2019-2020年七年级(上)第16周周练数学试卷(解析版)
2019-2020学年四川省成都市新都区七年级(上)期末数学试卷含解析

2019-2020学年四川省成都市新都区七年级(上)期末数学试卷一、选择题:(每小题3分,共30分:在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.(3分)﹣(﹣)的相反数是()A.3B.﹣3C.D.﹣2.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我3.(3分)据新浪网报道:2019年参加国庆70周年大阅兵和后勤保障总人数多达98800人次,98800用科学记数法表示为()A.98.8×103B.0.988×105C.9.88×104D.9.88×1054.(3分)如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(3分)下列各组整式中,不属于同类项的是()A.﹣1和2B.和x2yC.a2b和﹣b2a D.abc和3cab6.(3分)用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.(3分)若x=1是方程2x+a=0的解,则a=()A.1B.2C.﹣1D.﹣28.(3分)2019年某市有11.7万名初中毕业生参加升学考试,为了了解这11.7万学生的数学成绩,从中抽取5000名学生的数学成绩进行统计,这个问题中一个样本是()A.11.7万名考生B.5000名考生C.5000名考生的数学成绩D.11.7万名考生的数学成绩9.(3分)已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<﹣a D.﹣b<a<﹣c10.(3分)某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x二、填空题:(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)关于x的多项式4x2n+1﹣2x2﹣3x+1是四次多项式,则n=.12.(4分)9时45分时,时钟的时针与分针的夹角是.13.(4分)若“方框”表示运算x﹣y+z+w,则“方框”=.14.(4分)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=6,BC=2,则AD的长为.三、解答题:(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(﹣3)2÷(1)2+(﹣4)×(2)解方程16.(6分)先化简,再求值:﹣2(xy2+3xy)+3(1﹣xy2)﹣1,其中x=,y=﹣117.(8分)一个几何体是由若干个棱长为1的小正方体堆积而成的,从不同方向看到的几何体的形状图如下.(1)在从上面看得到的形状图中标出相应位置小正方体的个数;(2)这个几何体的表面积是.18.(8分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了调查同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取部分同学进行问卷测试,把测试成绩分成“优、良、中、差”四个等级,绘制了如下不完整的统计图:根据以上统计信息,解答下列问题:(1)求成绩是“优”的人数占抽取人数的百分比;(2)求本次随机抽取问卷测试的人数;(3)请把条形统计图补充完整;(4)若该校学生人数为3000人,请估计成绩是“优”和“良”的学生共有多少人?19.(10分)如图,OA的方向是北偏东15°,OB的方向是西偏北50°,OD是OB的反向延长线.(1)若∠AOC=∠AOB,求OC的方向.(2)在(1)问的条件下,作∠AOD的角平分线OE,求∠COE的度数.20.(10分)在天府新区的建设中,现要把176吨物资从某地运往华阳的甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为12吨/辆和8吨/辆,运往甲、乙两地的运费如下表:运往地甲地(元/辆)乙地(元/辆)车型大货车640680小货车500560(1)求这两种货车各用多少辆?(2)如果安排10辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,运往甲、乙两地的总运费为w元,求出w与a的关系式;(3)在(2)的条件下,若运往甲地的物资为100吨,请求出安排前往甲地的大货车多少辆,并求出总运费.一、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B卷(50分)21.(4分)已知(k2﹣1)x2﹣(k+1)x+10=0是关于x的一元一次方程,则k的值为.22.(4分)已知有理数a,b,c在数轴上的对应位置如图所示,则|a﹣b|﹣2|b﹣c|﹣|a﹣1|化简后的结果是.23.(4分)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差中,不含有x、y,则n m+mn=.24.(4分)如图,已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3,OC与∠AOB的平分线所成的角的度数为.25.(4分)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为a1,第2幅图形中“•”的个数为a2,第3幅图形中“•”的个数为a3,…,以此类推,则的值为.二.解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)已知A=2a2+3ab﹣2a﹣1,B=﹣a2+(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.27.(10分)如图,直线1上有A,B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.(1)OA=cm,OB=cm;(2)若点C是线段AB上一点(点C不与点AB重合),且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.求当t为何值时,2OP﹣OQ=4(cm);28.(12分)已知OC是∠AOB内部的一条射线,M,N分别为OA,OC上的点,线段OM,ON同时分别以30°/s,10°/s的速度绕点O逆时针旋转,设旋转时间为t秒.(1)如图①,若∠AOB=120°,当OM、ON逆时针旋转到OM′、ON′处,①若OM,ON旋转时间t为2时,则∠BON′+∠COM′=;②若OM′平分∠AOC,ON′平分∠BOC,求∠M′ON′的值;(2)如图②,若∠AOB=4∠BOC,OM,ON分别在∠AOC,∠BOC内部旋转时,请猜想∠COM与∠BON 的数量关系,并说明理由.(3)若∠AOC=80°,OM,ON在旋转的过程中,当∠MON=20°,t =.2019-2020学年四川省成都市新都区七年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分:在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.【解答】解:﹣(﹣)=的相反数是:﹣.故选:D.2.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.3.【解答】解:98800用科学记数法表示为9.88×104.故选:C.4.【解答】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选:B.5.【解答】解:A、﹣1和2都是常数项,故是同类项,故本选项不符合题意;B、x2y和x2y中,所含字母相同,并且相同字母的指数相等,故是同类项,故本选项不符合题意;C、a2b和﹣b2a中,a、b的指数均不相同,故不是同类项,故本选项符合题意;D、abc和3cab中,所含字母相同,并且相同字母的指数相等,故是同类项,故本选项不符合题意;故选:C.6.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.7.【解答】解:将x=1代入2x+a=0,∴2+a=0,∴a=﹣2,故选:D.8.【解答】解:在这个问题中,总体是11.7万名初中毕业生的数学成绩;样本是抽查的5000名初中毕业生的数学成绩,故选:C.9.【解答】解:从数轴可知:c<b<0<a,|a|>|c|>|b|,A、a+c<0,故本选项不符合题意;B、b﹣c>0,故本选项不符合题意;C、c<﹣a<﹣b,故本选项符合题意;D、﹣b<a<﹣c,故本选项不符合题意.故选:C.10.【解答】解:设这个月共用x立方米的水,则用户所缴纳的水费可表示为:1.2×20+2(x﹣20).根据题意有1.2×20+2(x﹣20)=1.5x,故选:A.二、填空题:(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵关于x的多项式4x2n+1﹣2x2﹣3x+1是四次多项式,∴2n+1=4,∴n=.故答案为.12.【解答】解:∵9点45分时,分针指向9,时针在指向9与10之间,∴时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,即0.5°×45=22.5°.故答案为22.5°.13.【解答】解:根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.14.【解答】解:∵MN=MB+BC+CN,∵MN=6,BC=2,∴MB+CN=6﹣2=4,∴AD=AB+BC+CD=2(MB+CN)+BC=2×4+2=10.答:AD的长为10.故答案为:10.三、解答题:(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=9÷﹣×=4﹣=;(2)去分母得:4x﹣2+3x+3=12x﹣4,移项合并得:﹣5x=﹣5,解得:x=1.16.【解答】解:﹣2(xy2+3xy)+3(1﹣xy2)﹣1=﹣2xy2﹣6xy+3﹣3xy2﹣1=﹣5xy2﹣6xy+2,当x=,y=﹣1时,原式=﹣5××(﹣1)2﹣6××(﹣1)+2=.17.【解答】解:(1)如图所示:(2)这个几何体的表面积为2×(6+4+5)=30,故答案为:3018.【解答】解:(1)成绩是“优”的人数占抽取人数的百分比是=20%;(2)本次随机抽取问卷测试的人数是40÷20%=200(人);(3)成绩是“中”的人数是200﹣(40+70+30)=60(人).条形统计图补充如下:(4)3000×=6050(人).答:成绩是“优”和“良”的学生共有6050人.19.【解答】解:(1)∵OB的方向是西偏北50°,∴∠BOF=90°﹣50°=40°,∴∠AOB=40°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°;(2)由题意可知∠AOD=90°﹣15°+50°=125°,∵OE是∠AOD的角平分线,∴,∴∠COE=∠AOE﹣∠AOC=62.5°﹣55°=7.5°.20.【解答】解:(1)设大货车x辆,则小货车(18﹣x)辆,由题意可得:12x+8(18﹣x)=176解得:x=8,则18﹣x=10∴大货车8辆,小货车10辆.(2)设前往甲地的大货车为a辆,可得:w=640a+680(8﹣a)+500(10﹣a)+560a化简得:w=20a+10440(3)12a+8(10﹣a)=100解得:a=5则w=20×5+10440=10540答:安排前往甲地的大货车5辆,总费用为10540元.一、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B卷(50分)21.【解答】解:根据题意得:k2﹣1=0,解得:k=1或k=﹣1,k+1≠0,解得:k≠﹣1,综上可知:k=1,即参数k的值为1.故答案为:1.22.【解答】解:由有理数a,b,c在数轴上的位置可知,﹣1<c<0,b>a>0,∴a﹣b<0,b﹣c>0,a﹣1<0,∴|a﹣b|﹣2|b﹣c|﹣|a﹣1|=b﹣a﹣2(b﹣c)﹣1+a=2c﹣b﹣1,故答案为:2c﹣b﹣1.23.【解答】解:根据题意得:(3x2+my﹣8)﹣(﹣nx2+2y+7)=3x2+my﹣8+nx2﹣2y﹣7=(n+3)x2+(m﹣2)y﹣15,根据结果不含x与y,得到n+3=0,m﹣2=0,解得:m=2,n=﹣3,则原式=9﹣6=3.故答案为:324.【解答】解:若OC在∠AOB内部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴2x+3x=40°,得x=8°,∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.若OC在∠AOB外部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴3x﹣2x=40°,得x=40°,∴∠AOC=2x=2×40°=80°,∠COB=3x=3×40°=120°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOC+∠AOD=80°+20°=100°.∴OC与∠AOB的平分线所成的角的度数为4°或100°.25.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=+++…+=++…++++…+=(1﹣)+(﹣)=,故答案为:,二.解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,∴原式=4A﹣3A+2B=A+2B=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+,当a=﹣1,b=﹣2时,原式=8+2+=10;(2)由(1)得:原式=(4b﹣2)a+,由结果与a的取值无关,得到4b﹣2=0,解得:b=.27.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设C点所表示的实数为x,分两种情况:①点C在线段OA上时,∵AC=CO+CB,∴8+x=﹣x+4﹣x,3x=﹣4,x=;②点C在线段OB上时,∵AC=CO+CB,∴8+x=4,x=﹣4(不符合题意,舍).故CO的长是;(3)①0<t<4(P在O的左侧),OP=0﹣(﹣8+2t)=8﹣2t,OQ=4+t,2OP﹣OQ=4,则2(8﹣2t)﹣(4+t)=4,解得t=1.6s;②4≤t≤12,OP=﹣8+2t﹣0=﹣8+2t,OQ=4+t,2OP﹣OQ=4,则2(2t﹣8)﹣(4+t)=4,解得t=8s.综上所述,t=1.6s或8s时,2OP﹣0Q=4cm.28.【解答】解:(1)∵线段OM、ON分别以30°/s、10°/s的速度绕点O逆时针旋转2s,∴∠AOM′=2×30°=60°,∠CON′=2×10°=20°,∴∠BON′=∠BOC﹣20°,∠COM′=∠AOC﹣60°,∴∠BON′+∠COM′=∠BOC﹣20°+∠AOC﹣60°=∠AOB﹣80°,∵∠AOB=120°,∴∠BON′+∠COM′=120°﹣80°=40°;故答案为:40°;②∵OM′平分∠AOC,ON′平分∠BOC,∴∠AOM′=∠COM′=∠AOC,∠BON′=∠CON′=∠BOC,∴∠COM′+∠CON′=∠AOC+∠BOC=∠AOB=×120°=60°,即∠MON=60°;(2)∠COM=3∠BON,理由如下:设∠BOC=X,则∠AOB=4X,∠AOC=3X,∵旋转t秒后,∠AOM=30t,∠CON=10t∴∠COM=3X﹣30t=3(X﹣10t),∠NOB=X﹣10t ∴∠COM=3∠BON;(3)设旋转t秒后,∠AOM=30t,∠CON=10t,∴∠COM=80°﹣30t,∠NOC=10t,可得∠MON=∠MOC+∠CON,可得:|80°﹣30t+10t|=20°,解得:t=3秒或t=5秒,故答案为:3秒或5秒.。
2019-2020年七年级数学(上)(北师大版) 第一章 丰富的图形世界检测题参考答案

