浅谈蚁群算法及应用

浅谈蚁群算法及应用
浅谈蚁群算法及应用

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求精确解(即细搜索)。将文中提出的算法用于经典TSP问题的求解,仿真结果表明PAAA算法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspiredComputing)的研究,越来越引起众多学者的关注和兴 趣,产生了神经网络、 遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。粒子群优化(ParticleSwarmOptimization,PSO)算法[1,2]是由Eberhart和Kennedy于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1)算法简洁,可调参数少,易于实现;(2)随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](AntColonyOptimization,ACO)是由意大利学者M.Dorigo,V.Maniezzo和A.Colorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP问题[5,6]、二次分配问题、工件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术SPACEELECTRONICTECHNOLOGY76

基于仿生学的智能计算浅谈 摘要:本文介绍了仿生学智能计算的自然及数学原理,同时分析了基于仿生学的智能计算的几种经典的算法,最后就仿生学智能计算的发展方向提出了一点个人见解。 关键词:仿生;智能;算法;蚁群算法;遗传算法;人工神经网络 中图分类号:tp183 文献标识码:a 文章编号:1007-9599 (2011) 22-0000-01 intelligent computing based on bionics zhang guangshun (school of information science,jiujiang university,jiujiang 332005,china) abstract:this paper describes bionics intelligent computing and mathematical principles of natural,simultaneous analysis of intelligence based on bionic algorithm for the calculation of several classic,and finally the development of intelligent computing the direction of bionics made a personal opinion. keywords:bionic;intelligent;algorithm;ant colony algorithm;genetic algorithm;artificial neural network 一、仿生学智能计算的原理 (一)自然原理。达尔文在进化论中提出,大自然中的生物“物

大连理工大学 研究生必修课 作业 课程名称:现代物流管理 研究生姓名:徐静学号:21511149 作业成绩: 任课教师(签名) 交作业日时间:2016 年6 月1日

蚁群算法在TSP问题上的应用 摘要蚁群算法是受现实蚂蚁群体行为启发而得出的一类仿生算法。本文以解决TSP问题为基础,系统地介绍了蚁群算法从诞生到成熟过程中几个代表性的算法。在阐述算法基本思想的前提下,着重论述算法的创新之处。 关键词蚁群算法,TSP问题,蚁群优化 1引言 蚁群算法也称作蚁群优化(Ant Colony Optimization,ACO),最早是由Dorigo及其研究同伴所提出,用于求解诸如旅行商问题之类的组合优化问题。自然界蚂蚁在其经过的路径上会留下某种生物信息物质(信息素),该物质会吸引蚁群中的其它成员再次选择该段路径;食物与巢穴之前较短的路径容易积累较多的信息素,因而使得更多的蚂蚁选择走该段路径,最终几乎所有的蚂蚁都集中在最短路径上完成食物的搬运。Dorigo等从此现象中抽象出路径选择和信息素积累的数学模型,作为蚁群算法的核心,并通过对蚂蚁寻找最短路径的计算机模拟,实现了对TSP问题的求解。自此,蚁群算法越来越多地被用于求解其它的组合优化问题,也被推广到工业工程上应用。 蚁群算法特点是并发性、鲁棒性、正反馈性等。在蚁群算法求解问题的过程中,利用蚁群在问题空间中同时构造问题的多个解体现了算法的并发性。蚁群不会因为单个蚂蚁寻找到较差的解或者因为问题空间发生改变而使得算法丧失作用,这体现了算法的鲁棒性。在蚂蚁构造问题解的过程中,以蚁群觅食行为为例,会在经过的解路径上释放信息素,而解空间中获得信息素越多的路径,对蚂蚁的吸引力就越大,使更多的蚂蚁经过该路径并进一步在上面释放信息素,这体现了算法的正反馈性。 TSP问题代表一类组合优化问题,在实际工程中有许多应用,如计算机联网、电子地图、交通诱导、电气布线、VLSI单元布局、ATM分组交换网等。鉴于其重要的工程与理论价值,TSP常作为算法性能研究的典型算例。求其最优解的代价是指数级的,因此对其近似解的研究一直是算法设计的一个重要课题。 TSP问题是典型的NP完全问题,许多算验证法及算法效率测试都以TSP问题为基础。在蚁群算法研究中,第一个蚁群算法,蚂蚁系统,就是在TSP问题的基础上提出来的。而后,依据TSP问题,又提出了蚁群算法系列中具有代表性的蚁群系统、最大——最小蚂蚁系统。 本文以TSP问题为基础,对蚁群算法的基本问题及典型的蚁群算法进行了综述。涉及到算法的基本问题、算法描述、算法改进及意义。通过研究总结了蚁群算法的发展历程和实现思想。

