高考数学-统计与概率

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高考数学概率与统计部分知识点梳理

高考数学概率与统计部分知识点梳理

高考数学概率及统计部分学问点梳理一、概率:随机事务A 的概率是频率的稳定值,反之,频率是概率的近似值. 1.随机事务A 的概率0()1P A ≤≤,其中当()1P A =时称为必定事务;当()0P A =时称为不行能事务P(A)=0;注:求随机概率的三种方法: 〔一〕枚举法例1如图1所示,有一电路AB 是由图示的开关限制,闭合a ,b ,c ,d ,e 五个开关中的随意两个开关,使电路形成通路.那么使电路形成通路的概率是 .分析:要计算使电路形成通路的概率,列举出闭合五个开关中的随意两个可能出现的结果总数,从中找出能使电路形成通路的结果数,依据概率的意义计算即可。

解:闭合五个开关中的两个,可能出现的结果数有10种,分别是a b 、a c 、a d 、a e 、bc 、bd 、be 、cd 、ce 、de ,其中能形成通路的有6种,所以p(通路)=106=53 评注:枚举法是求概率的一种重要方法,这种方法一般应用于可能出现的结果比较少的事务的概率计算. 〔二〕树形图法例2小刚和小明两位同学玩一种嬉戏.嬉戏规那么为:两人各执“象、虎、鼠〞三张牌,同时各出一张牌定输赢,其中象胜虎、虎胜鼠、鼠胜象,假设两人所出牌一样,那么为平局.例如,小刚出象牌,小明出虎牌,那么小刚胜;又如,两人同时出象牌,那么两人平局.假如用A 、B 、C 分别表示小刚的象、虎、鼠三张牌,用A 1、B 1、C 1分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?分析:为了清晰地看出小亮胜小刚的概率,可用树状图列出全部可能出现的结果,并从中找出小刚胜小明可能出现的结果数。

解:画树状图如图树状图。

由树状图〔树形图〕或列表可知,可能出现的结果有9种,而且每种结果出现的可能性一样,其中小刚胜小明的结果有3种.所以P 〔一次出牌小刚胜小明〕=31点评:当一事务要涉及两个或更多的因素时,为了不重不漏地列出全部可能的结果,通过画树形图的方法来计算概率 〔三〕列表法例3将图中的三张扑克牌反面朝上放在桌面上,从中随机摸出两张,并用这两张扑克牌上的数字组成一个两位数.请你用画树形〔状〕图或列表的方法求:〔1〕组成的两位数是偶数的概率;〔2〕组成的两位数是6的倍数的概率.分析:此题可通过列表的方法,列出全部可能组成的两位数的可能状况,然后再找出组成的两位数是偶数的可能状况和组成两位数 是6的倍数的可能状况。

高考数学 考前查缺补漏系列 热点06 概率与统计问题,你能渡过“事理关”和“数理关”吗?

高考数学 考前查缺补漏系列 热点06 概率与统计问题,你能渡过“事理关”和“数理关”吗?

概率与统计问题,你能渡过“事理关”和“数理关”吗?【常见题型】在概率中,事件之间有两种最基本的关系,一种是事件之间的互斥(含两个事件之间的对立),一种是事件之间的相互独立的,互斥事件至少有一个发生的概率等于各个事件发生的概率之和,相互独立事件同时发生的概率等于各个事件各自发生的概率之积,在概率计算中正确地把随机事件进行分拆是正确解决问题的根本所在.概率计算题的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.一.概率与茎叶图相联系例1【河北省唐山市2011—2012学年度高三年级第二次模拟考试】(理)某篮球队甲、乙两名队员在本赛零已结束的8场比赛中得分统计的茎叶图如下:(I )比较这两名队员在比赛中得分的均值和方差的大小;(II )以上述数据统计甲、乙两名队员得分超过15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过15分次数X 的分布列和均值.(Ⅰ)x-甲= 1 8(7+9+11+13+13+16+23+28)=15, x -乙= 1 8(7+8+10+15+17+19+21+23)=15, s 2甲= 1 8[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙= 1 8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小). …4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p 1= 38,p 2= 1 2,两人得分均超过15分的概率分别为p 1p 2=316,依题意,X ~B (2,316),P (X =k )=C k 2(316)k(1316)2-k ,k =0,1,2, …7分X 的分布列为…10分 X 的均值E (X )=2×316=8. …12分(文)某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:(I )比较这两名队员在比赛中得分的均值和方差的大小:(II )从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率. 解:(Ⅰ)x-甲= 1 8(7+9+11+13+13+16+23+28)=15, x -乙= 1 8(7+8+10+15+17+19+21+23)=15, s 2甲= 1 8[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙= 1 8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小). …4分 (Ⅱ)题设所述的6个场次乙得分为:7,8,10,15,17,19. …7分二.频率分布表、频率分布直方图与概率相结合 例2【2012年长春市高中毕业班第二次调研测试】 对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如 下:【命题意图】本小题主要考查统计与概率的相关知识,具体涉及到频率分布表、频率分布直方图、离散型随机变量的分布列以及数学期望的求法. 【试题解析】⑴由题可知 50.25M =,12n M =,m p M =,10.05M= 又 5121m M +++=解得 20M =,0.6n =,2m =,0.1p =则[15,20)组的频率与组距之比a 为0.12. (4分)⑵由⑴知,参加服务次数在区间[15,20)上的人数为3600.6216⨯=人. (6分) ⑶所取出两人所获得学习用品价值之差的绝对值可能为0元、20元、40元、60元,则 22251222201066177(0)190190C C C P C ++++===, 111111512122212206024286(20)190190C C C C C C P C ++++===, 111152121220101222(40)190190C C C C P C ++===, 11512205(60)190C C P C ==.(10分)()0(0)20(20)40(40)60(60)E X P P P P =⋅+⋅+⋅+⋅7786225290020406019019019019019=⨯+⨯+⨯+⨯= (12分)(文)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:⑴求出表中M 、p 及图中a 的值;三、排列组合和概率相结合例3【2012东城区普通高中示范校高三综合练习(二)】(理)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的培训次数 1 2 3 参加人数 5 15 20(1的概率; (2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X 的分布列及数学期望EX . 解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……………………5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+====== 则随机变量X 的分布列:分组 频数 频率 [10,15) 10 0.25 [15,20) 25 n [20,25) m p [25,30) 2 0.05 合计M1X0 12P15661 15675395012.156********X EX =⨯+⨯+⨯=所以的数学期望 ……………………13分样本容量与总体中个体数的比为,181905= 所以从,,A B C 三个工作组分别抽取的人数为2,2,1. ------------------5分(II )设12,A A 为从A 组抽得的2名工作人员,12,B B 为从B 组抽得的工作人员,1C 为从C 组抽得的工作人员,若从这5名工作人员中随机抽取2名,其所以可能的结果是:),,(),,(),,(),,(),,(),,(),,(),,(),,(112112221211211121C B B B C A B A B A C A B A B A A A21(,)B C ,共有10种, ------9分其中没有A 组工作人员的结果是:121121(,),(,),(,)B B B C B C 有3种,--------------------------11分 所以从抽取的5名工作人员中再随机抽取2名进行汇总整理,此时这两名工作人员中没有A 组工作人员的概率310P =。