2019-2020年七年级数学(上)(北师大版)第一章丰富的图形世界检测题参考答案1.D 解析:对于A,如果是长方体,不止有两个面平行,故错;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.A4.C 解析:如果把一个正方体剪开展平的图画出来,发现最多有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,∴ 12-5=7(条),∴至少所需剪的棱为7条.5.D 解析:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故D不能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,答案选C.9.C 解析:从物体正面看,左边1个正方形,右边1列,上下各一个正方形,且左右正方形中间是虚线.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16. C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.4 解析:如图,用六根长度相等的火柴棒可以搭成如图中三棱锥的形状,所以最多搭成4个等边三角形.18.D,E,A,B,C19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.20题图21.解:从正面和从左面看到的形状图如图所示:21题图22.解:从正面、左面看到的形状图如图所示:22题图23.解:画图如图所示,共有四种画法.23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后再把展开图折叠起来.25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线.在正方体上,像这样的最短路线一共有六条,如图所示.25题图(2)-----如有帮助请下载使用,万分感谢。
陕西省西安市碑林区西北工大附中2019-2020学年七年级(上)第一次月考数学试卷(含解析)

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个2.如图是哪种几何体的表面展开形成的图形?()A.圆锥B.球C.圆柱D.棱柱3.将下列三角形绕直线l旋转一周,可以得到如图所示立体图形的是哪一个()A.B.C.D.4.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.85.下列说法正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.整数可分为正整数和负整数D.零既不是整数,也不是分数6.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3 7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.8.A、B、C三个地方的海拔分别是124米、38米、﹣72米,那么最低点比最高点低()A.196米B.﹣196米C.110米D.﹣110米9.绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是()A.﹣28 B.28 C.﹣14 D.1410.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24 B.14 C.24或14 D.以上都不对二、填空题(每小题3分,共18分)11.一种零件的长度在图纸上标出为20±0.01(单位:mm)表示这种零件的长度应是20mm,加工要求最大不超过,最小不小于.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.13.在数轴上,距离表示+2的点3个单位长度的点表示的数是.14.若|a|=|b|,则a与b的关系是.15.有理数a、b在数轴上的位置如图所示,则a、b,﹣a,﹣b按从小到大的顺序排列是.16.一个跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点个单位长度.三.解答题(共72分)17.把下列各数填入相应的集合内.,5.2,﹣2.3,0.5%正数集合:{ };整数集合:{ };分数集合:{ };负数集合:{ }.18.计算:(1)﹣21.8+4﹣(﹣7.6)+()(2)(﹣0.5)﹣(﹣2)+3.75﹣(+5)19.小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?20.画出如图由7个小立方块搭成的几何体的三视图.21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.22.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?23.我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依此类推,…(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由;(3)在平面内画出10条直线,使交点数恰好是31.参考答案与试题解析一.选择题(共10小题)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个【分析】三棱柱由三个侧面、两个底面,因此有五个面围成的.【解答】解:三棱柱由三个侧面、两个底面围成的,故选:C.2.如图是哪种几何体的表面展开形成的图形?()A.圆锥B.球C.圆柱D.棱柱【分析】一个几何体的表面展开图中的“圆”是物体的底面,半圆(扇形)是物体的侧面,因此这个物体是圆锥体.【解答】解:展开图中的“圆”是物体的底面,半圆(扇形)是物体的侧面,因此这个物体是圆锥体.故选:A.3.将下列三角形绕直线l旋转一周,可以得到如图所示立体图形的是哪一个()A.B.C.D.【分析】将各选项的图形旋转即可得到立体图形,找到合适的即可.【解答】解:A、旋转后可得,故本选项错误;B、旋转后可得,故本选项正确;C、旋转后可得,故本选项错误;D、旋转后可得,故本选项错误.故选:B.4.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.8【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,所以原正方体相对两个面上的数字和最小的是6.故选:B.5.下列说法正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.整数可分为正整数和负整数D.零既不是整数,也不是分数【分析】根据有理数的分类及定义即可判定.【解答】解:A、整数和分数统称为有理数,故不符合题意;B、整数和分数统称为有理数,故符合题意;C、整数可分为正整数和负整数和0,故不符合题意;D、零是整数,不是分数,故不符合题意.故选:B.6.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3 【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选:D.7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】根据各层小正方体的个数,综合三视图的知识,在这个几何体中,根据各层小正方体的个数可得:左视图有一层2个,另一层3个,即可得出答案.【解答】解:左视图是从左边看到的平面图形,发现从左面看一共有两列,左边一列有2个正方形,右边一列有3个正方形,故选:D.8.A、B、C三个地方的海拔分别是124米、38米、﹣72米,那么最低点比最高点低()A.196米B.﹣196米C.110米D.﹣110米【分析】根据题意得到算式,运用有理数的减法法则计算即可.【解答】解:∵124>38>﹣72,∴最低点比最高点低:124﹣(﹣72)=196m,故选:A.9.绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是()A.﹣28 B.28 C.﹣14 D.14【分析】先分别求出绝对值大于1.5而不大于5的所有负整数的和与正整数的和,再相减即可.【解答】解:绝对值大于1.5而不大于5的负整数有﹣2,﹣3,﹣4,﹣5,和为﹣2+(﹣3)+(﹣4)+(﹣5)=﹣﹣14;绝对值大于1.5而不大于5的正整数有2,3,4,5,和为2+3+4+5=14;所以绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是﹣14﹣14=﹣28,故选:A.10.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24 B.14 C.24或14 D.以上都不对【分析】根据绝对值的概念可得a=±5,b=±19,然后分类讨论,就可求出符合条件“|a+b|=﹣(a+b)时的a﹣b的值.【解答】解:∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.二.填空题(共6小题)11.一种零件的长度在图纸上标出为20±0.01(单位:mm)表示这种零件的长度应是20mm,加工要求最大不超过20.01mm,最小不小于19.99mm.【分析】20±0.01表示的是这种零件的标准长度为20mm,实际加工时,可以比20mm多0.01mm,也可以比20mm少0.01mm,进而求出答案.【解答】解:20+0.01=20.01mm,20﹣0.01=19.99mm,故答案为:20.01mm,19.99mm.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于48 .【分析】根据左视图的形状,联系底面的长和宽,可得出长方体的高为2,再根据长方体的体积计算公式计算即可.【解答】解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:4×6×2=48.故答案为:48.13.在数轴上,距离表示+2的点3个单位长度的点表示的数是﹣1或5 .【分析】画出数轴,分点在A的左右两边两种情况讨论求解.【解答】解:如图所示:①当点在A的左边时,与点A相距3个单位长度的点表示的数是﹣1;②当点在A的右边时,与点A相距3个单位长度的点表示的数是5.综上所述,该数是﹣1或5.故答案为:﹣1或5.14.若|a|=|b|,则a与b的关系是相等或互为相反数.【分析】根据绝对值相等的两个数相等或互为相反数即可求解.【解答】解:若|a|=|b|,则a与b的关系是相等或互为相反数.故答案为:相等或互为相反数.15.有理数a、b在数轴上的位置如图所示,则a、b,﹣a,﹣b按从小到大的顺序排列是﹣a<b<﹣b<a.【分析】根据原点左边的数为负数,原点右边的数为正数,数轴左边的数大于数轴右边的数,即可得出答案.【解答】解:由图可知:a>0,b<0,﹣b>0,|a|>|b|,则﹣a<b<﹣b<a;故答案为:﹣a<b<﹣b<a.16.一个跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点50 个单位长度.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,所以落点处离0的距离是50个单位.故答案为50.三.解答题(共7小题)17.把下列各数填入相应的集合内.,5.2,﹣2.3,0.5%正数集合:{ ,1,5.2,0.5% };整数集合:{ 1 };分数集合:{ ,﹣,5.2,﹣2.3,0.5% };负数集合:{ ﹣,5.2 }.【分析】根据有理数的分类,把相应的数填写到相应的集合中.【解答】解:正数集合:{,1,5.2,0.5%};整数集合:{1};分数集合:{,﹣,5.2,﹣2.3,0.5%};负数集合:{﹣,5.2}.故答案为:,1,5.2,0.5%;1;,﹣,5.2,﹣2.3,0.5%;﹣,5.2.18.计算:(1)﹣21.8+4﹣(﹣7.6)+()(2)(﹣0.5)﹣(﹣2)+3.75﹣(+5)【分析】根据有理数的加减运算法则计算即可.【解答】解:(1)原式=﹣21.8+4+7.6﹣0.6=﹣(21.8﹣4)+(7.6﹣0.6)=﹣17.8+7=﹣10.8;(2)原式=﹣0.5+2.25+3.75﹣5.5=﹣(0.5+5.5)+(2.25+3.75)=﹣6+6=0.19.小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?【分析】(1)计算这些数的和,根据和的符合、绝对值可以判断出小虫是否回到出发点,(2)计算出每一次离开出发点的距离,比较得出结论,(3)求出这些数的绝对值的和,即爬行的总路程,即可求出得米粒.【解答】解:(1)6+4+9﹣7﹣6+10﹣8=8 cm,答:小虫最后没有回到出发点O,最后在出发点右侧8cm的地方.(2)每次爬行后离开出发点的距离为:6cm,10cm,19cm,12cm,6cm,16cm,8cm,答:小虫离开出发点O最远是19cm.(3)6+4+9+7+6+10+8=50(粒)答:小虫一共得到50粒米.20.画出如图由7个小立方块搭成的几何体的三视图.【分析】从正面看到的是两行三列,其中第一行两个小正方形,第二行是三个小正方形,从左面看到的是两行两列,每行、列都是两个小正方形,从上面看到的形状与主视图的相同.【解答】解:这个几何体的三视图如图所示:21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.【分析】(1)分别计算六个面的面积和及为该铁皮的面积,(2)根据棱柱的展开与折叠可得,可以做成长方体的盒子,根据长方体的体积的计算方法计算体积即可,【解答】解:(1)(1×3+1×2+2×3)×2=22 (平方米)答:该铁皮的面积为22平方米.(2)能做成一个长方体的盒子,体积为:3×1×2=6(立方米)22.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【分析】(1)由题意可知:星期一比上周的星期五涨了2元,星期二比星期一跌了0.5元,则星期二收盘价表示为25+2﹣0.5,然后计算;(2)星期一的股价为25+2=27;星期二为27﹣0.5=26.5;星期三为26.5+1.5=28;星期四为28﹣1.8=26.2;星期五为26.2+0.8=27;则星期三的收盘价为最高价,星期四的收盘价为最低价;(3)计算上周五以25元买进时的价钱,再计算本周五卖出时的价钱,用卖出时的价钱﹣买进时的价钱即为小王的收益.【解答】解:(1)星期二收盘价为25+2﹣0.5=26.5(元/股).(2)收盘最高价为25+2﹣0.5+1.5=28(元/股),收盘最低价为25+2﹣0.5+1.5﹣1.8=26.2(元/股).(3)小王的收益为:27×1000(1﹣5‰)﹣25×1000(1+5‰)=27000﹣135﹣25000﹣125=1740(元).∴小王的本次收益为1740元.23.我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依此类推,…(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由;(3)在平面内画出10条直线,使交点数恰好是31.【分析】(1)一平面内的五条直线最多有10个交点.画图即可;(2)平面内的五条直线可以有4个交点,有3种不同的情形;(3)可使5条直线平行,另3条直线平行且都与这5条相交,再有2条直线平行且都与这5条相交,且3条和2条也有相交.【解答】解:(1)如下图,最多有10个交点.(2)可以有4个交点,有3种不同的情形,如下图示.(3)如下图所示.。
2019-2020学年江苏省徐州市邳州市七年级(上)期中数学试卷(PDF版 含解析)

.
₰
【解答】解:∵a、b 互为相反数,c、d 互为倒数,
∴a+b=0,cd=1,
∴ (a+b) cd=0
.
₰
故答案为: .
14.(3 分)如图,用含 a、b 的代数式表示图中阴影部分的面积 ab πb2 .
【解答】解:阴影部分面积=ab
₰₰ ₰₰
ab
.
故答案为:ab πb2.
15.(3 分)已知 a﹣2b+1=2,则 4﹣2a+4b= 2 . 【解答】解:∵a﹣2b+1=2, ∴a﹣2b=1, ∴原式=4﹣2a+4b+2018=4﹣2(a﹣2b)=4﹣2=2. 故答案为:2.
C. ,3
D. ,3
【解答】解:单项式的系数为 ,次数为 3;
故选:D.
6.(3 分)下列各组单项式中,是同类项的是( )
A.a2 与 2a
B.5ab 与 5abc
C. m2n 与 nm2
D.x3 与 23
【解答】解:A.a2 与 2a 相同字母的指数不相同,不是同类项,故本选项不合题意; B.5ab 与 5abc 所含字母不尽相同,不是同类项,故本选项不合题意;
填写在答题卡相应位置)
9.(3 分)﹣2019 的倒数是
₰.
【解答】解:﹣2019 的倒数是 ₰ .
故答案为: ₰ . 10.(3 分)据有关部门统计,2019 年“清明节”期间,广东各大景点共接待游客约 14420000
人次,将数 14420000 用科学记数法表示为 1.442×107 . 【解答】解:将数 14420000 用科学记数法表示为 1.442×107. 故答案为:1.442×107.