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。 车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,

供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。 现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信息,合作求解,并不断优化。这里的信息素值分布式存储在图中,与各弧相关联。蚂蚁算法求解VRP问题的过程如下:

浅谈电网规划评价与决策 电网规划是电力系统发展的基础,其规划水平的高低直接影响到未来电网的安全性、可靠性与经济性等方面。电网规划评价与决策工作是其中的重要内容,关系到电网规划的质量与水平。因此,电网规划评价与决策研究工作就显得尤为重要,文章针对电网规划评价与决策方法进行了研究,以期给同行参考。 标签:电网规划;评价;决策 引言 随着社会经济的不断进步,电能已经触及到了人类生活的各个方面。只有通过电力工业本身的基本建设从而不断扩大电力系统的规模才能满足社会对电能的需求。因此做好电力工程建设的前期工作,落实发、送、变电本体工程的建设条件,协调其建设进度,优化其设计方案,其意义尤为重大。而电网规划正是其中一个重要的环节,一个规划方案的好坏直接关系到电能能否从发电厂顺利送到用户。因此,提高电网规划的质量具有重大的理论与现实意义。 1 电网规划研究 电网规划研究主要有两个方面的任务:一是确定电网未来安装设备规格,如导线电压等级及型号、变压器规格等;二是确定电网中增加新设备的地点及时刻。电网规划的目的是确定电网合理扩展网架,寻找最优的扩展方案,且满足负荷、用户供电质量、城市规划协调一致、经济发展四个方面的要求。因此电网规划是一个多目标、多变量、多约束的混合非线性规划问题。国内外研究人员针对其特点进行了大量的研究,并取得了一定成果。人们对电网规划问题研究的不同之处主要表现在数学模型和优化方法两方面。 2 规划模型的建立 由于电网规划的复杂性与系统性,需要考虑的因素多种多样,建立合理与完整的规划模型是一个重要的课题。文献[1]针对传统规划中未考虑各线路负荷水平问题,将输电线路投资和网络剩余输电容量作为目标函数,求取投资最小下剩余输电容量最大的方案。文献[2]在模型中加入了发电备用容量以满足电力系统实际运行要求。文献[3]同时考虑了电力市场阻塞和线路剩余容量建立新的电网规划模型,并采用粒子群算法进行求解。文献[4]建立了主网与配网相协调的电网规划模型,并将地理信息系统和图论应用到规划中。 3 优化算法的选择 除了提出不同的电网规划模型外,电网规划研究者也对优化算法展开大量的研究,以期提高计算速度和改善算法收敛性。目前,用于电网规划的优化算法主要包括两类:数学优化方法和智能优化方法。

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

浅谈“机器人的现在和未来。” 本文扼要地介绍了智能机器人技术的发展现状,以及世界各国智能机器人的发展水平,然后介绍了智能机器人的分类,从几个典型的方面介绍了智能机器人在各行各业的广泛应用,讨论了智能机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能机器人方面发展并提出期望。 1、引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知-思维-效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能力。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能。 随着智能机器人的应用领域的扩大,人们期望智能机器人在更多领域为人类服务,代替人类完成更复杂的工作。然而,智能机器人所处的环境往往是未知的、很难预测。智能机器人所要完成的工作任务

也越来越复杂;对智能机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对智能机器人的研究不断深入。 本文对智能机器人的现状和发展趋势进行了综述,分析了国内外的智能机器人的发展,讨论了智能机器人在发展中存在的问题,最后提出了对智能机器人发展的一些设想。 2、国内外在该领域的发展现状综述 2.1智能机器人的发展现状 智能机器人是第三代机器人,这种机器人带有多种传感器,能够将多种传感器得到的信息进行融合,能够有效的适应变化的环境,具有很强的自适应能力、学习能力和自治功能。 目前研制中的智能机器人智能水平并不高,只能说是智能机器人的初级阶段。智能机器人研究中当前的核心问题有两方面:一方面是,提高智能机器人的自主性,这是就智能机器人与人的关系而言,即希望智能机器人进一步独立于人,具有更为友善的人机界面。从长远来说,希望操作人员只要给出要完成的任务,而机器能自动形成完成该任务的步骤,并自动完成它。另一方面是,提高智能机器人的适应性,提高智能机器人适应环境变化的能力,这是就智能机器人与环境的关系而言,希望加强它们之间的交互关系。 智能机器人涉及到许多关键技术,这些技术关系到智能机器人的智能性的高低。这些关键技术主要有以下几个方面:多传感信息耦合

