形的周长相等,那么它们的面积大小比较( )。

A、两个面积一样大
B、圆面积大了
C、正方形面积大
D、不能确定
【九年级上数学圆练习题】。

相关文档
最新文档