A.①、②
陕西省西安市高新二中2019-2020年七年级(上)月考数学试卷(10月份) 含解析

2019-2020学年七年级(上)月考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.将如图所示的几何图形,绕直线l旋转一周得到的立体图形()A.B.C.D.2.﹣23的相反数是()A.﹣8 B.8 C.﹣6 D.63.在﹣,0,﹣|﹣5|,﹣0.6,2,,﹣10中负数的个数有()A.3 B.4 C.5 D.64.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元5.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.26.在数轴上到原点距离等于3的数是()A.3 B.﹣3 C.3或﹣3 D.不知道7.已知|a|=3,|b|=4,且ab<0,则a﹣b的值为()A.1或7 B.1或﹣7 C.±1 D.±78.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣19.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×10810.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z 的值是()A.1 B.4 C.7 D.9二、填空题(共5小题,每小题3分,计15分)11.已知|a+1|+|b+3|=0,则a=,b=.12.已知x2=9,y3=8,则x﹣y的值是.13.已知a+c=﹣2019,b+(﹣d)=2020,则a+b+c+(﹣d)=.14.计算:1+(﹣2)+3+(﹣4)+…+2019+(﹣2020)=.15.若有理数a,b互为倒数,c,d互为相反数,则(c+d)2015+()2=.三、解答题(共8小题,计55分,解答题应写出过程)16.计算下列各式(1)|﹣6|﹣7+(﹣3).(2).(3)(﹣9)×(﹣5)﹣20÷4.(4)(﹣3)2×[].17.观察下列各式,回答问题1﹣=×,1﹣=×,1﹣=×….按上述规律填空:(1)1﹣=×.(2)计算:(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=.18.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.19.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=﹣1 ,b= 1 ,c= 6(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A 与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.20.阅读下列材料并解决有关问题:我们知道|x|=,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别叫做|x+1|与|x﹣2|的零点值.)在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;(3)当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|;(3)求方程:|x+2|+|x﹣4|=6的整数解;(4)|x+2|+|x﹣4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.21.(++…+)(1+++…+)﹣(1+++…+)(++…+).22.一根长度为1米的木棍,第一次截去全长的,第二次截去余下的,第三次截去第二次截后余下的,……,第n次截去第(n﹣1)次截后余下的.若连续截取2019次,共截取多少米?23.已知a、b、c、d是有理数,|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,求|b﹣a|﹣|d﹣c|的值.参考答案与试题解析一.选择题(共10小题)1.【分析】根据面动成体以及圆台的特点,即可解答.【解答】解:绕直线l旋转一周,可以得到的圆台,故选:C.2.【分析】分析:数a的相反数是﹣a,即互为相反数两个数只差一个符号.注意:0的相反数是0本身.【解答】解:∵﹣23=﹣8﹣8的相反数是8∴﹣23的相反数是8.故选:B.3.【分析】负数就是小于0的数,依据定义即可求解.【解答】解:其中的负数有:﹣,﹣|﹣5|,﹣0.6,﹣10共4个.故选B.4.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.5.【分析】先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解.【解答】解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故选:B.6.【分析】先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.【解答】解:设这个数是x,则|x|=3,解得x=+5或﹣3.故选:C.7.【分析】由绝对值的性质可知a=±3,b=±4,由ab<0可知a、b异号,从而判断出a、b的值,最后代入计算即可.【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4.∵ab<0,∴当a=3时,b=﹣4;当a=﹣3时,b=4.当a=3,b=﹣4时,原式=3﹣(﹣4)=3+4=7;当a=﹣3,b=4时,原式=﹣3﹣4=﹣7.故选:D.8.【分析】根据有理数的加法和绝对值可以解答本题.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选:B.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100000000用科学记数法表示应为1.1×109,故选:B.10.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.二.填空题(共5小题)11.【分析】由非负数的性质可知a=﹣1,b=﹣3.【解答】解:∵|a+1|+|b+3|=0,∴a+1=0,b+3=0.解得:a=﹣1,b=﹣3.故答案为:﹣1;﹣3.12.【分析】利用平方根、立方根定义求出x与y的值,即可求出x﹣y的值.【解答】解:∵x2=9,y3=8,∴x=±3,y=2,则x﹣y=1或﹣5,故答案为:1或﹣5.13.【分析】将a+c=﹣2019,b+(﹣d)=2020代入a+b+c+(﹣d)=a+c+b+(﹣d)计算可得.【解答】解:∵a+c=﹣2019,b+(﹣d)=2020,∴a+b+c+(﹣d)=a+c+b+(﹣d)=﹣2019+2020=1,故答案为:1.14.【分析】先把数字分组:(1﹣2)+(3﹣4)+(5﹣6)+…+(2017﹣2018)+(2019﹣2020),分组后得出规律每组都为﹣1,算出有多少个﹣1相加即可得出结果.【解答】解:1+(﹣2)+3+(﹣4)+…+2019+(﹣2020)=(1﹣2)+(3﹣4)+…+(2019﹣2020)=﹣1×1010=﹣1010,故答案为:﹣1010.15.【分析】根据有理数a,b互为倒数,c,d互为相反数,可以求得ab的值和c+d的值,从而可以得到(c+d)2015+()2的值.【解答】解:∵有理数a,b互为倒数,c,d互为相反数,∴ab=1,c+d=0,∴(c+d)2015+()2==0+1=1,故答案为:1.三.解答题(共1小题)16.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式结合后,相加即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式先计算括号中的运算,再计算乘法运算即可求出值.【解答】解:(1)原式=6﹣7﹣3=﹣4;(2)原式=﹣﹣﹣+=﹣;(3)原式=45﹣5=40;(4)原式=9×(﹣﹣)=﹣6﹣5=﹣11.17.观察下列各式,回答问题1﹣=×,1﹣=×,1﹣=×….按上述规律填空:(1)1﹣=×.(2)计算:(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=.【考点】1G:有理数的混合运算.【专题】11:计算题;511:实数.【分析】(1)观察已知等式确定出所求即可;(2)原式根据题中的规律化简,计算即可得到结果.【解答】解:(1)1﹣=×;(2)原式=××××××…××××=×=.故答案为:(1);;(2)18.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.【考点】13:数轴;18:有理数大小比较.【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【解答】解:将各数用点在数轴上表示如下:其大小关系如下:﹣3<﹣2.5<﹣<0<1.19.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=﹣1 ,b= 1 ,c= 6(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A 与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】13:数轴;16:非负数的性质:绝对值;1F:非负数的性质:偶次方;8A:一元一次方程的应用.【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC﹣AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【解答】解:(1)∵b是最小的正整数,∴b=1,∵(c﹣6)2+|a+b|=0,(c﹣6)2≥0,|a+b|≥0,∴c=6,a=﹣1,b=1,故答案为﹣1,1,6.(2)由题意﹣1<x<1,∴|x+1|﹣|x﹣1|﹣2|x+5|=x+1+x﹣1﹣2x﹣10=﹣10.(3)不变,由题意BC=5+5nt﹣2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC﹣AB=(5+3nt)﹣(2+3nt)=3,∴BC﹣AB的值不变,BC﹣AB=3.20.阅读下列材料并解决有关问题:我们知道|x|=,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别叫做|x+1|与|x﹣2|的零点值.)在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;(3)当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|;(3)求方程:|x+2|+|x﹣4|=6的整数解;(4)|x+2|+|x﹣4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.【考点】15:绝对值.【分析】(1)根据零点值的定义即可求解;(2)分三种情况讨论化简代数式|x+2|+|x﹣4|;直接去括号,再按照去绝对值的方法去绝对值就可以了.(3)根据(2),可得整数解;(4)把丨x+2丨+丨x﹣4丨理解为:在数轴上表示x到﹣2和4的距离之和,求出表示﹣2和4的两点之间的距离即可.【解答】解:(1)∵|x+2|和|x﹣4|的零点值,可令x+2=0和x﹣4=0,解得x=﹣2和x=4,∴﹣2,4分别为|x+2|和|x﹣4|的零点值.(2)当x<﹣2时,|x+2|+|x﹣4|=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=6;当x≥4时,|x+2|+|x﹣4|=2x﹣2;(3)∵|x+2|+|x﹣4|=6,∴﹣2≤x≤4,∴整数解为:﹣2,﹣1,0,1,2,3,4.(4)|x+2|+|x﹣4|有最小值,∵当x=﹣2时,|x+2|+|x﹣4|=6,当x=4时,|x+2|+|x﹣4|=6,∴|x+2|+|x﹣4|的最小值是6.21.(++…+)(1+++…+)﹣(1+++…+)(++…+).【考点】1G:有理数的混合运算.【专题】2A:规律型.【分析】设a=++…+,b=++…+然后代入原式化简计算.【解答】解:设a=++…+,b=++…+,则原式=a(1+b)﹣b(1+a)=a+ab﹣b﹣ab=a﹣b=.22.一根长度为1米的木棍,第一次截去全长的,第二次截去余下的,第三次截去第二次截后余下的,……,第n次截去第(n﹣1)次截后余下的.若连续截取2019次,共截取多少米?【考点】37:规律型:数字的变化类.【专题】2A:规律型;67:推理能力.【分析】根据前几次的截取后剩余木棍的长度可得出截完第n次后剩余全长的(n 为正整数),进而可得出截完第2019次后剩余全长的,再结合木棍的全长为1米即可求出结论.【解答】解:截完第一次后剩余全长的(1﹣)=,截完第二次后剩余全长的×(1﹣)=,截完第三次后剩余全长的×(1﹣)=,…,∴截完第n次后剩余全长的(n为正整数),∴截完第2019次后剩余全长的.∵1﹣=,∴连续截取2019次,共截取米.23.已知a、b、c、d是有理数,|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,求|b﹣a|﹣|d﹣c|的值.【考点】12:有理数;15:绝对值.【分析】根据|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,可知|a﹣b|=9,|c﹣d|=16,且a﹣b和c﹣d的符号是相反的,然后分两种情况讨论即可.【解答】解:∵|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,∴|a﹣b|=9,|c﹣d|=16,且a﹣b和c﹣d的符号是相反的,∴①a﹣b=9,c﹣d=﹣16,此时|b﹣a|﹣|d﹣c|=|﹣9|﹣|16|=9﹣16=﹣7,②a﹣b=﹣9,c﹣d=16,此时|b﹣a|﹣|d﹣c|=|9|﹣|﹣16|=9﹣16=﹣7,综上所述,|b﹣a|﹣|d﹣c|的值为﹣7.。
2019-2020学年成都市天府新区七年级(上)期末数学试卷(含解析)

2019-2020学年成都市天府新区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.下列选项中,比﹣3℃低的温度是()A.﹣4℃B.﹣2℃C.﹣1℃D.0℃2.下列立体图形中,从上面观察你所看到的形状图不是圆的是()A.B.C.D.3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1054.下列各式中,与3x2y3不是同类项的是()A.2x2y3B.﹣3y3x2C.﹣x2y3D.﹣y55.下列计算中,正确的是()A.2a﹣3a=a B.a3﹣a2=aC.3ab﹣4ab=﹣ab D.2a+4a=6a26.下列调查中,不适合采用抽样调查的是()A.了解全国中小学生的睡眠时间B.了解全国初中生的兴趣爱好C.了解江苏省中学教师的健康状况D.了解航天飞机各零部件的质量7.根据如图所示的计算程序,若输入的值x=﹣3,则输出y的值为()A.﹣2 B.﹣8 C.10 D.138.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第10个图案中黑色瓷砖的个数是()A.28 B.29 C.30 D.319.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm10.我国明代数学读本《算法统宗》一书中有这样一道题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托”,如果1托为5尺,那么索和竿子各为几尺?设竿子为x尺,可列方程为()A.x+5﹣x=5 B.x﹣(x+5)=1C.x﹣x+5=5 D.x﹣(x+5)=5二、填空题(每小题4分,共16分)11.的系数为,次数为.12.若|x﹣1|+|y+2|=0,则x﹣3y的值为.13.2700″=′=度.14.如图,将一副三角板的直角顶点重合在一起,其中∠AOB和∠COD是直角.若∠1=55°,则∠2的度数=.三、解答题(共54分)15.(12分)(1)计算:﹣32÷3﹣(﹣1)3×2﹣|﹣2|;(2)解方程:﹣=1.16.(6分)先化简,再求值:2(ab﹣3a2)+[5a2﹣(3ab﹣a2)],其中a=,b=1.17.(8分)已知:如图,平面上有A,B,C,D,F五个点.根据下列语句画出图形:(1)直线BC与射线AD相交于点M;(2)连接AB,并延长线段AB至点E,使BE=AB;(3)在直线BC上求作一点P,使点P到A,F两点的距离之和最小.18.(8分)为了了解市民私家车出行的情况,某市交通管理部门对拥有私家车的市民进行随机抽样调查、其中一个问题是“你平均每天开车出行的时间是多少”共有4个选项:A、1小时以上(不含1小时);B:0.5﹣1小时(不含0.5小时);C:0﹣0.5小时(不含0小时);D,不开车.图1、2是根据调査结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了名市民;(2)在图1中将选项B的部分补充完整,并求图2中,A类所对应扇形圆心角α的度数;(3)若该市共有200万私家车,你估计全市可能有多少私家车平均每天开车出行的时间在1小时以上?19.