初三数学圆测试题和答案

合集下载

初三圆的练习题及答案

初三圆的练习题及答案

初三圆的练习题及答案初三圆的练习题及答案在初三数学学习中,圆是一个重要的几何概念。

掌握圆的性质和相关的计算方法对于解题非常关键。

本文将为大家提供一些圆的练习题及其答案,希望能够帮助大家更好地理解和应用圆的知识。

一、填空题1. 半径为5cm的圆的面积是多少?答案:面积=πr²=π×5²=25π cm²2. 已知一个圆的半径为8cm,求该圆的周长。

答案:周长=2πr=2π×8=16π cm3. 如果一个圆的面积是36π cm²,求该圆的半径。

答案:面积=πr²,36π=πr²,r²=36,r=6 cm二、选择题1. 以下哪个选项是圆的定义?A. 一个平面上的所有点到一个固定点的距离相等。

B. 一个平面上的所有点到一个固定点的距离之和相等。

C. 一个平面上的所有点到一个固定直线的距离相等。

D. 一个平面上的所有点到一个固定点的距离比例相等。

答案:A. 一个平面上的所有点到一个固定点的距离相等。

2. 以下哪个选项是圆的面积公式?A. 面积=πr²B. 面积=2πrC. 面积=πdD. 面积=πr答案:A. 面积=πr²三、计算题1. 已知一个圆的直径为12cm,求该圆的面积和周长。

答案:半径r=直径/2=12/2=6 cm面积=πr²=π×6²=36π cm²周长=2πr=2π×6=12π cm2. 一个圆的周长为18π cm,求该圆的半径和面积。

答案:周长=2πr=18π cm,解得r=9 cm面积=πr²=π×9²=81π cm²四、应用题1. 一个圆形花坛的半径为5 m,围绕花坛建一个小路,小路的宽度为2 m。

求小路的面积。

答案:外圆的半径=花坛半径+小路宽度=5+2=7 m内圆的半径=花坛半径=5 m小路的面积=外圆面积-内圆面积=π(外圆半径²-内圆半径²)=π(7²-5²)=π(49-25)=24π m²2. 一个圆形游泳池的直径为10 m,池边修建一条环形的跑道,跑道的宽度为2 m。

初中初三数学圆试题及答案

初中初三数学圆试题及答案

初中初三数学圆试题及答案一、选择题(每题2分,共10分)1. 圆的半径是10,那么圆的直径是()A. 5B. 20C. 15D. 252. 已知圆心为O,点A在圆上,OA的长度是半径的2倍,那么点A()A. 在圆内B. 在圆上C. 在圆外D. 不存在3. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 4r4. 圆的面积公式是()A. S = πr²B. S = πd²C. S = 2πrD. S = πd5. 如果一个圆的半径增加1cm,那么它的面积将增加多少平方厘米?(π取3.14)A. 3.14B. 6.28C. 2πD. π二、填空题(每题2分,共10分)1. 半径为r的圆的周长是______。

2. 半径为r的圆的面积是______。

3. 如果一个扇形的圆心角为30°,半径为5cm,那么它的弧长是______。

4. 一个圆的直径是20cm,那么它的半径是______。

5. 圆周角定理指出,圆周上一点到圆心的两条半径所夹的角是圆心角的______。

三、解答题(每题5分,共30分)1. 已知圆O的半径为5cm,点P在圆O上,求OP的长度。

答案:OP的长度为5cm。

2. 一个圆的周长是44cm,求这个圆的半径。

答案:设半径为r,根据周长公式C = 2πr,44 = 2 × 3.14 × r,解得r = 7cm。

3. 一个圆的面积是78.5平方厘米,求这个圆的半径。

答案:设半径为r,根据面积公式S = πr²,78.5 = 3.14 × r²,解得r = √(78.5 / 3.14) ≈ 5cm。

4. 已知圆心角为60°,半径为10cm的扇形,求这个扇形的弧长。

答案:弧长= (60/360) × 2π × 10 = π × 10 = 31.4cm。

初三数学圆练习题及答案

初三数学圆练习题及答案

初三数学圆练习题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 相交B. 相切B. 相离D. 无法确定2. 一个圆的半径为4,圆心在原点,那么圆上任意一点到圆心的距离是多少?A. 4B. 3C. 5D. 63. 点A(2,3)与圆心O(0,0)的距离是多少?A. 2B. 3C. 4D. 54. 已知点P在圆上,OP=r,其中O是圆心,r是半径,那么点P与圆的位置关系是什么?A. 在圆内B. 在圆上C. 在圆外D. 不在圆上5. 圆的面积公式是什么?A. πr²B. 2πrC. πrD. πr³答案:1-A 2-A 3-C 4-B 5-A二、填空题6. 圆的周长公式是______。