高考数学中的概率与统计题详解

高考数学中的概率与统计题详解

高考数学中的概率与统计题详解概率与统计是高考数学中的重要内容之一,涉及概率、统计两个部分。

概率是研究随机事件发生的可能性,统计则是根据观察到的现象,对总体进行推断。

在高考中,概率与统计题往往需要运用一定的公式和推理能力来解答。

下面将详细介绍高考中常见的概率与统计题,并提供相关的解题技巧。

一、概率题概率题常见于高考数学中,考察学生对随机事件和概率的理解与计算能力。

下面将从基本定义、计算公式和常见类型等方面对概率题进行详解。

1.基本定义概率是事件发生的可能性大小的度量,用一个介于0和1之间的数表示。

当事件不可能发生时,概率为0;当事件一定发生时,概率为1。

2.计算公式(1)事件A的概率:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。

(2)互斥事件的概率:P(A或B) = P(A) + P(B)。

(3)独立事件的概率:P(A和B) = P(A) × P(B)。

3.常见类型(1)选择题:将概率题与其他数学知识相结合,如求百分比、比例等。

解题时应根据题目给出的条件,利用计算公式进行计算。

(2)排列组合问题:对于不同颜色、大小、形状的球,求取满足某个条件的组合数。

解题时应根据题目所给条件,使用排列组合公式进行计算。

(3)事件的复合:求两个或多个事件复合后的概率。

解题时应根据题目所给条件,利用计算公式进行计算。

二、统计题统计题常见于高考数学中,考察学生对收集、整理和分析数据的能力,以及对统计方法的应用。

下面将从数据收集与整理、统计指标和抽样调查等方面对统计题进行详解。

1.数据收集与整理统计题要求学生根据给定的数据进行分析和计算。

在实际情境中,常见的数据收集方法有观察、问卷调查、实验等。

解题时应根据题目所给的数据,进行整理和清晰的分类。

2.统计指标统计指标是对统计数据进行度量和描述的指标。

常见的统计指标有均值、中位数、众数、标准差等。

解题时应根据题目所要求的统计指标,运用相应的公式进行计算。

高考数学统计与概率大题解题模板

高考数学统计与概率大题解题模板

统计与概率大题解题模板 一、随机抽样和用样本估计总体模板一、频率分布直方图1、频率分布直方图的性质:(1)小矩形的面积=组距×频率/组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小; (2)在频率分布直方图中,各小矩形的面积之和等于1; (3)频数/相应的频率=样本容量.2、频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.3、频率分布直方图中的纵坐标为频率组距,而不是频率值.例1-1.某城市100户居民月平均用电量(单位:度),以[160180),、[180200),、[200220),、[220240),、[240260),、[260280),、]280[300,分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220240),、[240260),、[260280),、]280[300,的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220240),的用户中应抽取多少户? 【解析】(1)由(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=得:0.0075x =,∴直方图中x 的值是0.0075;(2)月平均用电量的众数是2202402302+=,∵(0.0020.00950.011)200.450.5++⨯=<,∴月平均用电量的中位数在[220240),内,设中位数为a , 由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=得:224a =, ∴月平均用电量的中位数是224;(3)月平均用电量为[220240),的用户有0.01252010025⨯⨯=户, 月平均用电量为[240260),的用户有0.00752010015⨯⨯=户, 月平均用电量为[260280),的用户有0.0052010010⨯⨯=户, 月平均用电量为]280[300,的用户有0.0025201005⨯⨯=户, 抽取比例11125151055==+++,∴月平均用电量在[220,240)的用户中应抽取12555⨯=户.模板二、茎叶图1、绘制茎叶图的关键是分清茎和叶,如数据是两位数,十位数字为“茎”,个位数字为“叶”;如果是小数时,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要根据数据的特点合理选择茎和叶.2、利用茎叶图进行数据分析时,一般从数据分布的对称性、中位数、稳定性等几个方面来考虑. 例1-2.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下: 甲:95、81、75、91、86、89、71、65、76、88、94、110、107; 乙:83、86、93、99、88、103、98、114、98、79、78、106、101. 画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较. 【解析】甲、乙两人数学成绩的茎叶图如图所示:从这个茎叶图上可以看出,乙同学的得分情况是大致对称的, 中位数是98;甲同学的得分情况,也大致对称,中位数是88, 乙同学的成绩比较稳定,总体情况比甲同学好.模板三、散点图1、两个变量的关系2、散点图:将样本中n 个数据点()i i x y ,(1i =,2,…,n )描在平面直角坐标系中得到的图形.3、正相关与负相关:(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关. 4、最小二乘法:设x 、y 的一组观察值为()i i x y ,(1i =,2,…,n ),且回归直线方程为ˆˆˆybx a =+.当x 取值i x (1i =,2,…,n )时,y 的观察值为i y ,差ˆi i y y -(1i =,2,…,n )刻画了实际观察值i y 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即21()ni i i Q y a bx ==--∑作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法. 5、回归直线方程的系数计算公式例1-3.