(10分)列一元一次方程解应用题某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:进价(元/台)售价(元/台)甲种45 55乙种60 80(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?20.(10分)已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.B卷(50分)一、填空题(每小题4分,共20分)21.在数轴上,表示数2+2a的点M与表示数4的点N分别位于原点两侧且到原点的距离相等,则a的值为.22.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.23.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.24.电影《哈利•波特》中,小哈利波特穿越墙进入“9站台“的镜头(如示意图的Q站台,即点Q表示的数是9).构思奇妙,能给观众留下深刻的印象.若A,B站台分别位于﹣,处,AP=2PB,则P 站台用类似电影的方法可称为“站台”.25.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2019﹣a2020=.二、解答题(共30分)26.(8分)已知A=2x2+mx﹣m,B=x2+m.(1)求A﹣2B;(2)在(1)的条件下,若x=1是方程A﹣2B=x+5m的解,求m的值.27.(10分)观察下列三行数:第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……(1)第一行数的第8个数为,第二行数的第8个数为;(2)第一行是否存在连续的三个数使得三个数的和是384?若存在,求出这三个数,若不存在,请说明理由;(3)取每一行的第n个数,这三个数的和能否为﹣2558?若能,求出这三个数,若不能,请说明理由.28.(12分)如图,数轴上线段AB长2个单位长度,CD长4个单位长度,点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.(1)问:运动多少秒后,点B与点C互相重合?(2)当运动到BC为6个单位长度时,则运动的时间是多少秒?(3)P是线段AB上一点,当点B运动到线段CD上时,是否存在关系式=4?若存在,求线段PD的长;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:根据两个负数,绝对值大的反而小可知﹣4<﹣3,所以比﹣3℃低的温度是﹣4℃.故选:A.2.【解答】解:A、圆柱体的俯视图为圆;B、圆锥的俯视图是中间有一点的圆;C、正方体的俯视图是正方形;D、球体的主视图、俯视图、左视图均为圆;故选:C.3.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.4.【解答】解:A、3x2y3与2x2y3是同类项,故本选项不符合题意.B、3x2y3与﹣3y3x2是同类项,故本选项不符合题意.C、3x2y3与﹣x2y3是同类项,故本选项不符合题意.D、3x2y3与﹣y5所含字母的不相同,不是同类项,故本选项符合题意.故选:D.5.【解答】解:A、2a﹣3a=﹣a,错误;B、a3与﹣a2不是同类项,不能合并,错误;C、3ab﹣4ab=﹣ab,正确;D、2a+4a=6a,错误;故选:C.6.【解答】解:A.了解全国中小学生的睡眠时间适合抽样调查;B.了解全国初中生的兴趣爱好适合抽样调查;C.了解江苏省中学教师的健康状况适合抽样调查;D.了解航天飞机各零部件的质量适合全面调查;故选:D.7.【解答】解:当x=﹣3时,由程序图可知:y=x2+1=(﹣3)2+1=9+1=10,故选:C.8.【解答】解:第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=10时,3n+1=3×10+1=31故选:D.9.【解答】解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10﹣3﹣3=4cm.故选:A.10.【解答】解:设竿子为x尺,则绳索长为(x+5),根据题意得:x﹣(x+5)=5.故选:D.二、填空题11.【解答】解:的系数为﹣,次数为3.故答案为:﹣,3.12.【解答】解:∵|x﹣1|+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2;∴x﹣3y=1﹣3×(﹣2)=1+6=7.故答案为:7.13.【解答】解:∵2700″=(2700÷60)′=(2700÷60÷60)°,∴2700″=45′=0.75度.14.【解答】解:∵∠AOB和∠COD是直角,∴∠BOC+∠1=90°=∠BOC+∠2,∴∠1=∠2=55°,故答案为:55°.三、解答题15.【解答】解:(1)原式=﹣9÷3﹣(﹣1)×2﹣2=﹣3+2﹣2=﹣3;(2)去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9.16.【解答】解:原式=2ab﹣6a2+5a2﹣3ab+a2=﹣ab,当a=,b=1时,原式=﹣×1=﹣.17.【解答】解:(1)如图所示:;(2)如图所示;(3)连接AF,与直线BC交于点P,点P即为所求.18.【解答】解:(1)本次调查的市民总人数为60÷30%=200(人),故答案为:200;(2)∵B选项对应的百分比为1﹣(30%+5%+15%)=50%,∴B选项的人数为200×50%=100(人),补全图形如下:A类所对应扇形圆心角α的度数为360°×30%=108°;(3)估计全市平均每天开车出行的时间在1小时以上私家车数量约为200×30%=60(万).19.【解答】解:(1)设商场购进甲型号台灯x台,则购进乙型号台灯(1000﹣x)台,由题意,得45x+60(1000﹣x)=54000,解得:x=400,购进乙型台灯1000﹣x=1000﹣400=600(台).答:购进甲型台灯400台,购进乙型台灯600台进货款恰好为54000元.(2)设乙型节能灯需打a折,0.1×80a﹣60=60×20%,解得a=9,答:乙种型号台灯需打9折.20.【解答】解:(1)∵∠AOD=156°,∠BOD=96°,∴∠AOB=156°﹣96°=60°,∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=30°,∠BON=48°,∴∠MON=∠BOM+∠BON=78°;(2)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∵∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD=,∴;(3)∵∠BOC在∠AOD内绕点O以2°/秒的速度逆时针旋转t秒时,∴∠AOC=(52+2t)°,∠BOD(126﹣2t)°,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM═(26+t)°,∠DON=(63﹣t)°,当∠AOM=2∠DON时,26+t=2(63﹣t),则t=;当∠DON=2∠AOM时,63﹣t=2(26+t),则t=.故当t=或时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,一、填空题21.【解答】解:依题意有2+2a=﹣4,解得a=﹣3.故答案为:﹣3.22.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.23.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.24.【解答】解:AB=,∵AP=2PB,∴AP=,∴点P表示的数为.∴P站台用类似电影的方法可称为站台.故答案为.25.【解答】解:由题意可得,a1=6,a2=f(6)=3,a3=f(3)=16,a4=f(16)=8,a5=f(8)=4,a6=f(4)=2,a7=f(2)=1,a8=f(1)=6,…,可以发现规律为:每7个数循环一次,∴a1﹣a2+a3﹣a4+a5﹣a6+a7=6﹣3+16﹣8+4﹣2+1=14,∴a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10+a11﹣a12+a13﹣a14=14﹣14=0,∵2020÷14=144…4,∴2a1﹣a2+a3﹣a4+a5﹣a6+…+a2019﹣a2020=a1+a2017﹣a1018+a2019﹣a2020,∵2017÷7=288…1,∴a2017=a1,∴2a1﹣a2+a3﹣a4+a5﹣a6+…+a2019﹣a2020=a1+a1﹣a2+a3﹣a4=6+6﹣3+16﹣8=17,故答案为17.二、解答题26.【解答】解:(1)∵A=2x2+mx﹣m,B=x2+m,∴A﹣2B=(2x2+mx﹣m)﹣2(x2+m)=2x2+mx﹣m﹣2x2﹣2m=mx﹣3m;(2)∵x=1是方程A﹣2B=x+5m的解,∴A﹣2B=1+5m,∵A﹣2B=mx﹣3m,∴m﹣3m=1+5m,解得:m=﹣.27.【解答】解:(1)∵第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……∴第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,∴第一行的第8个数为:(﹣1)8+1•28=﹣1×256=﹣256,第二行的第8个数是﹣256+2=﹣254,故答案为:﹣256,﹣254;(2)存在,设第一行中连续的三个数为:x,﹣2x,4x,x+(﹣2x)+4x=384,解得,x=128,∴这三个数是128,﹣256,512,即存在连续的三个数使得三个数的和是384;(3)存在∵第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……∴第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,第三行的第n个数为:(﹣1)n+1•2n﹣1,令[(﹣1)n+1•2n]+[(﹣1)n+1•2n+2]+[(﹣1)n+1•2n﹣1]=﹣2558,n为偶数,解得,n=10,即这三个数为:﹣1024,﹣1022,﹣512.28.【解答】解:(1)设运动t秒后,点B与点C互相重合,则6t+2t=24,解得t=3.故运动3秒后,点B与点C互相重合;(2)①当点B在点C的左边时,由题意得:6t+6+2t=24解得:t=;②当点B在点C的右边时,由题意得:6t﹣6+2t=24,解得:t=.故运动或秒后,BC为6个单位长度;(3)设线段AB未运动时点P所表示的数为x,B点运动时间为t,则此时C点表示的数为16﹣2t,D点表示的数为20﹣2t,A点表示的数为﹣10+6t,B点表示的数为﹣8+6t,P点表示的数为x+6t,∴BD=20﹣2t﹣(﹣8+6t)=28﹣8t,AP=x+6t﹣(﹣10+6t)=10+x,PC=|16﹣2t﹣(x+6t)|=|16﹣8t﹣x|,PD=20﹣2t﹣(x+6t)=20﹣8t﹣x=20﹣(8t+x),∵=4,∴BD﹣AP=4PC,∴28﹣8t﹣(10+x)=4|16﹣8t﹣x|,即:18﹣8t﹣x=4|16﹣8t﹣x|,①当C点在P点右侧时,18﹣8t﹣x=4(16﹣8t﹣x)=64﹣32t﹣4x,∴x+8t=,∴PD=20﹣(8t+x)=20﹣=;②当C点在P点左侧时,18﹣8t﹣x=﹣4(16﹣8t﹣x)=﹣64+32t+4x,∴x+8t=,∴PD=20﹣(8t+x)=20﹣=.∴PD的长有2种可能,即或。
2019-2020学年浙江省宁波市海曙区七年级(上)期中数学试卷(含解析)
2019-2020学年浙江省宁波市海曙区七年级(上)期中数学试卷一、选择题(每小题2分,共24分)1.(2分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨2.(2分)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=13.(2分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106 4.(2分)2x﹣(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.﹣3x2﹣2x 5.(2分)下列说法正确的是()A.√81的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应6.(2分)如图,组成正方形网格的小正方形边长为1,那么点A表示的数为()A.√10B.√11C.√12D.√137.(2分)有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)﹣3﹣2﹣0.50 2.5筐数1428则这20筐白菜的总重量为()A.710千克B.608千克C.615千克D.596千克8.(2分)如果代数式x ﹣2y ﹣2的值为﹣1,那么代数式6﹣2x +4y 的值为( ) A .0B .2C .﹣2D .49.(2分)由下表可得√7精确到百分位的近似数是( )2.62<7<2.722.6<√7<2.72.642<7<2.652 2.64<√7<2.65 2.6452<7<2.6462 2.645<√7<2.646…… …… A .2.64B .2.65C .2.7D .2.64610.(2分)按如图所示的运算程序,能使输出的结果为3的是( )A .x =1,y =2B .x =﹣2,y =﹣2C .x =3,y =1D .x =﹣1,y =﹣111.(2分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元12.(2分)一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102﹣12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是( ) A .15B .16C .17D .18二、填空题(每题4分,共24分) 13.(4分)比较大小: (1)2 |−52|; (2)﹣7 0;(3)−23 −34; (4)﹣|﹣2.7| ﹣223.14.(4分)和式23−112−113+4中第3个加数是 ,该和式的运算结果是 .15.(4分)把下列各数填入相应的横线上: ﹣2,2π,−35,0,﹣3.7,√16,0.35,√93整数: ; 正有理数: ; 无理数: ; 负分数: . 16.(4分)−3xy 37的系数是 ,次数是 ;4a 3﹣a 2b 2−43ab 是 次项式. 17.(4分)如图,数轴的单位长度为1,当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是 .18.(4分)如图是由从1开始的连续自然数组成,则第8行第8个数是 ,第n 行第一个数可表示为 .三、解答题(第19题12分,第20~23题各6分,第24~25题8分,共52分) 19.(12分)(1)﹣5﹣(﹣4)+7﹣8(2)312÷(﹣35)×15(3)﹣24−√36+6÷(−23)×√−83(4)(﹣5)×(﹣325)+(﹣7)×325−12×(﹣325)20.(6分)化简: (1)2x +1﹣7x ﹣2(2)3(x 2−12y 2)−12(4x 2﹣3y 2)21.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 312,﹣2.5,|﹣2|,0,√−83,(﹣1)2.22.(6分)已知|a ﹣1|+(b +2)2=0,求多项式3ab ﹣15b 2+5a 2﹣6ba +15a 2﹣2b 2的值.23.(6分)一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块. (1)求每个小正方体的棱长.(2)现有一张面积为36cm 2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.24.(8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表: 数量范围(千克)0~50 部分50以上~150部分 150以上~250部分 250以上 部分 价 格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发80千克太湖蟹,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克太湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B两家批发所需的费用;(3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.25.(8分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x的值.四、附加题(第26,27题各5分,共10分)26.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.27.