7. 如果圆的半径增加1,那么它的周长将增加______。

8. 已知圆的直径为10,那么它的半径是______。

9. 圆的内接四边形的对角线的关系是______。

10. 如果一个点到圆心的距离等于半径,那么这个点是圆上的______。

答案:6-C=2πr 7-2π 8-5 9-互相平分 10-点三、计算题11. 已知圆的半径为7,求圆的周长和面积。

12. 已知圆的周长为44cm,求圆的半径。

答案:11. 周长:C = 2πr = 2 × 3.14 × 7 = 43.96cm面积:A = πr² = 3.14 × 7² = 153.86cm²12. 半径:r = C / (2π) = 44 / (2 × 3.14) ≈ 7cm四、解答题13. 已知点P(-3,4),求点P到圆心O(0,0)的距离。

14. 已知圆的半径为5,圆心在(1,1),求圆上任意一点(x,y)到圆心的距离公式。

答案:13. 点P到圆心O的距离为:d = √[(-3-0)² + (4-0)²] = √(9 + 16) = √25 = 514. 圆上任意一点(x,y)到圆心(1,1)的距离公式为:d = √[(x-1)² + (y-1)²],且d = 5五、证明题15. 已知圆O的半径为r,点A、B在圆上,证明弦AB的长度等于圆心O到弦AB的垂直距离的两倍。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。

A. 圆的直径是半径的2倍B. 圆的周长是直径的π倍C. 圆的面积是半径的平方乘以πD. 圆的周长是半径的2π倍答案:D2. 圆的面积公式为()。

A. S = πrB. S = πr²C. S = πdD. S = πd²答案:B3. 圆的周长公式为()。

A. C = 2πrB. C = 2πdC. C = πrD. C = πd答案:A4. 圆心角为60°的扇形面积是()。

A. πr²/6B. πr²/3C. πr²/2D. πr²答案:A5. 一个圆的半径为3cm,其面积为()。

A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C6. 圆的直径增加1倍,其面积增加()。

A. 1倍B. 2倍C. 4倍D. 8倍答案:C7. 圆的半径增加1倍,其周长增加()。

A. 1倍B. 2倍C. 3倍D. 4倍答案:B8. 一个圆的周长为12.56cm,其直径为()。

A. 2cmB. 4cmC. 6cmD. 8cm答案:B9. 圆的半径为4cm,其直径为()。

A. 2cmB. 4cmC. 8cmD. 16cm答案:C10. 圆的半径为2cm,其周长为()。

A. 4π cmB. 8π cmC. 12π cmD. 16π cm答案:B二、填空题(每题3分,共30分)1. 圆的周长公式为______。

答案:C = 2πr2. 圆的面积公式为______。

答案:S = πr²3. 圆的直径是半径的______倍。

答案:24. 圆的周长是直径的______倍。

答案:π5. 圆的面积是半径的平方乘以______。

答案:π6. 圆心角为90°的扇形面积是圆面积的______。

答案:1/47. 圆心角为180°的扇形面积是圆面积的______。

初三圆的测试题及答案

初三圆的测试题及答案

初三圆的测试题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含2. 圆的周长公式是()。

A. C = πrB. C = 2πrC. C = 4πrD. C = 8πr3. 圆的面积公式是()。

A. S = πr^2B. S = 2πrC. S = 4πr^2D. S = 8πr4. 已知圆的半径为4,求圆的直径是()。

A. 8B. 12C. 16D. 205. 一个圆的半径增加2,面积增加了()。

A. 4πB. 8πC. 12πD. 16π二、填空题6. 圆心角的度数是360°的圆心角所对的弧是______弧。

7. 已知扇形的半径为6,圆心角为60°,求扇形的面积是______。

8. 已知两圆的半径分别为r1和r2,两圆的圆心距为d,若d = r1 + r2,则两圆的位置关系是______。

9. 已知圆的半径为3,求圆的内接正六边形的边长是______。

10. 已知圆的半径为5,求圆的内接正三角形的边长是______。

三、计算题11. 已知圆的半径为7,求圆的周长和面积。

周长为______,面积为______。

12. 已知圆的半径为10,圆上一点P到圆心的距离为9,求点P所对的圆心角的度数。

四、解答题13. 已知圆的半径为8,圆内接正六边形的边长为a,求圆的周长和正六边形的面积。

14. 已知圆的半径为15,求圆内接正十二边形的边长。

答案:1. C2. B3. A4. A5. B6. 优弧7. 18π8. 外切9. 610. 1011. 周长为44π,面积为49π12. 圆心角的度数为60°13. 圆的周长为16π,正六边形的面积为144π - 72√314. 正十二边形的边长为15(√3 - 1)结束语:本测试题涵盖了圆的基本性质、周长和面积的计算、内接多边形的边长等知识点,旨在帮助学生巩固圆的相关知识,提高解题能力。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