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 审题路线图:→→→【解析】(1)画散点图如下:由图可知y 与x 具有线性相关关系;(2)列表、计算:1102211055950105591.70.66838500105520ˆ1iii ii x y x ybxx ==⋅-⋅⋅-⨯⨯==≈-⨯-⋅∑∑,91.70.668ˆ55.6ˆ549ay bx =-=-⨯=,即所求的回归直线方程为:0.66859ˆ 4.6y x =+.构建答题模板:第一步:列表i x 、i y 、i i x y ;第二步:计算x ,y ,21ni i x =∑,1ni i i x y =∑;第三步:代入公式计算ˆb 、ˆa 的值; 第四步:写出回归直线方程;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.模板四、古典概型例1-4.袋中有五张卡片,其中红色卡片三张,标号为1、2、3;蓝色卡片两张,标号为1、2. (1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标点之和小于4的概率.审题路线图:确定概率模型→列出所有取卡片的结果(基本事件)→构成事件的基本事件→求概率. 规范解答:【解析】(1)标号为1、2、3的三张红色卡片分别记为A 、B 、C , 标号为1、2的两张蓝色卡片分别记为D 、E , 从五张卡片中任取两张的所有可能的结果为:AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种,由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的, 从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:AD 、AE 、BD ,共3种,∴这两张卡片颜色不同且它们的标号之和小于4的概率为310;(2)记F 是标号为0的绿色卡片,从六张卡中任取两张的所有可能的结果为:AB 、AC 、AD 、AE 、AF 、BC 、BD 、BE 、BF 、CD 、CE 、CF 、DE 、DF 、EF 共15种,用于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的, 从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:AD 、AE 、BD 、AF 、BF 、CF 、DF 、EF ,共8种, ∴这两张卡片颜色不同且它们的标号之和小于4的概率为815. 构建答题模板:第一步:列出所有基本事件,计算基本事件总数;第二步:将所求事件分解为若干个互斥的事件或转化为其对立事件(也许不用分解,但分解必要注意互斥);第三步:分别计算每个互斥事件的概率;第四步:利用概率的加法公式求出问题事件的概率;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.二、概率与统计之超几何分布与二项分布离散型随机变量的分布列、数学期望与方差1、关于离散型随机变量分布列的计算方法如下: (1)写出ξ的所有可能取值;(2)用随机事件概率的计算方法,求出ξ取各个值的概率; (3)利用(1)、(2)的结果写出ξ的分布列. 2、常见的特殊离散型随机变量的分布列:(1)两点分布,分布列为(0p -、1q -),其中01p <<,且1p q +=;(2)二项分布,分布列为(00p 、11p 、22p 、…、k kp 、…、n np ),其中k k n kk n p C p q -=,0k =、1、2、…、n ,且01p <<,1p q +=,k k n k k n p C p q -=可记为(,,)b k n p .3、对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均;(2)()E ξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而()E ξ是不变的,它描述ξ取值的平均状态;(3)()1122n n E x p x p x p ξ=++⋅⋅⋅++⋅⋅⋅直接给出了E ξ的求法,即随机变量取值与相应概率值分别相乘后相加.4、对离散型随机变量的方差应注意:(1)()D ξ表示随机变量ξ对()E ξ的平均偏离程度,()D ξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之()D ξ越小,ξ的取值越集中,在()E ξ来描述ξ的分散程度.(2)()D ξ与()E ξ一样也是一个实数,由ξ的分布列唯一确定.模板一、超几何分布——离散型随机变量的分布列、期望与方差(1)超几何分布的特征:①在小范围内不放回的随机抽取;②每次抽取相互影响;③每次抽取的可能性一直变化;(2)超几何分布的题型:在含有M 件次品的N 件产品中任取n 件(n M N ≤≤),其中恰有X 件次品;(3)超几何分布的分布列、期望与方差:①分布列:()k n k M N MnNC C P X k C --⋅==,012k n =⋅⋅⋅,,,,,k ∈N ;②期望:0()[()]nk nME X k P X k N ===⋅=∑; ③{}22()()()[()]()(1)nk nM N M N n D X k E x P X k N N =--==-⋅=-∑. 例2-1.已知一个袋中装有3个白球和3个红球,这些球除颜色外完全相同.(1)每次从袋中取一个球,取出后不放回,直到取到一个红球为止,求取球次数ξ的分布列和数学期望()E ξ;(2)每次从袋中取一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数η的分布列、数学期望和方差()D η.审题路线图:取到红球为止→取球次数的所有可能1、2、3、4→求对应次数的概率→列分布列→求()E ξ.取出后放回,这是条件→每次取到红球的概率相同→三次独立重复试验→利用公式. 规范解答:【解析】(1)ξ的可能取值为1、2、3、4,31(1)62P ξ===,333(2)6510P ξ==⨯=, 3233(3)65420P ξ==⨯⨯=,32131(4)654320P ξ==⨯⨯⨯=,故ξ的分布列为:17()123421020204E ξ=⨯+⨯+⨯+⨯=;(2)取出后放回,取球3次,可看作3次独立重复试验,∴1~(2)2B η,,η的可能取值为0、1、2、3,0033111(0)()()228P C η==⋅⋅=,1123113(1)()()228P C η==⋅⋅=,2213113(2)()()228P C η==⋅⋅=,3303111(4)()()228P C η==⋅⋅=,故ξ的分布列为:∴()322E η=⨯=,113()3224D η=⨯⨯=. 