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.2019-2020学年浙江省宁波市海曙区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)1.(2分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨【解答】解:“正”和“负”相对,如果+3吨表示运入仓库的大米吨数,即正数表示运入仓库,负数应表示运出仓库,故运出5吨大米表示为﹣5吨.故选:A.2.(2分)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=1【解答】解:A.8x与﹣7y不是同类项,所以不能合并,故本选项不合题意;B.a2b与2ab2不是同类项,所以不能合并,故本选项不合题意;C.9a2b﹣4ba2=5a2b,正确,故本选项符合题意;D.5m﹣4m=m,故本选项不合题意.故选:C.3.(2分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106【解答】解:数字604800用科学记数法表示为6.048×105.故选:B.4.(2分)2x﹣(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.﹣3x2﹣2x【解答】解:原式=2x﹣3x2﹣4x=﹣3x2﹣2x,故选:D.5.(2分)下列说法正确的是()A.√81的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【解答】解:A、√81=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如−√2+√2=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.6.(2分)如图,组成正方形网格的小正方形边长为1,那么点A表示的数为()A.√10B.√11C.√12D.√13【解答】解:由勾股定理得,点A表示的数=√32+12=√10,故选:A.7.(2分)有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)﹣3﹣2﹣0.50 2.5筐数1428则这20筐白菜的总重量为()A.710千克B.608千克C.615千克D.596千克【解答】解:(﹣3)×1+(﹣2)×4+(﹣0.5)×2+2.5×8=(﹣3)+(﹣8)+(﹣1)+20=8 (千克),30×20+8=608(千克).答:这20筐白菜的总重量608千克,故选:B.8.(2分)如果代数式x﹣2y﹣2的值为﹣1,那么代数式6﹣2x+4y的值为()A.0B.2C.﹣2D.4【解答】解:当x﹣2y﹣2=﹣1时,6﹣2x+4y=2﹣2(x ﹣2y ﹣2) =2﹣2×(﹣1) =4 故选:D .9.(2分)由下表可得√7精确到百分位的近似数是( )2.62<7<2.722.6<√7<2.72.642<7<2.652 2.64<√7<2.65 2.6452<7<2.6462 2.645<√7<2.646…… …… A .2.64B .2.65C .2.7D .2.646【解答】解:∵2.645<√7<2.646,∴由下表可得√7精确到百分位的近似数是2.65. 故选:B .10.(2分)按如图所示的运算程序,能使输出的结果为3的是( )A .x =1,y =2B .x =﹣2,y =﹣2C .x =3,y =1D .x =﹣1,y =﹣1【解答】解:A 、把x =1,y =2代入得:1+4=5,不符合题意; B 、把x =﹣2,y =﹣2代入得:4+4=8,不符合题意; C 、把x =3,y =1代入得:9+2=11,不符合题意; D 、把x =﹣1,y =﹣1代入得:1+2=3,符合题意, 故选:D .11.(2分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元【解答】解:根据题意可知: 总进价为20a +30b ,总售价为a+b 2×(20+30)=25a +25b∴25a +25b ﹣(20a +30b )=5a ﹣5b , ∵a >b ,∴5a ﹣5b >0,那么售价>进价, ∴他赚了. 故选:C .12.(2分)一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102﹣12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是( ) A .15B .16C .17D .18【解答】解:A 、15=42﹣12; B 、16=52﹣32; C 、15=92﹣82,;D 、18不能表示为两个非零自然数的平方差. 故选:D .二、填空题(每题4分,共24分) 13.(4分)比较大小: (1)2 < |−52|; (2)﹣7 < 0; (3)−23 > −34; (4)﹣|﹣2.7| < ﹣223.【解答】解:(1)2<|−52|; (2)﹣7<0; (3)−23>−34; (4)﹣|﹣2.7|<﹣223.故答案为:(1)<;(2)<;(3)>;(4)< 14.(4分)和式23−112−113+4中第3个加数是 −113,该和式的运算结果是116.【解答】解:和式23−112−113+4中第3个加数是−113,23−112−113+4=23−113−112+4 =−23−32+4 =−136+4 =116故答案为:−113,116.15.(4分)把下列各数填入相应的横线上: ﹣2,2π,−35,0,﹣3.7,√16,0.35,√93整数: ﹣2、0、√16 ;正有理数: 2π、√16、0.35、√93; 无理数: −35、﹣3.7 ; 负分数: −35、﹣3.7 .【解答】解:整数:﹣2、0、√16; 正有理数:2π、√16、0.35、√93; 无理数:2π、√93; 负分数:−35、﹣3.7;故答案为:﹣2、0、√16;2π、√16、0.35、√93;−35、﹣3.7;−35、﹣3.7 16.(4分)−3xy 37的系数是 −37 ,次数是 4 ;4a 3﹣a 2b 2−43ab 是 四 次项式. 【解答】解:−3xy 37的系数是−37,次数是4;4a 3﹣a 2b 2−43ab 是四次项式. 故答案为:−37,4,四.17.(4分)如图,数轴的单位长度为1,当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是 2或10 .【解答】解:设M 的坐标为x .当M 在A 的左侧时,﹣2﹣x =2(4﹣x ),解得x =10(舍去)当M 在AD 之间时,x +2=2(4﹣x ),解得x =2当M 在点D 右侧时,x +2=2(x ﹣4),解得x =10故①点M 在AD 之间时,点M 的数是2;②点M 在D 点右边时点M 表示数为10. 故答案为:2或1018.(4分)如图是由从1开始的连续自然数组成,则第8行第8个数是 57 ,第n 行第一个数可表示为 n 2﹣2n +2 .【解答】解:由题意得:每行数的个数为1,3,5,…的奇数列,最后一个数是该行数的平方,∴第7行的最后一个数是72,∴表中第8行的第一个数是72+1=50,∴8行第8个数是57;∵第n ﹣1行最后一个数为:(n ﹣1)2,∴第n 行第一个数可表示为:(n ﹣1)2+1=n 2﹣2n +2;故答案为:57;n 2﹣2n +2.三、解答题(第19题12分,第20~23题各6分,第24~25题8分,共52分)19.(12分)(1)﹣5﹣(﹣4)+7﹣8(2)312÷(﹣35)×15(3)﹣24−√36+6÷(−23)×√−83(4)(﹣5)×(﹣325)+(﹣7)×325−12×(﹣325) 【解答】解:(1)原式=﹣5+4+7﹣8=﹣2;(2)原式=−72×135×15=−150; (3)原式=﹣16﹣6×(−32)×(﹣2)=﹣16﹣6+18=﹣4;(4)原式=175×(5﹣7+12)=175×10=34.20.(6分)化简:(1)2x +1﹣7x ﹣2(2)3(x 2−12y 2)−12(4x 2﹣3y 2)【解答】解:(1)原式=﹣5x ﹣1;(2)原式=3x 2−32y 2﹣2x 2+32y 2=x 2.21.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 312,﹣2.5,|﹣2|,0,√−83,(﹣1)2. 【解答】解:数轴如下:按从小到大的顺序用“<”连接起来:﹣2.5<√−83<0<(﹣1)2<|﹣2|<312. 22.(6分)已知|a ﹣1|+(b +2)2=0,求多项式3ab ﹣15b 2+5a 2﹣6ba +15a 2﹣2b 2的值.【解答】解:由题意得,a ﹣1=0,b +2=0,解得,a =1,b =﹣2,原式=(3﹣6)ab +(﹣15﹣2)b 2+(5+15)a 2=﹣3ab ﹣17b 2+20a 2当a =1,b =﹣2时,原式=﹣3×1×(﹣2)﹣17×(﹣2)2+20×12=﹣42.23.(6分)一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm 2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.【解答】解:((1)√12583=52,所以立方体棱长为52cm ;(2)最多可放4个.设长方形宽为x ,可得:4x 2=36,x 2=9,∵x >0,∴x =3,12÷52=245, 横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.24.(8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克) 0~50部分50以上~150 部分 150以上~250 部分 250以上 部分 价 格(元) 零售价的95% 零售价的85% 零售价的75% 零售价的70%(1)如果他批发80千克太湖蟹,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克太湖蟹(150<x <200),请你分别用含字母x 的式子表示他在A 、B 两家批发所需的费用;(3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【解答】解:(1)由题意,得:A :80×60×92%=4416元,B :50×60×95%+30×60×85%=4380元.(2)由题意,得A :60×90%x =54x ,B :50×60×95%+100×60×85%+(x ﹣150)×60×75%=45x +1200.(3)当x=195时,A:54×195=10530,B:45×195+1200=9975,∴10530>9975,∴B家优惠.25.(8分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x的值.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.四、附加题(第26,27题各5分,共10分)26.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.【解答】解:∵|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,∴x+y≤0,﹣(x+y)+3=﹣2(x+y),x+y=﹣3,(x+y)3=(﹣3)3=﹣27.27.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.【解答】解:设A正方形边长为a,E正方形边长为x则正方形F的边长为a+x,大长方形长为2x+3a,宽为2x+a 则大长方形周长为8x+8a,因为a+x=6,所以8x+8a=8(a+x)=48.。
2019-2020学年七年级数学上册综合测试试题附解答
2019-2020学年七年级数学上册综合测试试题一、 选择题(每小题3分,共12小题,共36分).1. 6的倒数等于( )A .6B .C .﹣6D .﹣2. 过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )A . 3.12×105B .3.12×106C .31.2×105D .0.312×107 3. 一袋大米的标准重量为10kg,把一袋重10.5kg 的大米记为+0.5kg ,则一袋重9.8kg 的大米记为( ) A .﹣9.8kgB .+9.8kgC .﹣0.2kgD .0.2kg4. 如图所示的圆柱体从左面看是( )A. B. C. D.5. A ,B ,C 三点在同一直线上,线段AB=6cm ,BC=8cm ,那么A ,C 两点的距离是( ) A .2cm B .14cmC .2cm 或14cmD .以上答案都不对6. 一艘轮船从重庆顺流而下行了6小时到达上海,已知船在静水中的速度是m 千米/小时,水流速度是3千米/小时,则重庆到上海的路程是( )千米.A.m+3B.m-3C.6(m+3)D.6(m-3) 7. 若x=2是方程4x+2m-14=0的解,则m 的值为( )A .10B .4C .3D .﹣316168.右图是“沃尔玛”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元9.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是( ) A.0或1 B.0或﹣1 C.0 D.110.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.11.已知代数式x﹣2y的值是5,则代数式﹣3x+6y+1的值是( )A.16 B.14 C.-14 D.﹣1612.甲厂的年产值为7450万元,比乙厂的年产值的5倍还多420万元,若设乙厂的年产值为x万元,下列所列方程中错误的是()A.5x+420=7450 B.7450﹣5x=420C.7450﹣(5x+420)=0 D.5x﹣420=7450二、填空题(每小题3分,6小题,共18分)13.比3大﹣10的数是.14.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.15.若|x+1|与(2y-3)2互为相反数,x+y= .16.参加农村合作医疗的王大伯住院,其手术费用a元,可以报销80%;其它费用b元,可以报销60%,则王大伯此次住院可报销元. 17.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.18. 一组数按一定规律排列的式子:∙∙∙-4,3,2,-11852a a a a ,则第n 个式子是 (n 为正整数) 三、解答题(本大题共66分) 19.(8分)计算:(1) 12﹣(﹣16)+(﹣4)﹣520.(9分)解下列方程:(1)5(x ﹣5)+2x=﹣4 (2)21.(8分) 先化简,再求值:4xy ﹣(2x 2﹣5xy+y 2)+2(x 2﹣3xy ),其中x=﹣2,y=1.22. (9分)小明解方程21512ax x +=+-时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a 的值,并正确求出方程的解.23.(10分)填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC . (1)求∠DOE 的度数;(2)如果∠COD=65°,求∠AOE 的度数.解:(1)如图,因为OD 是∠AOC 所以∠COD=12∠AOC . 因为OE 是∠BOC 的平分线, 所以∠COE=12 .所以∠DOE=∠COD+ =12(∠AOC+∠BOC)=12∠AOB= °.11112.--45360+÷()()()12125x x x -+-=-(2)由(1)可知∠BOE=∠COE= ﹣∠COD= °.所以∠AOE= ﹣∠BOE= °.24.(11分)两种移动电话计费方式表如下:方式设主叫时间为t分钟.(1)请完成下表(2)问主叫时间为多少分钟时,两种方式话费相等?(3)问主叫时间超过400分钟时,哪种计费方式便宜?便宜多少元?(用含t的式子表示)25. (12分)先阅读下面文字,然后按要求解题.例:1+2+3+...+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的。
2019-2020学年浙江省湖州市吴兴区七年级(上)期末数学试卷 (解析版)