初三数学圆精选练习题及答案

初三数学圆精选练习题及答案

圆精选练习题及答案一一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24 分):1. 下列说法正确的是()A.垂直于半径的直线是圆的切线B. 经过三点一定可以作圆C.圆的切线垂直于圆的半径D. 每个三角形都有一个内切圆2. 在同圆或等圆中,如果AB = 2CD ,则AB与CD的关系是()(A)AB > 2CD (B)AB = 2CD (C)AB V 2CD (D)AB = CD3. 如图(1),已知PA切O O于B,OP交AB于C,则图中能用字母表示的直角共有()个A.3B.4C.5D.6⑵4. 已知O O的半径为10cm,弦AB// CD,AB=12cm,CD=16cr则AB和CD的距离为()A.2cmB.14cmC.2cm 或14cmD.10cm 或20cm5. 在半径为6cm的圆中,长为2 - cm的弧所对的圆周角的度数为()A.30 °B.100C.120°D.130 °6. 如图(2),已知圆心角/ AOB勺度数为100° ,则圆周角/ ACB的度数是()A.80 °B.100 °C.120°D.130 °7. O O的半径是20cm,圆心角/ AOB=120 ,AB是O O弦,则S. AOB等于()A.25 .3 cmB.50 、3 cnfC.100 \ 3 cn iD.200 、3 cnf8. 如图(3),半径0A 等于弦AB,过B 作O 0的切线BC,取BC=AB,O 交O 0于E,AC 交O 0于点D,则BD 和DE 的度数分别为()、填空题:(每小题4分,共20分):11. 一条弦把圆分成1 :3两部分,贝U 劣弧所对的圆心角的度数为 12. 如果O O 的直径为10cm,弦AB=6cm 那么圆心O 到弦AB 的距离为 13. 在O O 中,弦AB 所对的圆周角之间的关系为 14. 如图(4), 。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案初三数学圆测试题及答案一、填空题1、圆的位置由________决定,圆的大小决定于________的大小。

2、在平面上,到定点(0,0)和定直线x=-2的距离相等的所有点构成图形是________;在球面上,到定点(-1,-1,-1)和定直线x +y+z=0的距离相等的所有点构成图形是________.3、圆可以看作是所有到定点(0,0)和定直线x=+t,y=-t(t≥0)的距离相等的点的________.4、证明定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.5、木工椎木螺钉的螺纹是依据________制成的.6、计算公式=________.7、等腰三角形两底角的平分线相等.;反之,等腰三角形两底角的平分线相等的三角形是.二、选择题8、雨花台区实验中学准备在体育场举办校运会,现将跑道内侧(跑道的内侧即是与终点线重合的短线)的直道部分改造为塑胶跑道,如果用半径为rcm的圆钢煨制(每个半径为rcm的圆钢可以将直道部分煨制30cm),那么r为任意有理数时,所需的圆钢的总长度最少为( ) A. 60πcm B. 120πcm C. 75πcm D. 90πcm81、下列命题中正确的是( ) A. 平分弦的直径垂直于弦 B. 三角形的重心是其三条中线的交点 C. 能够完全重合的两个图形全等 D.一组对边平行且一组对角相等的四边形是平行四边形811、四边形ABCD内接于⊙O,则∠A,∠B,∠C,∠D这四个角之间的关系为( ) A. ∠A+∠B+∠C+∠D=360° B. ∠A+∠B+∠C+∠D=2π C. ∠A+∠B+∠C+∠D=π D. 无法确定三、解答题11、在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径的圆与线段AB只有一个公共点,则半径r的取值范围是什么?111、小红在学习本节时,根据初步的几何知识知道半径相等的两个圆全等.她发现所有的圆形纸片都只有一条对称轴(即通过圆心的直线),于是她大胆猜想:任何一个半径相等的圆都只有一条对称轴.你认为她的猜想正确吗?请说明理由.1111、等边三角形的半径为r,高为h,面积为S,根据已知条件填空:当等边三角形的半径为2时,高为________,面积为________;当等边三角形的半径为3时,高为________,面积为________;当等边三角形的半径为6时,高为________,面积为________.观察以上各题中半径、高和面积的数值关系,你发现了什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆测试题和答