构建答题模板:第一步:确定离散型随机变量的所有可能性; 第二步:求出每个可能性的概率; 第三步:画出随机变量的分布列; 第四步:求期望和方差;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.如本题可重点查看随机变量的所有可能值是否正确;根据分布列性质检查概率是否正确.模板二、二项分布及其应用(1)二项分布的特征:①在小范围内有放回的随机抽取或在大范围内任意随机抽取;②每次抽取相互独立;③每次抽取的可能性保持不变;(2)二项分布的题型:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ;(3)二项分布的分布列、期望与方差:①分布列:~(,)X B n p ,n 为试验次数,p 为试验成功率,()(1)k kn k n P X k C p p -==-,0,1,2,,k n =⋅⋅⋅,k ∈N ;②期望:()E X np =; ③()(1)D X np p =-.例2-2.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求3≤X 的概率; (2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【解析】(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则事件A 的对立事件为“5X =”, ∵224(5)3515P X ==⨯=,∴11()1(5)15P A P X =-==, 即这两人的累计得分3≤X 的概率为1115; (2)设小明小红都选择方案甲抽奖中奖次数为1X ,都选择方案乙抽奖中奖次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1()2E X ⨯, 选择方案乙抽奖累计得分的数学期望为2()3E X ⨯,由已知可得12~(2)3X B ,,22~(2)5X B ,,∴124()233E X =⨯=,224()255E X =⨯=,从而18()23E X ⨯=,212()35E X ⨯=,∴12()2()3E X E X ⨯>⨯,∴他们都选择方案甲进行抽奖时,累计得分的数学期望较大.模板三、统计概率的综合应用例2-3.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为,(495500],,…,(510515],,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设X 为重量超过505克的产品数量,求X 的分布列及期望.(3)在上述抽取的40件产品中任取5件产品,求恰有2件产品的重量超过505克的概率. 【解析】(1)重量超过505克的产品数量是40(0.0550.015)12⨯⨯+⨯=件; (2)X 的所有可能取值为0、1、2,021********(0)130C C P X C ⋅===,11122824056(1)130C C P X C ⋅===,20122824011(2)130C C P X C ⋅===, X 的分布列为:X 的期望561139()01213013013065E X =⨯+⨯+⨯=; (3)设在上述抽取的40件产品中任取5件产品,恰有2件产品的重量超过505克为事件A ,则322812540231()703C C P A C ⋅==. 变式1:第三问改为:从流水线上任取5件产品,设Y 为重量超过505克的产品数量,求Y 的分布列、期望、方差.【解析】从流水线上任取5件产品服从二项分布:Y 可取:0、1、2、3、4、5;超过505克的产品发生的概率为0.3p =,则~(50.3)Y B ,, 005055(0)(1)0.70.16807P Y C p p -==-==, 115111455(1)(1)0.30.70.36015P Y C p p C -==-=⨯=,225222355(2)(1)0.30.70.3087P Y C p p C -==-=⨯=,335333255(3)(1)0.30.70.1323P Y C p p C -==-=⨯=,44544455(4)(1)0.30.70.02835P Y C p p C -==-=⨯=,555555(5)(1)0.30.00243P Y C p p -==-==,则Y 的分布列为:Y 的期望()50.3 1.5E Y =⨯=,方差()50.30.7 1.05D Y =⨯⨯=.变式2:某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条抽流水线上各抽取40件产品作为样本算出他们的重量(单位:克).重量落在(495510],的产品为合格品,否则为不合格.表一为甲流水线样本频率分布表,图一为乙流水线样本的频率分布直方图.(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从乙流水线上任取5件产品,恰有3件产品为合格品的概率;(3)由以上统计数据完成下面22⨯列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.附:下面的临界值表供参考:(参考公式:22()()()()()n ad bcKa b a c c d b d-=++++,其中n a b c d=+++).在平面直角坐标系中做出频率分布直方图,甲流水线样本的频率分布直方图如下:(2)由图1知,乙样本中合格品为:(0.060.090.03)54036++⨯⨯=,故合格品的频率为360.940=, ∴可估计从乙流水线上任取一件产品该产品为合格品的概率0.9P =,设ξ为从乙流水线上任取5件产品中的合格品数,则~(50.9)B ξ,, ∴3325(3)0.90.10.0729P C ξ===,即从乙流水线上任取5件产品,恰有3件产品为合格品的概率为0.0729; (3)22⨯列联表如下:∵22()80(120360) 3.117 2.706()()()()66144040n ad bc K a b a c c d b d -⨯-==≈>++++⨯⨯⨯, ∴有90%的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.课后作业1. 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;(2)根据以上数据完成下列22⨯列联表:(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.【答案】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主;(2)表格见解析;(3)有,分析见解析.【解析】【分析】(1)根据茎叶图,分析题中数据即可得出结果.