2019-2020学年七年级(上)期末数学试卷一、选择题(共10小题).1.﹣3的倒数是()A.3B.﹣C.D.±32.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元3.下列四种运算中,结果最大的是()A.1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)4.吴兴区自2003年成立以来,本着“生态吴兴、经济强区、科技新城、幸福家园”的总战略,全区的经济实力显著增强.2018年,全区实现年财政总收入146.59亿元,将146.59亿用科学记数法表示正确的是()A.1.4659×107B.1.4659×109C.146.59×108D.1.4659×10105.估计+2的值在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间6.如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A.360°B.180°C.120°D.90°7.下列选项中,正确的是()A.若a2=b2,则a=bB.﹣(﹣1)2018=﹣1C.2a+3b=5abD.一个数的绝对值一定是正数8.如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5B.4.5C.5D.5.59.代数式2ax+5b的值会随x的取值不同而不同,如表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=﹣4的解是()x﹣4﹣3﹣2﹣10 2ax+5b12840﹣4 A.12B.4C.﹣2D.010.“幻方”最早记载于春秋时期的《大戴礼》中,现将1、2、3、4、5、7、8、9这8个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现有如图2所示的“幻方”,则(x﹣y)m﹣n的值是()A.﹣27B.﹣1C.8D.16二.填空题(共6小题,每小题4分,共24分)11.代数式xy2的系数是.12.比较大小:﹣|﹣5|﹣(﹣4).13.9的算术平方根是.14.如图,将长方形ABCD沿AE、DE折叠,使得点B'、点C'、点E在同一条直线上.若∠α=35°36′,则∠DEC的度数为.15.已知关于x的一元一次方程x+2﹣x=m的解是x=71,那么关于y的一元一次方程y+3﹣(y+1)=m的解是.16.为了从n个外形相同的鸡蛋中找出唯一的一个双黄蛋,检查员将这些蛋按1﹣n的序号排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋;他将剩下的蛋在原来的位置上又按1、2、3,…编了序号(即原来的2号变为1号,原来的4号变为2号,…),又从中取出新序号为单数的蛋进行检查,仍没有发现双黄蛋;如此继续下去,检查到最后一个原始编号为8的蛋才是双黄蛋.那么n最大值是,如果最后找到的是原始编号为512的双黄蛋,则n的最大值是.三、解答题(共8小题,共66分)17.计算:(1)4﹣(﹣3)×2(2)(﹣)2×(﹣)÷18.解方程:(1)3x﹣(x﹣1)=5(2)3x﹣=119.一辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?20.先化简,再求值:(2x2+x)﹣[4x2﹣(3x2﹣x)],其中x=﹣.21.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元).星期一二三四五六七收入+65+68+50+66+50+75+74支出﹣60﹣64﹣63﹣58﹣60﹣64﹣65(1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?22.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.(1)根据小明的发现,用代数式表示阴影部分⑥的周长.(2)阴影部分⑥与阴影部分⑤的周长之差与正方形(填编号)的边长有关,请计算说明.23.每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折;“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满200元减30元的优惠.如标价为300元的商品,折后为225元,再减30元,即实付:300×0.75﹣30=195(元).(1)该商店标价总和为1000元的商品,在“双十一”购买,最后实付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是507元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单的办法,只须再多支付元,就可以得到最大的优惠.24.【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则我们称射线OC是射线OA 的伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC =∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=∠AOD,称射线OD是射线OB的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM=°,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC的度数是.(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.参考答案一、选择题(共10小题,每小题3分,共30分)1.﹣3的倒数是()A.3B.﹣C.D.±3【分析】根据倒数的定义求解即可.解:﹣3得到数是﹣,故选:B.2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.3.下列四种运算中,结果最大的是()A.1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)【分析】根据有理数的加法、减法、乘法、除法法则分别计算出四个选项中式子的得数,再比较大小及可选出答案.解:A、1+(﹣2)=﹣1,B、1﹣(﹣2)=1+2=3,C、1×(﹣2)=﹣2,D、1÷(﹣2)=﹣,3>﹣>﹣1>﹣2,故选:B.4.吴兴区自2003年成立以来,本着“生态吴兴、经济强区、科技新城、幸福家园”的总战略,全区的经济实力显著增强.2018年,全区实现年财政总收入146.59亿元,将146.59亿用科学记数法表示正确的是()A.1.4659×107B.1.4659×109C.146.59×108D.1.4659×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将146.59亿用科学记数法表示正确的是146.59×108=1.4659×1010.故选:D.5.估计+2的值在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【分析】利用”夹逼法“得出的范围,继而也可得出+2的范围.解:∵<<,∴3<<4,∴5<+2<6.故选:C.6.如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A.360°B.180°C.120°D.90°【分析】利用对顶角相等,可知∠1+∠2+∠3的和是360°的一半.解:因为对顶角相等,所以∠1+∠2+∠3=×360°=180°.故选:B.7.下列选项中,正确的是()A.若a2=b2,则a=bB.﹣(﹣1)2018=﹣1C.2a+3b=5abD.一个数的绝对值一定是正数【分析】根据合并同类项法则,有理数的乘方,等式的性质,绝对值等知识即可作出判断.解:A、若a2=b2,则a=b或a=﹣b,故这个选项错误;B、﹣(﹣1)2018=﹣1,故这个选项正确;C、2a与3b不是同类项,不能合并,故这个选项错误;D、0的绝对值是0,不是正数,故这个选项错误.故选:B.8.如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5B.4.5C.5D.5.5【分析】利用垂线段最短得到AD≥AC,然后对各选项进行判断.解:∵AC⊥BC,AC=4,∴AD≥AC,即AD≥4.观察选项,只有选项A符合题意.故选:A.9.代数式2ax+5b的值会随x的取值不同而不同,如表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=﹣4的解是()x﹣4﹣3﹣2﹣10 2ax+5b12840﹣4 A.12B.4C.﹣2D.0【分析】根据表格中的数据确定出a与b的值,代入方程计算即可求出解.解:根据题意得:﹣2a+5b=0,5b=﹣4,解得:a=﹣2,b=﹣,代入方程得:﹣4x﹣4=﹣4,解得:x=0,故选:D.10.“幻方”最早记载于春秋时期的《大戴礼》中,现将1、2、3、4、5、7、8、9这8个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现有如图2所示的“幻方”,则(x﹣y)m﹣n的值是()A.﹣27B.﹣1C.8D.16【分析】根据:每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,可得:x+2=y+(﹣1),m+(﹣1)=n+2,据此分别求出x﹣y,m﹣n的值各是多少,即可求出(x﹣y)m﹣n的值是多少.解:根据题意,可得:x+2=y+(﹣1),m+(﹣1)=n+2,∴x﹣y=﹣3,m﹣n=3,∴(x﹣y)m﹣n=(﹣3)3=﹣27故选:A.二.填空题(共6小题,每小题4分,共24分)11.代数式xy2的系数是.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.解:代数式xy2的系数是.故答案为:.12.比较大小:﹣|﹣5|<﹣(﹣4).【分析】根据绝对值的性质、相反数的概念化简,根据有理数的大小比较法则判断.解:﹣|﹣5|=﹣5,﹣(﹣4)=4,∵﹣5<4,∴﹣|﹣5|=﹣5<﹣(﹣4),故答案为:<.13.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.如图,将长方形ABCD沿AE、DE折叠,使得点B'、点C'、点E在同一条直线上.若∠α=35°36′,则∠DEC的度数为54°24′.【分析】由折叠可知:∠α=∠AEF,∠CED=∠FED,所以∠DEC=(180°﹣∠α),再由∠α的大小即可求.解:由折叠可知:∠α=∠AEF,∠CED=∠FED,∴∠DEC=(180°﹣∠α),∵∠α=35°36′,∴∠DEC=54°24′,故答案为54°24′.15.已知关于x的一元一次方程x+2﹣x=m的解是x=71,那么关于y的一元一次方程y+3﹣(y+1)=m的解是70.【分析】把x=71代入方程表示出m,进而确定出所求方程的解即可.解:把x=71代入方程得:m=73﹣,代入得:y+3﹣(y+1)=73﹣,解得:y=70,故答案为:7016.为了从n个外形相同的鸡蛋中找出唯一的一个双黄蛋,检查员将这些蛋按1﹣n的序号排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋;他将剩下的蛋在原来的位置上又按1、2、3,…编了序号(即原来的2号变为1号,原来的4号变为2号,…),又从中取出新序号为单数的蛋进行检查,仍没有发现双黄蛋;如此继续下去,检查到最后一个原始编号为8的蛋才是双黄蛋.那么n最大值是15,如果最后找到的是原始编号为512的双黄蛋,则n的最大值是1023(210﹣1).【分析】根据题意第二次剩下的4=22的倍数,第三次剩下的8=23的倍数,以此类推,即可求得结果.解:第一次先从中取出序号为单数的蛋,双黄蛋不在单数号中,故一定在偶数号中,根据题意,这些偶数号蛋,按原来的2号变为1号,原来的4号变为2号,…,实际上即在最初的编号当中去掉2倍的数,保留4=22倍的数,按此规律,第三次检查时,双黄蛋又在最初的8=23的倍数号内,…根据最后一个原始编号为8的蛋是双黄蛋,即23=8,∴n的最大值是24﹣1=15;所以如果最后找到的是原始编号为512=29的双黄蛋,则n的最大值是210﹣1=1023.故答案为:15,1023(210﹣1).三、解答题(共8小题,共66分)17.计算:(1)4﹣(﹣3)×2(2)(﹣)2×(﹣)÷【分析】(1)首先计算乘法,然后计算减法即可.(2)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.解:(1)4﹣(﹣3)×2=4﹣(﹣6)=4+6=10(2)(﹣)2×(﹣)÷=×(﹣)÷=﹣÷=﹣18.解方程:(1)3x﹣(x﹣1)=5(2)3x﹣=1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)去括号得:3x﹣x+1=5,移项合并得:2x=4,解得:x=2;(2)去分母得:12x﹣3x+1=4,移项合并得:9x=3,解得:x=.19.一辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米).答:小明家与小刚家相距7千米远.20.先化简,再求值:(2x2+x)﹣[4x2﹣(3x2﹣x)],其中x=﹣.【分析】原式去括号合并后,将x的值代入计算即可求出值.解:(2x2+x)﹣[4x2﹣(3x2﹣x)]=2x2+x﹣[4x2﹣3x2+x]=2x2+x﹣4x2+3x2﹣x=x2,当x=﹣时,原式=(﹣)2=.21.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元).星期一二三四五六七收入+65+68+50+66+50+75+74支出﹣60﹣64﹣63﹣58﹣60﹣64﹣65(1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?【分析】(1)把周一至周日的收入和支出加在一起计算即可;(2)求出平均每天的结余,再乘30,就是一个月的结余.解:(1)(+65+68+50+66+50+75+74)+(﹣60﹣64﹣63﹣58﹣60﹣64﹣65)=14(元)答:到这个周末,小李有14元的节余.(2)(|﹣60|+|﹣64|+|﹣63|+|﹣58|+|﹣60|+|﹣64|+|﹣65|)=62(元)62×30=1860(元)答:小李一个月(按30天计算)至少要有1860元的收入才能维持正常开支.22.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.(1)根据小明的发现,用代数式表示阴影部分⑥的周长.(2)阴影部分⑥与阴影部分⑤的周长之差与正方形②(填编号)的边长有关,请计算说明.【分析】(1)利用矩形正方形的性质即可解决问题.(2)设②的边长是m.用m,a表示出⑤的周长即可解决问题.解:(1)阴影部分⑥的周长=2AB=2a.(2)设②的边长是m.∴阴影部分⑤的周长是2(a﹣m),∴阴影部分⑥﹣阴影部分⑤=2a﹣2(a﹣m)=2m.故答案为②.23.每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折;“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满200元减30元的优惠.如标价为300元的商品,折后为225元,再减30元,即实付:300×0.75﹣30=195(元).(1)该商店标价总和为1000元的商品,在“双十一”购买,最后实付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是507元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单的办法,只须再多支付3元,就可以得到最大的优惠.【分析】(1)根据“双十一”活动期间的优惠措施即可求解;(2)根据“双十一”活动期间的优惠措施可知该商品折后应该可以享受两次“满200减30”,设原标价为x元,根据打折满减后,应付金额是507元列出方程即可求解;(3)求出享受三次“满200减30”需要的钱数,减去507即可求解.解:(1)打折后:1000×0.75=750(元),“满200减30”再享受优惠:3×30=90(元),最后实付:750﹣90=660(元).故最后实付只需660元;(2)标价总和打七五折后:满200元,不到400元,可减30元,不合题意;满400元,不到600元,可减60元,符合题意;满600元,不到800元,可减90元,不合题意.则该商品折后应该可以享受两次“满200减30”,设原标价为x元,则0.75x﹣60=507,解得x=756.答:该商品原标价为756元;(3)600﹣90﹣507=3(元).答:只须再多支付3元,就可以得到最大的优惠.故答案为:3.24.【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则我们称射线OC是射线OA 的伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC =∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=∠AOD,称射线OD是射线OB的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM=40°,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC的度数是.(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.解:(1)40°,;(2)射线OD与OA重合时,t==36(秒)①当∠COD的度数是20°时,有两种可能:若在相遇之前,则180﹣5t﹣3t=20,∴t=20;若在相遇之后,则5t+3t﹣180=20,∴t=25;所以,综上所述,当t=20秒或25秒时,∠COD的度数是20°.②相遇之前:(i)如图1,OC是OA的伴随线时,则∠AOC=∠COD 即3t=(180﹣5t﹣3t)∴t=(ii)如图2,OC是OD的伴随线时,则∠COD=∠AOC即180﹣5t﹣3t=3t∴t=相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=∠AOD即5t+3t﹣180=(180﹣5t)∴t=(iv)如图4,OD是OA的伴随线时,则∠AOD=∠COD即180﹣5t=(3t+5t﹣180)∴t=30所以,综上所述,当t=,,,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.。