公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
圆练习
一、选择题
二、1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心
三、在三角形的一条边上的三角形是直角三角形,其中真命题共有( )
四、个个个个
五、2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆
六、的位置关系是( )
七、 A.外离 B.相切 C.相交 D.内含
八、3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )
九、°°°°
(3题图)(4题图)
4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )
≤OM≤5 ≤OM≤5 <OM<5 <OM<5
5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
°°°°
(5题图)(6题图)
6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )
7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴
影部分的面积为( )
A. B. C. D.
8.已知⊙O
1与⊙O
2
外切于点A,⊙O
1
的半径R=2,⊙O
2
的半径r=1,若半径为4的⊙C与
⊙O
1、⊙O
2
都相
切,则满足条件的⊙C有( )
个个个个
9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程
有实数
根,则直线与⊙O的位置关系为( )
A.相离或相切
B.相切或相交
C.相离或相交
D.无法确定
10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两
次,使它转到
△A
2B
2
C
2
的位置,设AB=,BC=1,则顶点A运动到点A
2
的位置时,点A所经过的
路线为( )
A. B. C. D.
二、填空题
11.某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包
装侧面,则需________________的包装膜(不计接缝,取3).
(11题图)(12题图)12.如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙
已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅
从射门角度考虑,应选择________种射门方式.
13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.
14如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所
在圆的圆心坐标为_____________.
(14题图)(15题图)
15.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S
1

S
2
,若圆心到两
弦的距离分别为2和3,则|S
1-S
2
|=__________.
三、解答题
16.为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到厘米)
AC BC AB r S
图甲
图乙
(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
(3)
(4)
(5) 17.如图,以等腰三角形的一腰为直径的⊙O交底边于点,交
于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除
外)是:
(6) (1)________________;(2)________________;(3)________________.
(7)
(8)
(9) 18.如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?
(10)
(11)
(12) 19.如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .
(13)
(14) 20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.
(15)
21.有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
说明:RQ为⊙O的切线.
变化二:运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗(只需交待判断) 答:_________.
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结
论还成立吗为什么
22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点
P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗请充分说明理由.
答案与解析:
一、选择题
提示:易证得△AOC≌△BOD,
二、填空题
12.第二种14.(2,0)
(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)
三、解答题
16.(1)略;
(2)由图表信息猜测,得,并且对一般三角形都成立.连接OA、OB、OC,运用面积法证明:
17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG 等).
18.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′
B=25,
所以圆形凳面的最大直径为25(-1)厘米.
19.扇形OAB的圆心角为45°,纸杯的表面积为44.
解:设扇形OAB的圆心角为n°
弧长AB等于纸杯上开口圆周长:
弧长CD等于纸杯下底面圆周长:
可列方程组,解得
所以扇形OAB的圆心角为45°,OF等于16cm
纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积
=
即S
纸杯表面积
=
20.连接OP、CP,则∠OPC=∠OCP.
由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.
而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.
21.解:连接OQ,
∵OQ=OB,∴∠OBP=∠OQP
又∵QR为⊙O的切线,∴OQ⊥QR
即∠OQP+∠PQR=90°
而∠OBP+∠OPB=90°
故∠PQR=∠OPB
又∵∠OPB与∠QPR为对顶角
∴∠OPB=∠QPR,∴∠PQR=∠QPR
∴RP=RQ
变化一、连接OQ,证明OQ⊥QR;
变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR.
22.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得
解得:
(不合题意,舍去) ∴OC=3, OA=5
(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=
∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2
在⊙O′中,∵ O′O= O′D ∴∠1=∠3
∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D
又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.
(3)不同意. 理由如下:
①当AO=AP时,
以点A为圆心,以AO为半径画弧交BC于P
1和P
4
两点
过P
1点作P
1
H⊥OA于点H,P
1
H=OC=3,∵AP
1
=OA=5
∴AH=4,∴OH =1
求得点P
1(1,3) 同理可得:P
4
(9,3)
②当OA=OP时,同上可求得:P
2(4,3),P
3
(4,3)
因此,在直线BC上,除了E点外,既存在⊙O′内的点P
1
,又存在⊙O′外
的点P
2、P
3
、P
4

它们分别使△AOP为等腰三角形.。

相关文档
最新文档