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

Matlab实现概率估计_matlab 网站首页控制系统电子技术机械设计电气工程专业软件考研就业技术论坛PROTEUS | PROTEL | matlab | Solidworks | 组态软件 | labview | 电路图 | Eplan | cad - 当前位置:高校自动化网 >> matlab >> 浏览文章 Matlab实现概率估计 文章来源:不详作者:佚名 该文章讲述了Matlab实现概率估计. matlab的统计中有直接有的概率密度估计就是: ksdensity 核心平滑密度估计 [f,xi] = ksdensity(x) 计算样本x的概率密度估计,返回在xi点的概率密度f,此时我们使用plot(xi,f)就可以绘制出概率密度曲线。该函数,首先统计样本x在各个区间的概率(与hist有些相似),再自动选择xi,计算对应的xi点的概率密度 f = ksdensity(x,xi) 与上面的相似,只是这时xi我们帮选定了,ksdesity直接计算对应点的概率密度 当然ksdedity还有其他选项,这里不具体介绍,感兴趣的网友可以自己查看帮助,或者与我交流matlabsky@https://www.360docs.net/doc/e718277827.html, %by dynamic %see also https://www.360docs.net/doc/e718277827.html, %contact me matlabsky@https://www.360docs.net/doc/e718277827.html, %2009.2.21 % %给一个随机样本 x=[randn(30,1); 5+randn(30,1)]; %计算出各点的概率密度

[f,xi]=ksdensity(x); %绘制 subplot(211) plot(x) title('样本数据(Sample Data)') subplot(212) plot(xi,f) title('概率密度分布(PDF)') 相关文章: Reading and writing .mat files with Python Matlab获取鼠标坐标值的ginput()函数 线性规划matlab实现 上一篇:aam算法的matlab程序和c语言程序下载 下一篇:MATLAB基本数学函数最近更新在ARM微处理器上实现Rijndael加密算法 objectARX 常用功能实现集合 高速以太网CRC校验的实现 转CRC算法原理及C语言实现 nios II 实验五数码管显示数字钟定时器实现 Matlab中单边谱FFT变换实现实例 触摸屏维修之故障分析 大功率直流电机调速电路 SMD元器件的符号阐述 Matlab C# Book 运算放大器连载一——如何避免振荡 电动机绕组的烘干方法 广告链接- 热门文章matlab7.0版2009下载及7.0序列号注册码 Matlab中如何编写S函数 matlab相关矩阵基本运算 Vista下如何安装Matlab