月考试题七年级数学周练最佳方案第2周 第一章 整式乘除(二)(解析版)
过关过手周周清2019-2020七下周练最佳方案第2周第一章整式乘除(二)(内容:§1.4整式的乘法)本周知识清单1.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.2.单项式乘单项式运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.3.单项式乘多项式(1)单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(2)单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.4.多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.5.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.本周同步周练第2周第一章整式乘除(二)A卷(100分)(内容:§1.4整式的乘法)(时间:120分钟满分:150分)一.选择题(共10小题,每小题3分,满分30分)1.(2019•西湖区校级月考)下列各式中,正确的是()A.a3+a2=a5B.2a3•a2=2a6C.(﹣2a3)2=4a6D.a6÷a2=a3【点拨】(1)根据合并同类项法则,a3与a2不是同类项不能合并即可得A选项不正确;(2)根据单项式乘以单项式和同底数幂乘法,即可得B选项不正确;(3)根据幂的乘方与积的乘方,C选项正确;(4)根据同底数幂除法,底数不变,指数相减即可得D选项不正确.【解析】解:a3+a2≠a52a3•a2=2a5(﹣2a3)2=4a6a6÷a2=a4故选:C.2.(2019•零陵区一模)下列计算正确的是()A.2a+3b=5ab B.a3•a2=a6C.a(a﹣1)=a2﹣1D.(a2)4=a8【点拨】根据合并同类项、同底数幂的乘法、单项式乘多项式、幂的乘方法则计算,判断即可.【解析】解:2a与3b不是同类项,不能合并,A错误;a3•a2=a5,B错误;a(a﹣1)=a2﹣a,C错误;(a2)4=a8,D正确;故选:D.3.(2019•嘉定区校级月考)下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y20【点拨】根据单项式乘单项式的法则计算,判断即可.【解析】解:A、4a3•2a2=8a5,本选项错误;B、2x4•3x4=6x8,本选项正确;C、3x2•4x2=12x4,本选项错误;D、3y4•5y4=15y8,本选项错误;故选:B.4.(2019•汝阳县期中)已知(x﹣3)(x+2)=x2+ax+b,则a﹣b的值是()A.﹣7B.﹣5C.5D.7【点拨】根据多项式乘以多项式法则计算,即可得出结果.【解析】解:∵(x﹣3)(x+2)=x2﹣x﹣6=x2+ax+b,∴a=﹣1,b=﹣6;∴a﹣b=﹣1﹣(﹣6)=5.故选:C.5.(2019•蜀山区校级三模)下列运算中,正确的是()A.3x3•2x2=6x6B.x4+x4=2x8C.x6÷x3=x3D.(2x2)3=8x5【点拨】分别利用单项式乘单项式、合并同类项、同底数幂的除法和积的乘方运算法则化简求出即可.【解析】解:A、3x3•2x2=6x5,故此选项错误;B、x4+x4=2x4,故此选项错误;C、x6÷x3=x3,故此选项正确;D、(2x2)3=8x6,故此选项错误.故选:C.6.(2019•九龙坡区校级期中)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a8÷a4=a2D.xy2−15xy2=45xy2【点拨】选项A为单项式乘以单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解析】解:A、(a3b)•(ab2)=a3•a•b•b2=a4b3,原计算正确,故这个选项不符合题意;B、(﹣mn3)2=m2n6,原计算正确,故这个选项不符合题意;C、a8÷a2=a8﹣2=a6,原计算错误,故这个选项符合题意;故选:C.7.(2019•沙坪坝区校级月考)若要使x(x2+a)+3x﹣2b=x3+5x+4恒成立,则a,b的值分别是()A.﹣2,﹣2B.2,2C.2,﹣2D.﹣2,2【点拨】将已知等式左边展开,再比较等式左右两边对应项系数即可.【解析】解:∵x(x2+a)+3x﹣2b=x3+5x+4恒成立,∴x3+(a+3)x﹣2b=x3+5x+4,故选:C.8.(2019•西湖区校级月考)已知a﹣b=3,b﹣c=﹣2,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4B.﹣4C.3D.﹣3【点拨】先分解因式,再将已知的a﹣b=3,b﹣c=﹣2,两式相加得:a﹣c=1,整体代入即可.【解析】解:a2﹣ac﹣b(a﹣c)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b),∵a﹣b=3,b﹣c=﹣2,∴a﹣c=1,当a﹣b=3,a﹣c=1时,原式=3×1=3.故选:C.9.(2019•襄州区期末)若(x+2)(x﹣1)=x2+mx﹣2,则m的值为()A .3B .﹣3C .1D .﹣1【点拨】根据多项式乘多项式法则把等式的左边展开,根据题意求出m 的值. 【解析】解:因为(x +2)(x ﹣1)=x 2﹣x +2x ﹣2=x 2+x ﹣2=x 2+mx ﹣2, 所以m =1, 故选:C .10.(2019•醴陵市期末)已知a 2+a ﹣4=0,那么代数式:a 2(a +5)的值是( ) A .4B .8C .12D .16【点拨】根据题意得到a 2=﹣a +4,a 2+a =4,则a 2(a +5)=(﹣a +4)(a +5)=﹣a 2﹣a +20=﹣(a 2+a )+20,代入计算即可. 【解析】解:∵a 2+a ﹣4=0, ∴a 2=﹣a +4,a 2+a =4, ∴a 2(a +5) =(﹣a +4)(a +5) =﹣a 2﹣a +20 =﹣(a 2+a )+20 =﹣4+20 =16. 故选:D .二.填空题(共4小题,每小题4分,满分16分)11.(2019•河东区期末)计算2x 5•x 的结果等于 2x 6 .【点拨】根据单项式乘以单项式法则:系数与系数相乘、同底数幂相乘即可得结果. 【解析】解:2x 5•x =2x 6. 故答案为2x 6.12.(2019•澧县期末)计算:﹣3x 2(x ﹣6y )= ﹣3x 3+18x 2y . 【点拨】根据单项式与多项式相乘的运算法则计算即可. 【解析】解:﹣3x 2(x ﹣6y )=﹣3x 3+18x 2y , 故答案为:﹣3x 3+18x 2y .13.(2019•阜宁县期中)若单项式﹣6x 2y m 与12x n ﹣1y 3是同类项,那么这两个单项式的积是 ﹣3x 4y 6 .【点拨】根据同类项的概念分别求出m 、n ,根据单项式乘单项式的运算法则计算,得到答案.【解析】解:由题意得,n ﹣1=2,m =3, 则n =3,﹣6x 2y 3•12x 2y 3=﹣3x 4y 6,故答案为:﹣3x 4y 6.14.(2019•香坊区校级月考)若a 2b =2,则代数式2ab (a ﹣2)+4ab = 4 . 【点拨】根据单项式与多项式相乘的运算法则把原式化简,代入计算即可. 【解析】解:2ab (a ﹣2)+4ab =2a 2b ﹣4ab +4ab =2a 2b ,当a 2b =2时,原式=2×2=4, 故答案为:4.三.解答题(共6小题,满分54分)15.(8分)(2019•西湖区校级月考)计算: (2)(5mn 2﹣4m 2n )(﹣2mn )【点拨】根据单项式乘多项式法则去括号,然后根据单项式乘以单项式法则进行计算即可. 【解析】解:(2)原式=5mn 2•(﹣2mn )﹣4m 2n •(﹣2mn ) =﹣10m 2n 3+8m 3n 216.(8分)(2019•莆田期末)(1)计算:(﹣3xy )2•4x 2; (2)计算:(x +2)(2x ﹣3).【点拨】(1)根据单项式乘单项式的法则解答即可; (2)根据多项式乘多项式的法则解答即可. 【解析】解:(1)原式=9x 2y 2•4x 2 =36x 4y 2;(2)解:原式=2x 2﹣3x +4x ﹣6 =2x 2+x ﹣6.17.(8分)(2019•西湖区校级月考)计算 (1)(2×102)4(2)(−23x 3y 2)3 (3)(﹣a 2)3﹣3a 2•a •a 3【点拨】(1)根据积的乘方法则、科学记数法解答; (2)根据积的乘方法则计算;(3)根据积的乘方法则、同底数幂的乘法法则计算. 【解析】解:(1)(2×102)4 =1.6×109; (2)(−23x 3y 2)3 =−827x 9y 6; (3)(﹣a 2)3﹣3a 2•a •a 3 =﹣a 6﹣3a 6 =﹣4a 6.18.(10分)(2019•西湖区校级月考)计算: (1)(2a )2•b 4•12a 3b 2(2)x 2(x ﹣1)﹣x (x 2﹣x ﹣1)【点拨】(1)根据积的乘方法则、单项式乘单项式的运算法则计算; (2)根据单项式乘多项式法则计算. 【解析】解:(1)(2a )2•b 4•12a 3b 2 =4a 2•b 4•12a 3b 2 =48a 5b 6;(2)x 2(x ﹣1)﹣x (x 2﹣x ﹣1) =x 3﹣x 2﹣x 3+x 2+x =x .19.(10分)(2019•京口区校级月考)计算 (1)(a 3)2•(﹣2ab 2)3 (2)(﹣2ab )(3a 2﹣2ab ﹣b 2) (3)(2﹣π)0﹣(13)﹣2+(﹣2)3(4)0.52016×(﹣2)2018【点拨】(1)根据同底数幂的乘法法则以及幂的乘方与积的乘方法则计算即可;(2)根据单项式乘多项式计算即可;(3)根据任何非0数的0次幂等于1,负整数指数幂以及幂的定义计算即可;(4)根据积的乘方法则计算即可.【解析】解:(1)原式=a6•(﹣8a3b6)=﹣8a9b6;(2)原式=﹣2ab•3a2+2ab•2ab+2ab•b2=﹣6a3b+4a2b2+2ab3;(3)原式=1﹣9﹣8=﹣16;(4)原式=(12)2016×22016×22=(12×2)2016×4=12016×4=1×4=4.20.(10分)(2019•新建区期末)(1)计算:(﹣2a2b)2+(﹣2ab)•(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.【点拨】(1)先根据幂的乘方和积的乘方、单项式乘以单项式的运算法则计算,再合并同类项即可;(2)先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.【解析】解:(1)原式=4a4b2+6a4b2=10a4b2;(2)原式=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2.B卷(50分)一.填空题(共5小题,每小题4分,满分20分)21.(2019•惠州期末)若(x+2)(x﹣6)=x2+px+q,则p+q=﹣16.【点拨】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p与q的值,再代入计算即可求解.【解析】解:(x+2)(x﹣6)=x2﹣4x﹣12=x2+px+q,可得p=﹣4,q=﹣12,p+q=﹣4﹣12=﹣16.故答案为:﹣16.22.(2019•西城区期末)计算:a﹣5b﹣3•ab﹣2=1a4b5(要求结果用正整数指数幂表示).【点拨】根据单项式乘以单项式的法则计算即可.【解析】解:a﹣5b﹣3•ab﹣2=a﹣5+1b﹣3﹣2=a﹣4b﹣5=1a4b5.故答案为:1a4b5.23.(2019•东台市期中)计算2x(x﹣3y)=2x2﹣6xy.【点拨】利用单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,可得结果.【解析】解:2x(x﹣3y)=2x•x+2x•(﹣3y)=2x2﹣6xy,故答案为:2x2﹣6xy.24.(2019•嵩县期末)如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1.【点拨】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解析】解:(x+1)(x+m)=x2+(1+m)x+m,∵结果不含x的一次项,∴1+m=0,解得:m=﹣1.故答案为:﹣1.25.(2019•大连期末)若(x+a)(x+b)=x2+6x+5,则a+b的值为6.【点拨】直接利用多项式乘以多项式运算法则去括号,进而得出a+b的值.【解析】解:∵(x+a)(x+b)=x2+6x+5,∴x2+(a+b)x+ab=x2+6x+5,∴a+b=6.故答案为:6.二.解答题(共3小题,满分30分)26.(8分)(2019•孟津县期中)计算:(−12a2b3)3⋅(−2a2b)2【点拨】根据单项式乘单项式的法则计算即可.【解析】解:原式=(−18a6b9)•(4a4b2)=−18×4(a 6•a 4)(b 9•b 2) =−12a 10b 11.27.(10分)(2019•梁溪区期中)如图,将一张长方形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm 的大正方形,两块是边长都为ncm 的小正方形,五块是长宽分别是mcm 、ncm 的完全相同的小长方形,且m >n .若5个小长方形的面积和为110cm 2,四个正方形的面积和为200cm 2,试求该矩形大铁皮的周长.【点拨】先根据题意求出mn =22,m 2+n 2=100,根据完全平方公式求出m +n ,再求出答案即可. 【解析】解:∵5个小长方形的面积和为110cm 2,四个正方形的面积和为200cm 2, ∴5mn =110,2m 2+2n 2=200, ∴mn =22,m 2+n 2=100,∴(m +n )2=m 2+n 2+2mn =100+2×22=144, ∵m 、n 为正数, ∴m +n =√144=12,∴该矩形的周长为2(m +2n +2m +n )=6(m +n )=6×12=72(cm ),28.(13分)(2019•路南区期中)若(x 2+mx )(x 2﹣3x +n )的展开式中不含x 2和x 3项,求m 和n 的值. 【点拨】利用多项式乘多项式法则计算得到结果,根据展开式中不含x 2和x 3项列出关于m 与n 的方程组,求出方程组的解即可得到m 与n 的值.【解析】解:原式=x 4+(m ﹣3)x 3+(n ﹣3m )x 2+mnx , 根据展开式中不含x 2和x 3项得:{m −3=0n −3m =0,解得:{m =3n =9.故m 的值是3,n 的值是9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年七年级(上)第16周周练数学试卷(解析版)一、选择题(3×10=30分)1.下列说法中:(1)两条直线相交只有一个交点;(2)两条直线不是一定有公共点;(3)直线AB与直线BA是两条不同的直线;(4)两条不同的直线不能有两个或更多公共交点.其中正确的是()A.(1)(2) B.(1)(4) C.(1)(2)(4)D.(2)(3)(4)2.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB3.已知线段AB=10cm,C是平面上任意一点,则AC+BC()A.大于10cm B.大于或等于10cmC.小于10cm D.小于或等于10cm4.下列说法中,正确的是()A.延长直线AB到CB.C,D两点间的距离就是线段CDC.射线比直线短一半D.同一平面内有四个点,以其中任意两个点为端点可以得到6条线段5.下列说法正确的是()A.在墙上固定一根木条,至少需要2颗钉子B.射线OA和射线AO是同一条射线C.延长直线ABD.线段AB和线段BA不是同一条线段6.如图,以A、B、C、D的任意一点为端点,在图中找到不同的射线条数共有()A.5 B.6 C.7 D.87.已知∠α=35°,那么∠α的余角等于()A.35°B.55°C.65°D.145°8.在8:30这一时刻,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°9.一条船在灯塔的北偏东30°方向,那么灯塔在船的()方向.A.南偏西30°B.西偏南40°C.南偏西60°D.北偏东30°10.如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB⇒BC⇒CD⇒DA⇒AB连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是()A.B.C.D.二、填空题(38=24分)11.34.37°=°′″.12.直线上有3个点共有条线段,有10个点共有条线段.13.已知∠AOB=50°,∠BOD=30°,则∠AOD= .14.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b= .15.