(2)根据茎叶图,补充完善列联表,计算观测值即可求解.【详解】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主;(2)补全22⨯列联表:(3)230(42168)10 6.63512182010K ⨯⨯-⨯==>⨯⨯⨯,有99%的把握认为其亲属的饮食习惯与年龄有关.2. 某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25. (1)求列联表中的数据x 、y 、A 、B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关? 【答案】(1)40x =,10y =,60A =,40B =;(2)条形统计图答案见解析,暴雨影响到民众对加大修建城市地下排水设施的投入的态度;(3)有99.9%把握.【解析】【分析】(1)先求出y的值,再求,,B x A的值;(2)先求出暴雨前后的支持率和不支持率,画出条形统计图,再通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度.(3)利用独立性检验求解即可.【详解】(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A,由已知得302()1005yP A+==,∴10y=,40B=,40x=,60A=;(2)由(1)知北京暴雨后支持为404505=,不支持率为41155-=,北京暴雨前支持率为202505=,不支持率为23155-=,条形统计图如图:由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度;(3)22100(30402010)5016.7810.828505040603K⨯⨯-⨯==≈>⨯⨯⨯,故至少有99.9%把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.【点睛】方法点睛:独立性检验的解题步骤:(1)2*2列联表;(2)提出假设:设p与q没有关系;(3)根据列联表中的数据2K计算的值;(4)根据计算得到的随机变量2K的观测值作出判断.3. 电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的22⨯列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:22()()()()()n ad bcKa b a c c d b d-=++++【答案】(1)列联表答案见解析,没有95%的把握认为“体育迷”与性别有关;(2)7 10 .【解析】 【分析】(1)根据频率分布直方图,计算体育迷的人数,再结合条件依次填入22⨯列联表,并计算2K ,并和临界值3.841比较后进行判断;(2)首先由频率分布直方图计算“超级体育迷”的人数,在通过编号列举的方法,利用古典概型的计算公式计算概率.【详解】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成22⨯列联表如下:将22⨯列联表中的数据代入公式计算,得22100(30104515)100 3.030 3.8417525455533K ⨯⨯-⨯==≈<⨯⨯⨯,∴没有95%的把握认为“体育迷”与性别有关;(2)由频率分布直方图可知“超级体育迷”为5人,设123,,a a a 是3名男超级体育迷,12,b b 是2名女超级体育迷,从而一切可能结果所组成基本事件为:12()a a ,、13()a a ,、23()a a ,、11()a b ,、12()a b ,、 21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b ,,则由10个基本事件组成,而且这些基本事件的出现是等可能的, 用A 表示“任选2人中,至少有1人是女性”这一事件,则A 由11()a b ,、12()a b ,、21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b , 这7个基本事件组成,因而7()10P A =.4. 2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,大学生小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[02000),、[2000,4000)、[4000,6000)、[6000,8000)、[800010000],五组作出频率分布直方图,如图:(1)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望()E ξ和方差()D ξ.【答案】(1)答案见解析,有;(2)分布列见解析,()0.9E ξ=,()0.63D ξ=. 【解析】【分析】(1)由频率分布直方图可求出抽取的100户中,经济损失不超过4000元的户数,经济损失超过4000元的户数, 从而可补全列联表,进而可求出2K ,得出结论;(2)由题意知ξ的取值可能有0、1、2、3,符合二项分布,则3~(3)10B ξ,,从而利用二项分布的概率公式求出各自对应的概率,进而可得ξ的分布列,期望()E ξ和方差()D ξ. 【详解】(1)由频率分布直方图可知,在抽取的100户中,经济损失不超过4000元的有1002000(0.000150.00020)70⨯⨯+=户,则经济损失超过4000元的有30户, 则表格数据如下:22100(60102010) 4.76280207030K ⨯⨯-⨯=≈⨯⨯⨯,∵4.762 3.841>,2( 3.841)0.05P K ≥=,∴有95%以上把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关; (2)由频率分布直方图可知抽到自身经济损失超过4000元居民的频率为0.3,将频率视为概率,由题意知ξ的取值可能有0、1、2、3,符合二项分布,则3~(3)10B ξ,,003337343(0)()()10101000P C ξ==⋅⋅=,112337441(1)()()10101000P C ξ==⋅⋅=,221337189(2)()()10101000P C ξ==⋅⋅=,33033727(3)()()10101000P C ξ==⋅⋅=,从而ξ的分布列为:3()30.910E np ξ==⨯=,37()(1)30.631010D np p ξ=-=⨯⨯=. 5. 私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:(1)完成被调查人员的频率分布直方图.(2)若从年龄在[15,25)([25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率.