function [y,val]=QACS tic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

浅谈机械优化设计方法 发表时间:2019-08-29T14:17:25.640Z 来源:《基层建设》2019年第16期作者:钟文 [导读] 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。 深圳市海目星激光智能装备股份有限公司 518110 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。机械优化设计是近几年来发展起来的一门新的学科,在二十世纪中旬的时候开始,优化技术和计算机技术的兴起,在每个设计领域中被应用,为工程设计提供了重要的科学的设计方法。因此,对机械设计的优化方法加以分析,吸取精华,紧跟时代步伐,与国际同步,才能增强制造业在我国市场中的竞争压力。 关键词:机械;优化设计;方法特点 引言 当今是一个信息化的社会,科技发展速度非常快,人们对多功能产品不仅有强烈的需求,也需要产品必须具备相应的功能,可靠性优化设计由此应运而生,已经取得了飞速发展和广泛应用,即以时间、费用和性能为基础,将产品能得以可靠使用作为优先考虑的设计准则,进行设计和生产可靠的性能要求。因此,可靠性设计是诸多学科和技术的交融而新兴的一种技术。 1 机械优化的概述 机械优化是顺应时代发展而不断延伸出来的一种现代化的生产而发展兴起的。它是建立在数学规划的理论和计算通过有效的实验数据和科学的评价体系来从众多的设计方案中寻找到能够尽可能的完善和适宜的设计方案,在这机械优化的这个机械方面的研究和应用的发展速度都是非常的快速,并且在快速发展的过程中取得了非常显著的效果。 2 机械设计优化方法的分类及特点 2.1 无约束优化设计法 无约束优化设计是没有约束函数的优化设计。无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法;另一类是只利用目标函数值的无约束优化方法。 2.2 约束优化设计法 优化设计问题大多数是约束的优化问题,根据处理约束条件方法的不同可分为直接法和间接法。直接法常见的方法有复合形法、约束坐标轮换法和网络法等。其内涵是构造一个迭代过程,使每次的迭代点都在可行域中,同时逐步降低目标函数值,直到求得最优解。间接法常见的有惩罚函数法、增广乘子法。它是将约束优化问题转化成无约束优化问题,再通过无约束优化方法来求解,或者非线性优化问题转化成线性规划问题来处理。 2.3 遗传算法 遗传算法是一种非确定性的拟自然算法,它仿造自然界生物进化的规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。最近几年中遗传算法在机械工程领域也开展了多方面的应用,主要表现在:机械结构优化设计;可靠性分析;故障诊断;参数辨识;机械方案设计。遗传算法尽管已解决了许多难题,但还存在许多问题,如算法本身的参数优化问题、如何避免过早收敛、如何改进操作手段或引入新的操作来提高算法的效率、遗传算法与其它优化算法的结合问题等。 2.4 蚁群算法 蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法。蚁群算法对系统优化问题的数学模型没有很高的要求,只要可以显式表达即可,避免了导数等数学信息,使得优化过程更加简单,遍历性更好,适合非线性问题的求解。 2.5 模拟退火算法 模拟退火算法是一个全局最优算法,以优化问题的求解与物理系统退火过程的相似性为基础,适当的控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。模拟退火算法是一种通用的优化算法,用以求解不同的非线性问题;对不可微甚至不连续的函数优化,能以较大概率求得全局优化解;并且能处理不同类型的优化设计变量(离散的、连续的和混合型的);不需要任何的辅助信息,对目标函数和约束函数没有任何要求。 3机械优化设计过程中的设计方式 众所周知,在机械方面的设计都是非常的复杂困难的,要对机械进行优化设计面临的挑战也是非常大的,但是由于机械领域中优化形式十分的广泛,相关的研究人员根据优化运算的形式进行划分,主要分为准则优化,其次是线性规划,最后是非线性规划三种。其中准则优化是一种传统的优化方式,这种方式没有通过机械优化设计的数学理论方式进行优化,而是通过物理学方面的分析得出相应的结果,这样的方式得出的结论往往是具备一定的主观性的,但是这样的传统的优化设计方式具有的优点就是可以直观的看到优化的概念,并且这种优化设计的方式相对来说也是比较简单的,并且能够充分的发挥出目标函数的最大功效,并且非常的符合传统的工程需要,但是同样具有一定的缺点,就是在效率上始终优点偏低。 线性规划就是依据数学的基础进行优化的方式,同样线性规划是机械优化设计中最重要的设计方式,但是线性规划的优化设计方式在通过数学的理论上进行设计存在着很多的缺陷,就是在针对多函数的时候就不能充分的发挥出功效,还有就是在计算的过程中,十分的复杂,结算量非常的大,导致了在效率上有很大的缺陷,所以通常情况下,线性规则的优化设计方式都没有被采用。那么非线性规划的优化设计方式是整个生产和生活中应用最广泛的优化方式,并且能够有效的推进机械优化设计的发展,并且可以利用数学模式的计算将非线性规划分为两种,一种是没有约束的直接设计方式,就是在利用机械优化设计方案中以及存在的数据和再生的数据最为基础来进行合理的分析,进而得到最佳的效果,还有一种就是没有约束但是比较间接的方法,这种方式就是前者的方式的数学模式计算改变成了数学原理作为基础,通过利用函数的特性进行计算,从而得到最优的方式,这种方式在整个的机械优化设计中是非常重要的组成部分。 4机械设计优化方法的选择 根据优化设计问题的特点(如约束问题),选择适当的优化方法是非常关键的,因为同一个问题可以有多种方法,而有的方法可能会导致优化设计的结果不符合要求。选择优化方法有四个基本原则:效率要高、可靠性要高、采用成熟的计算程序、稳定性要好。另外选择适当的优化方法还需要个人经验,深入分析优化模型的约束条件、约束函数及目标函数,根据复杂性、准确性等条件对它们进行正确的选

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

相关文档
最新文档