一长方形纸条,按如图所示的方向折叠OG为折痕,若量得∠AOB′=110°,则∠B′OG=°.16.如图,AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是度.17.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB= 度.18.如图,C、D是线段AB上的两个点,CD=8cm,M是AC的中点,N是DB的中点,MN=12cm,那么线段AB的长等于 cm.三、解答题:19.如图,AB:BC:CD=2:3:4,如果AB中点M和CD中点N的距离是24cm,求AB,ND,MN的长度.20.直线上有A,B,C三点,AB=6cm,AC=2cm,点O是线段BC中点,求线段BO 的长.21.如图,O是直线AB上一点,∠AOC=∠BOD,射线OE平分∠BOC,∠EOD=42°,求∠EOC的大小.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)图中有个小于平角的角;其中是∠DOC的余角.(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.23.用边长为12cm的正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需个长方形,个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4侧面5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.①用x的代数式分别表示裁剪出的侧面和底面的个数;②若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?24.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB 的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.xx学年江苏省无锡市江阴市月城中学七年级(上)第16周周练数学试卷参考答案与试题解析一、选择题(3×10=30分)1.下列说法中:(1)两条直线相交只有一个交点;(2)两条直线不是一定有公共点;(3)直线AB与直线BA是两条不同的直线;(4)两条不同的直线不能有两个或更多公共交点.其中正确的是()A.(1)(2) B.(1)(4) C.(1)(2)(4)D.(2)(3)(4)【考点】相交线.【分析】根据在同一平面内,两直线的位置关系有两种:平行和相交,逐一判断即可.【解答】解:(1)两条直线相交如果有2个或以上交点,则两直线重合,即为一条直线,故两条直线相交只有一个交点,正确;(2)当两直线平行时没有公共点,故两条直线不是一定有公共点,正确;(3)直线AB与直线BA是同一条直线,故此结论错误;(4)两条直线相交如果有2个或以上交点,则两直线重合,即为一条直线,故两条不同的直线不能有两个或更多公共交点,正确;故选:C.2.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB【考点】比较线段的长短.【分析】根据线段中点的定义进行判断.【解答】解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选D.3.已知线段AB=10cm,C是平面上任意一点,则AC+BC()A.大于10cm B.大于或等于10cmC.小于10cm D.小于或等于10cm【考点】两点间的距离.【分析】利用两点之间距离性质,结合图形得出即可.【解答】解:如图所示:线段AC与BC的和最小是10cm,根据是两点之间线段最短.故选:B.4.下列说法中,正确的是()A.延长直线AB到CB.C,D两点间的距离就是线段CDC.射线比直线短一半D.同一平面内有四个点,以其中任意两个点为端点可以得到6条线段【考点】直线、射线、线段.【分析】根据几何语言利用排除法求解.【解答】解:A、直线向两方无限延伸,错误;B、C、D两点间的距离就是线段CD的长度,错误;C、射线和直线没有长度,错误;D、同一平面内有四个点,以其中任意两个点为端点可以得到6条线段,正确.故选D.5.下列说法正确的是()A.在墙上固定一根木条,至少需要2颗钉子B.射线OA和射线AO是同一条射线C.延长直线ABD.线段AB和线段BA不是同一条线段【考点】直线、射线、线段;直线的性质:两点确定一条直线.【分析】根据射线的表示,线段的性质,以及直线的性质对各小题分析判断即可得解.【解答】解:A、在墙上固定一根木条,至少需要2个钉子,两点确定一条直线,故本选项正确;B、射线OA的端点是O,射线AO的端点是A,不是同一条射线,故本选项错误;C、延长直线AB,直线的长度不可度量,不需延长,故本选项错误;D、线段AB和线段BA不是同一条线段,用端点字母表示线段,字母没有顺序性,故本选项错误.故选A.6.如图,以A、B、C、D的任意一点为端点,在图中找到不同的射线条数共有()A.5 B.6 C.7 D.8【考点】直线、射线、线段.【分析】根据射线的概念解答即可.【解答】解:以B、C、D的任意一点为端点的射线各有2条,则以A、B、C、D的任意一点为端点,在图中找到不同的射线共有6条,故选:B.7.已知∠α=35°,那么∠α的余角等于()A.35°B.55°C.65°D.145°【考点】余角和补角.【分析】根据余角的定义:如果两个角的和等于90°(直角),就说这两个角互为余角计算.【解答】解:∵∠α=35°,∴它的余角等于90°﹣35°=55°.故选B.8.在8:30这一时刻,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°【考点】钟面角.【分析】画出图形,利用钟表表盘的特征解答.【解答】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.9.一条船在灯塔的北偏东30°方向,那么灯塔在船的()方向.A.南偏西30°B.西偏南40°C.南偏西60°D.北偏东30°【考点】方向角;平行线.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:由题意可知∠1=30°,∵AB∥CD,∴∠1=∠2,由方向角的概念可知灯塔在船的南偏西30°.故选A.10.如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB⇒BC⇒CD⇒DA⇒AB连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是()A.B.C.D.【考点】正方形的性质.【分析】根据题意可得这个小正方形第一次回到起始位置时需12次翻转,而每翻转4次,它的方向重复依次,则此时就不难得到这个小正方形第一次回到起始位置时的方向.【解答】解:根据题意分析可得:小正方形沿着正方形ABCD的边AB⇒BC⇒CD⇒DA⇒AB连续地翻转,正方形ABCD的边长是3cm,一个边长为1cm的小正方,即这个小正方形第一次回到起始位置时需12次翻转,而每翻转4次,它的方向重复依次,故回到起始位置时它的方向是向上.故选A.二、填空题(38=24分)11.34.37°=,34 °22 ′12 ″.【考点】度分秒的换算.【分析】先把0.37度化为22.2分,然后把0.2分化为12秒即可.【解答】解:∵0.37°=0.37×60′=22.2′,0.2′=0.2×60″=12″,∴34.37°=34°22′12″.故答案为34,22,12.12.直线上有3个点共有 3 条线段,有10个点共有45 条线段.【考点】直线、射线、线段.【分析】根据“当直线上有n个点时,线段数为1+2+…+(n﹣1)=”,代入n=3、10即可得出结论.【解答】解:当直线上有3个点时,共有线段的条数为1+2=3(条);当直线上有10个点时,共有线段的条数为1+2+3+4+5+6+7+8+9=45(条).故答案为:3;45.13.已知∠AOB=50°,∠BOD=30°,则∠AOD= 20°或80°.【考点】角的计算.【分析】分为两种情况:当∠BOD在∠AOB的内部时,当∠BOD在∠AOB的外部时,求出即可.【解答】解:分为两种情况:①如图1,当∠BOD在∠AOB的内部时,∠AOD=∠AOB﹣∠BOD=50°﹣30°=20°;②如图2,,当∠BOD在∠AOB的外部时,∠AOD=∠AOB+∠BOD=50°+30°=80°;故答案为:20°或80°.14.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b= 4.【考点】直线、射线、线段.【分析】分析可得:平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.【解答】解:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为:4.15.一长方形纸条,按如图所示的方向折叠OG为折痕,若量得∠AOB′=110°,则∠B′OG=35 °.【考点】翻折变换(折叠问题);对顶角、邻补角.【分析】根据题意可求出∠BOB'的度数,再由折叠的性质可得∠BOG=∠B'OG,从而有∠B'OG=∠BOB',继而可得出答案.【解答】解:∵∠AOB′=110°,∴∠BOB'=180°﹣∠AOB'=70°,由折叠的性质得,∠BOG=∠B'OG,∴∠B'OG=∠BOB'=35°.故答案为:35°.16.如图,AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是30 度.【考点】对顶角、邻补角.【分析】根据角平分线的定义和对顶角相等可求得.【解答】解:∵AB、CD相交于点O,∠DOE=60°,OB平分∠DOE,∴∠BOD=∠DOE=×60°=30°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=30°.故答案为:30.17.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB= 70 度.【考点】角的计算.【分析】∠COB是两个直角的公共部分,同时两个直角的和是180°,所以∠AOB+∠COD=∠AOD+∠COB.【解答】解:由题意可得∠AOB+∠COD=180°,又∠AOB+∠COD=∠AOC+2∠COB+∠BOD=∠AOD+∠COB,∵∠AOD=110°,∴∠COB=70°.故答案为:70.18.如图,C、D是线段AB上的两个点,CD=8cm,M是AC的中点,N是DB的中点,MN=12cm,那么线段AB的长等于12 cm.【考点】两点间的距离.【分析】根据图示知MN=CD+(AC+BD)=12cm,则易求(AC+BD)的值,所以AB=AC+BD+CD.【解答】解:∵M是AC的中点,N是DB的中点,∴AM=MC,BN=DN,∴AM+BN=MC+DN=MN﹣CD=4cm,∴AB=AM+BN+CD=12cm.故答案是:12.三、解答题:19.如图,AB:BC:CD=2:3:4,如果AB中点M和CD中点N的距离是24cm,求AB,ND,MN的长度.【考点】两点间的距离.【分析】设AB、BC、CD的长分别为2xcm、3xcm、4xcm,根据线段中点的定义得到BM=x,NC=2x,根据题意列方程,解方程即可.【解答】解:设AB、BC、CD的长分别为2xcm、3xcm、4xcm,∵点M是AB中点,点N是CD中点,∴BM=x,NC=2x,则x+3x+2x=24,解得,x=4,∴AB=2x=8cm,ND=8cm,MN=24cm.20.直线上有A,B,C三点,AB=6cm,AC=2cm,点O是线段BC中点,求线段BO 的长.【考点】两点间的距离.【分析】分类讨论:C在线段AB上,C在线段BA的延长线上,根据线段的和差,可得BC的长,根据线段中点的定义即可得出BO的长.【解答】解:①当C在线段AB上时,如图1所示:由线段的和差,得BC=AB﹣AC=6﹣2=4(cm),由O是线段BC的中点,得BO=BC═2cm;②当C在线段BA的延长线上时,如图2所示:由线段的和差,得BC=AB+AC=6+2=8(cm),由O是线段BC的中点,得BO=BC=4cm;综上所述:线段BO的长为2cm或4cm.21.如图,O是直线AB上一点,∠AOC=∠BOD,射线OE平分∠BOC,∠EOD=42°,求∠EOC的大小.【考点】角平分线的定义.【分析】设∠AOC=x°,则∠BOE=(42+x)°,由∠AOC+2∠BOE=180°列出关于x的方程,求解得x的值,继而即可知∠EOC的大小.【解答】解:设∠AOC=x°,则∠BOE=(42+x)°,根据题意,知:∠AOC+2∠BOE=180°,即:x+2(42+x)=180,解得:x=32,∴∠EOC=∠BOE=(42+x)°=74°.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)图中有9 个小于平角的角;其中∠COE 是∠DOC的余角.(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.【考点】余角和补角;角平分线的定义.【分析】(1)由过点O的射线有5条即可得出不超过平角的角个数,去除∠AOB 后即可得出结论;再由∠DOC+∠COE=90°即可得出∠DOC和∠COE互余;(2)由平分线的定义结合∠AOC的度数即可求出∠AOD的度数,再根据∠AOD和∠BOD互补即可得出结论;(3)由∠DOC和∠COE互余即可求出∠COE的度数,再根据∠AOC和∠BOC互补即可求出∠BOC的度数,由∠COE和∠BOC度数间的关系即可得出OE平分∠BOC.【解答】解:(1)∵过点O的射线有5条,∴小于平角的角的个数为4+3+2=9.∵∠DOE=∠DOC+∠COE=90°,∴∠DOC和∠COE互余.故答案为:9;∠COE.(2)∵∠AOC=50°,OD平分∠AOC,∴∠AOD=∠DOC=∠AOC=25°,∴∠BOD=180°﹣∠AOD=155°.(3)OE平分∠BOC,理由如下:∵∠DOC+∠COE=90°,∠DOC=25°,∴∠COE=65°.∵∠BOC=180°﹣∠AOC=130°,∴∠COE=∠BOC.∴OE平分∠BOC.23.用边长为12cm的正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需 3 个长方形, 2 个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4侧面5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.①用x的代数式分别表示裁剪出的侧面和底面的个数;②若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】一元一次方程的应用;列代数式;认识立体图形.【分析】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;(2)①由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;②由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.【解答】解:(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;(2)①∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;②由题意,得=,解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为: =30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.故答案为3,2.24.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB 的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【考点】角的计算.【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.【解答】解:(1)∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为10°t,当三角板转到如图①所示时,∠AON=∠CON∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t ∴90°+10°t=210°﹣10°t即t=6;当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t∴210°﹣10°t=60°即t=15;当三角板转到如图③所示时,∠AON=∠CON=,∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°∴10°t﹣210°=30°即t=24;当三角板转到如图④所示时,∠AON=∠AOC=60°∵∠AON=10°t﹣180°﹣90°=10°t﹣270°∴10°t﹣270°=60°即t=33.故t的值为6、15、24、33.(2)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°xx年5月16日-----如有帮助请下载使用,万分感谢。