(3)在(2)在条件下,再记选中的4人中不赞成...“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.【答案】(1)见解析(2(2275(3)见解析 【解析】【详解】试题分析:(1)根据频率等于频数除以总数,再求频率与组距之比得纵坐标,画出对应频率分布直方图.(2)先根据2人分布分类,再对应利用组合求概率,最后根据概率加法求概率,(3)先确定随机变量,再根据组合求对应概率,列表可得分布列,最后根据数学期望公式求期望. 试题解析:(1((2(由表知年龄在[)15,25内的有5人,不赞成的有1人,年龄在[)25,35 内的有10人,不赞成的有4人,恰有2人不赞成的概率为:()11122464442222510510C C C C C 4246666222C C C C 1025104522575P ξ==⋅+⋅=⋅+⋅==((3( ξ的所有可能取值为:0(1(2(3(()226422510C C 45150C C 22575P ξ==⋅==(()21112646442222510510C C C C C 415624102341C C C C 1045104522575P ξ⋅==⋅+⋅=⋅+⋅==( ()124422510C C 461243C C 104522575P ξ==⋅=⋅==( 所以ξ的分布列是:所以ξ的数学期望5E ξ=( 6. 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).【答案】(1)(2)X的分布列为EX==4元【解析】【详解】(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则与相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为EX==4元7. 以下茎叶图记录了甲、乙两组个四名同学的植树棵树、乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果8X=,求乙组同学植树棵树的平均数和方差;(2)如果9X=,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.【答案】(1)平均数为354,方差为1116;(2)分布列答案见解析,数学期望:19.【解析】【分析】(1)利用平均数和方差公式求出即可;(2)根据题意可得Y 的可能取值为17,18,19,20,21,分别求出Y 取不同值的概率,即可得出分布列,求出期望.【详解】(1)当8X =时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, ∴平均数为889103544x +++==,方差为2222213535353511[(8)(8)(9)(10)]4444416s =-+-+-+-=;(2)当9X =时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11, 乙组同学的植树棵数是:9,8,9,10,分别从甲、乙两组中随机选取一名同学,共有4416⨯=种可能的结果, 这两名同学植树总棵数Y 的可能取值为17,18,19,20,21,事件“17Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”, ∴该事件有2种可能的结果,21(17)168P Y ===, 事件“18Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树9棵”, ∴该事件有4种可能的结果,41(18)164P Y ===, 事件“19Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树10棵, 或甲组选出的同学植树11棵,乙组选出的同学植树8棵”, ∴该事件有224+=种可能的结果,41(19)164P Y ===, 事件“20Y =”等价于“甲组选出的同学植树11棵,乙组选出的同学植树9棵”, ∴该事件有4种可能的结果,41(20)164P Y ===, 事件“21Y =”等价于“甲组选出的同学植树11棵,乙组选出的同学植树10棵”, ∴该事件有2种可能的结果,21(21)168P Y ===,∴随机变量Y 的分布列为:∴11()17181920211984448E Y =⨯+⨯+⨯+⨯+⨯=.8. 语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(附公式:若2~(,)X N μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=).【答案】(1)语文有10人,数学有12人;(2)分布列见解析,98.【解析】【分析】(1)利用正态分布的对称性求出语文成绩特别优秀的概率,从而可估计出语文成绩特别优秀人数,由频率分布直方图可求出数学成绩特别优秀的频率,用频率来衡量概率,从而可求出数学成绩特别优秀的人数;(2)结合(1)可知数学语文单科优秀的有10人,则X 的所有可能取值为0、1、2、3,然后求出各自对应的概率即可列出分布列,求得数学期望【详解】(1)∵语文成绩服从正态分布2(10017.5)N ,,∴语文成绩特别优秀概率为11(135)(10.96)0.022P P X =≥=-⨯=, ∴数学成绩特别优秀的概率为230.0016200.0244P =⨯⨯=, ∴语文特别优秀的同学有5000.0210⨯=人,数学特别优秀的同学有5000.02412⨯=人; (2)语文数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0、1、2、3,3103163(0)14C P X C ===,2110631627(1)56C C P X C ⋅===, 1210631615(2)56C C P X C ⋅===,363161(3)28C P X C ===, ∴X 的分布列为:19()0123145656288E X =⨯+⨯+⨯+⨯=. 9. 张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则被淘汰.已知张明答对每一道题的概率都为12. (1)求张明进入下一轮的概率;(2)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望. 【答案】(1)12;(2)分布列答案见解析,数学期望:9316. 【解析】 【分析】(1)分情况讨论张明进入下一轮的概率;(2)由条件可知4,5,6,7ξ=,理解随机变量对应的事件,写出概率分布列,计算数学期望.。

高考数学中概率与统计的解题技巧有哪些

高考数学中概率与统计的解题技巧有哪些

高考数学中概率与统计的解题技巧有哪些在高考数学中,概率与统计是一个重要的考点,也是很多同学感到头疼的部分。

但其实,只要掌握了一些解题技巧,就能在这部分题目中取得较好的成绩。

首先,我们要对基本概念有清晰的理解。

概率的定义是事件发生的可能性大小,而统计则是对数据的收集、整理、分析和解释。

比如,随机事件、必然事件、不可能事件,以及概率的加法公式、乘法公式等,这些都是解题的基础。

如果对基本概念模糊不清,就很容易在解题时出现错误。

在理解概念的基础上,要善于运用公式。

比如,古典概型的概率公式 P(A) = m / n ,其中 m 是事件 A 包含的基本事件个数,n 是基本事件总数。

还有条件概率公式 P(B|A) = P(AB) / P(A) 等。

在使用公式时,要注意其适用条件,不能盲目套用。

对于排列组合问题,这是概率计算中的一个常见难点。

要掌握好排列数和组合数的计算公式,以及解决排列组合问题的常用方法,如捆绑法、插空法、特殊元素优先法等。

例如,在计算从 n 个不同元素中取出 m 个元素的排列数时,如果存在相邻元素需要捆绑在一起看作一个整体,再与其他元素进行排列;如果存在不相邻元素,则先排其他元素,然后将不相邻元素插入到这些元素形成的空隙中。

概率与统计中的图表问题也不容忽视。

比如,频率分布直方图、茎叶图等。

要能够从图表中获取关键信息,比如频率、平均数、中位数、众数等。

通过对图表的观察和分析,找到解题的线索。

在处理概率问题时,要学会分类讨论。

有时候一个问题可能需要分成多种情况来考虑,分别计算每种情况的概率,然后再根据题目要求进行综合。

例如,在掷骰子的问题中,可能需要分别考虑点数为奇数和偶数的情况。

另外,反证法也是一种常用的解题技巧。

当直接证明某个结论比较困难时,可以先假设其反面成立,然后推出矛盾,从而证明原结论的正确性。

在统计部分,样本均值、样本方差的计算方法要熟练掌握。

同时,要理解样本对总体的估计作用,能够根据样本数据对总体的参数进行估计和推断。

新教材高考数学一轮复习:概率与统计课件

新教材高考数学一轮复习:概率与统计课件
6
=
C 24
P(ξ=0)= 2
C6
=
6
15
=
2
C 12 C 14
,P(ξ=1)= 2
5
C6
1
,
15
故 ξ 的分布列为
ξ
0
1
2
P(ξ)
2
5
8
15
1
15
=
8
,
15
^
^
^
(2)由散点图可知 = bz+更适合于此模型.其中
6
^
∑ -6
= =16
2
∑ 2 -6
=
^
-1.07
量的散布列、数学期望与方差、超几何散布、二项散布、正态散布等基
础知识和基本方法.
二、考查方向分散
从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计
与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数
字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率散
布直方图、概率等知识交汇考查;二是统计与概率散布的综合,常与抽样方
10
零假设为H0:“使用手机支付”与年龄无关联.
年龄不低于45岁
15
15
根据列联表中的数据,经计算得到
2
100×(60×15-15×10)
χ2=
≈14.286>10.828=x0.001.
75×25×70×30
根据小概率值α=0.001的独立性检验,推断H0不成立,即认为“使用手机支付”
与年龄有关联,此推断犯错误的概率不大于0.001.
与 = z+ 哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判

高考数学掌握概率与统计的基本方法

高考数学掌握概率与统计的基本方法

高考数学掌握概率与统计的基本方法高考数学中,概率与统计是一个重要的知识点,也是考察学生分析问题和解决问题能力的重要方面之一。

本文将介绍概率与统计的基本方法,帮助考生更好地掌握这一知识点。

一、概率的基本概念与计算方法概率是描述随机事件发生可能性的数值。

在数学中,我们用P(A)表示事件A发生的概率,其中0≤P(A)≤1。

具体计算概率的方法有以下几种:1. 频率法:根据大量实验结果的观察和统计,得出概率的估计值。

例如,投掷骰子,通过多次实验统计得出某种结果出现的频率。

2. 古典概率法:适用于事件的样本空间总数有限且每个结果发生的可能性相同的情况。

概率P(A) = 事件A的基本结果数 / 样本空间的总数。

例如,从一副扑克牌中抽出一张牌,计算得到红心牌的概率。

3. 几何概率法:适用于事件对应的样本空间可以用几何图形表示的情况。

概率P(A) = 事件A所对应的几何图形的面积/ 样本空间的面积。

例如,抛硬币,计算得到正面朝上的概率。

二、概率的基本性质与定理概率有以下基本性质与定理:1. 互斥事件的概率计算:当事件A与事件B互斥(即A与B不可能同时发生)时,P(A∪B) = P(A) + P(B)。

2. 对立事件的概率计算:当事件A的对立事件为A'时,P(A) + P(A') = 1。

3. 加法法则:对于任意两个事件A和B,P(A∪B) = P(A) + P(B) -P(A∩B)。

4. 乘法法则:对于两个相互独立的事件A和B,P(A∩B) = P(A) *P(B)。

三、统计的基本概念与应用统计是描述和分析大量数据的科学方法。

在数学中,我们主要研究统计中的样本调查与总体参数估计、样本调查与总体推断以及相关性分析等内容。

1. 样本调查与总体参数估计:通过对样本的调查和统计分析,推断出总体的某种参数。

例如,通过对某地区随机抽取的100个学生进行身高调查,从中推断出该地区所有学生的平均身高。

2. 样本调查与总体推断:通过对样本数据的分析,对总体的某些特征进行推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学-概率与统计
一、选择题:
1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,

12.设其平均数为a,中位数为b,众数为c,则有
A.c>b>a B.b>c>a C.c>a>b D.a>b>c
2.下列说法一定正确的是
A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况

B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况
C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元
D.随机事件发生的概率与试验次数无关

3.下列说法中,正确的是
A.数据5,4,4,3,5,2的众数是4
B.一组数据的标准差是这组数据的方差的平方
C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数
4.投掷两粒均匀的骰子,则出现两个5点的概率为 A.361 B. 181 C. 61 D.

12
5

5.若A与B是互斥事件,其发生的概率分别为21,pp,则A、B同时发生的概率为
A.21pp B. 21pp C. 211pp D. 0
6.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,
12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是
A.97.2 B.87.29 C.92.32 D.82.86
7.下列说法正确的是

A.某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品
B.气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10
﹪的地方不会下雨
C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一
定能治愈
D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概
率仍然都为0.5.

8.如果一组数中每个数减去同一个非零常数,则这一组数的
A.平均数不变,方差不变 B.平均数改变,方差不变
C.平均数不变,方差改变 D.平均数改变,方差改变
二、填空题:

9.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率
10.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的
平均数为10,方差为2,则|x-y|的值为 。

11.某篮球学校的甲、乙两名运动员练习罚球,每人
练习10组,每组罚球40个.命中个数的茎叶图如右.
则罚球命中率较高的是 .
12.已知集合}1|),{(22yxyxA,集合}0|),{(ayxyxB,若

BA

的概率为1,则a的取值范围是______________
三、解答题:
13.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等
品”,事件C=“抽到的三等品”,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05,求下列事
件的概率
(1)事件D=“抽到的是一等品或二等品”
(2)事件E=“抽到的是二等品或三等品”
14.
10本不同的语文书,2本不同的数学书,从中任意取出2本,
能取出数学书的概率有多大?
15.对某400件元件进行寿命追踪调查情况频率分布如下:
寿命(h) 频 率
500~600 0.10
600~700 0.15
700~800 0.40
800~900 0.20
900~1000 0.15
合 计 1
(1)列出寿命与频数对应表;(2)估计元件寿命在500~800 h以内的频率;
(3)估计元件寿命在800 h以上的频率.
概率与统计
(A)参考答案

一、选择题
题号
1 2 3 4 5 6 7 8
答案
B B A C B C D C

二、填空题 9. 5 10. 21 11. 83 12. 181, 177
三、解答题
13.“三位数中至多出现两个不同数字”事件包含三位数中“恰好出现两个不同的数字”与

“三个数全相同”两个互斥事件,故所求概率为9727327332。
14.45.0a,6m。
15. (1)271;(2)91;(3)98;(4)92

16. 甲x=33,乙x=33

347s2甲>3
37
s2

,乙的成绩比甲稳定,应选乙参加比赛更合适

概率与统计
(B)参考答案

一、选择题
题号
1 2 3 4 5 6 7 8
答案
A D B A D B D B

二、填空题 19. 21 10. 4 11. 甲 12.]2,2[a
三、解答题
13.【解】 由题知A、B、C彼此互斥,且D=A+B,E=B+C
(1)P(D)=P(A+B)=P(A)+P(B)=0.7+0.1=0.8
(2)P(E)=P(B+C)=P(B)+P(C)=0.1+0.05=0.15

14.227
15. 答案:(1)寿命与频数对应表:
寿 命(h) 500~600 600~700 700~800 800~900 900~1000
频 数 40 60 160 80 60
(2)估计该元件寿命在(500~800)h以内的概率为0.10+0.15+0.40=0.65.
(3)估计该元件寿命在700 h以上的概率为0.40+0.20+0.15=0.75.

16.(1)略 (2)y=0.5x+0.4 (3)略

相关文档
最新文档