2008年普通高等学校招生全国统一考试理科数学试题及答案-北京卷
2008年普通高等学校招生全国统一考试数学(北京卷·文科)

2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上. 一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A .{}|34x x x >或≤ B .{}|13x x -<≤ C .{}|34x x <≤D .{}|21x x --<≤2.若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.“双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知ABC △中,a =b =60B =,那么角A 等于( )A .135B .90C .45D .305.函数2()(1)1(1)f x x x =-+<的反函数为( ) A.1()11)fx x -=>B.1()11)fx x -=>C.1()11)f x x -=+≥D.1()11)f x x -=-≥6.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( )A .0B .12C .1D .27.已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A .30B .45C .90D .1868.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.若角α的终边经过点(12)P -,,则tan 2α的值为 . 10.不等式112x x ->+的解集是 . 11.已知向量a 与b 的夹角为120,且4==a b ,那么a b 的值为 .12.5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)13.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .14.已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >;②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16.(本小题共14分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小.17.(本小题共13分)已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;(Ⅱ)求函数()f x 的单调区间.18.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率. 19.(本小题共14分)已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥. (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积; (Ⅱ)当90ABC ∠=,且斜边AC 的长最大时,求AB 所在直线的方程. 20.(本小题共13分)数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; (Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.D 2.A 3.A 4.C 5.B 6.A 7.C 8.B二、填空题(本大题共6小题,每小题5分,共30分) 9.4310.{}|2x x <-11.8-12.10 3213.2 2- 14.②三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)1cos 2()222x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤. 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 16.(共14分)解法一:(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =, PD AB ∴⊥. AC BC =, CD AB ∴⊥. PD CD D =, AB ∴⊥平面PCD . PC ⊂平面PCD , PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且ACPC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角.在BCE △中,90BCE ∠=,2BC =,2BE AB ==sin BC BEC BE ∴∠==.∴二面角B AP C --的大小为 解法二:(Ⅰ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥. AC BC C =,PC ∴⊥平面ABC . AB ⊂平面ABC , PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -. 则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,.PB AB ==2t ∴=,(002)P ,,. 取AP 中点E ,连结BE CE ,.AC PC =,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E ,,,(011)EC =--,,,(211)EB =--,,, 3cos 326EC EB BEC EC EB∴∠===.∴二面角B AP C --的大小为arccos3. 17.(共13分)解:(Ⅰ)因为函数()()2g x f x =-为奇函数,所以,对任意的x ∈R ,()()g x g x -=-,即()2()2f x f x --=-+. 又32()3f x x ax bx c =+++所以32323232x ax bx c x ax bx c -+-+-=----+.所以22a a c c =-⎧⎨-=-+⎩,.解得02a c ==,.(Ⅱ)由(Ⅰ)得3()32f x x bx =++. 所以2()33(0)f x x b b '=+≠. 当0b <时,由()0f x '=得x =x 变化时,()f x '的变化情况如下表:所以,当0b <时,函数()f x 在(-∞-,上单调递增,在(上单调递减,在)+∞上单调递增.当0b >时,()0f x '>,所以函数()f x 在()-∞+∞,上单调递增. 18.(共13分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140.(Ⅱ)设甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. 19.(共14分)解:(Ⅰ)因为AB l ∥,且AB 边通过点(00),,所以AB 所在直线的方程为y x =.设A B ,两点坐标分别为1122()()x y x y ,,,. 由2234x y y x⎧+=⎨=⎩,得1x =±.所以12AB x =-=.又因为AB 边上的高h 等于原点到直线l 的距离.所以h =122ABC S AB h ==△. (Ⅱ)设AB 所在直线的方程为y x m =+,由2234x y y x m⎧+=⎨=+⎩,得2246340x mx m ++-=. 因为A B ,在椭圆上, 所以212640m ∆=-+>.设A B ,两点坐标分别为1122()()x y x y ,,,, 则1232mx x +=-,212344m x x -=,所以122AB x =-=.又因为BC 的长等于点(0)m ,到直线l 的距离,即BC =所以22222210(1)11AC AB BC m m m =+=--+=-++. 所以当1m =-时,AC 边最长,(这时12640∆=-+>) 此时AB 所在直线的方程为1y x =-. 20.(共13分)解:(Ⅰ)由于21()(12)n n a n n a n λ+=+-=,,,且11a =. 所以当21a =-时,得12λ-=-, 故3λ=.从而23(223)(1)3a =+-⨯-=-.(Ⅱ)数列{}n a 不可能为等差数列,证明如下:由11a =,21()n n a n n a λ+=+-得22a λ=-,3(6)(2)a λλ=--,4(12)(6)(2)a λλλ=---.若存在λ,使{}n a 为等差数列,则3221a a a a -=-,即(5)(2)1λλλ--=-, 解得3λ=.于是2112a a λ-=-=-,43(11)(6)(2)24a a λλλ-=---=-. 这与{}n a 为等差数列矛盾.所以,对任意λ,{}n a 都不可能是等差数列.(Ⅲ)记2(12)n b n n n λ=+-=,,,根据题意可知,10b <且0n b ≠,即2λ>且2*()n n n λ≠+∈N ,这时总存在*0n ∈N ,满足:当0n n ≥时,0n b >;当01n n -≤时,0n b <.所以由1n n n a b a +=及110a =>可知,若0n 为偶数,则00n a <,从而当0n n >时,0n a <;若0n 为奇数,则00n a >,从而当0n n >时0n a >.因此“存在*m ∈N ,当n m >时总有0n a <”的充分必要条件是:0n 为偶数,记02(12)n k k ==,,,则λ满足 22221(2)20(21)210k k b k k b k k λλ-⎧=+->⎪⎨=-+--<⎪⎩. 故λ的取值范围是22*4242()k k k k k λ-<<+∈N .。
2024年北京高考数学真题及答案

2024年普通高等学校招生全国统一考试(北京卷)数学第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.18. 已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元赔偿次数01234单数800100603010在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i)毛利润是保费与赔偿金额之差.设毛利润为X,估计X的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D【9题答案】【答案】A【10题答案】【答案】C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.【11题答案】4,0【答案】()【12题答案】【答案】【13题答案】【答案】1 2【14题答案】【答案】【15题答案】【答案】①③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】【17题答案】【答案】(1)证明见解析【18题答案】。
2008年高考·北京卷数学(文)

2004年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 共40分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2。
每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
3. 考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式sin cos [sin()sin()]αβαβαβ=++-12 cos sin [sin()sin()]αβαβαβ=+--12cos cos [cos()cos()]αβαβαβ=++-12sin sin [cos()cos()]αβαβαβ=-+--12正棱台、圆台的侧面积公式 S c c l 台侧=+12(') 其中c',c 分别表示上、下底面周长,l 表示斜高或母线长 球体的表面积公式S R 球=42π其中R 表示球的半径一。
选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设M x x =-≤≤{|}22,N x x =<{|}1,则M N ⋂等于 A 。
{|}x x 12<< B. {|}x x -<<21 C 。
{|}x x 12<≤ D. {|}x x -≤<21(2)满足条件||||z i =+34的复数z 在复平面上对应点的轨迹是 A 。
一条直线 B 。
两条直线 C. 圆 D 。
椭圆(3)设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则αβ//其中正确命题的序号是A. ①和②B. ②和③C. ③和④ D 。
2021年普通高等学校招生全国统一考试(北京卷)数学试题 (理科)(解析版)

绝密★使用完毕前2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( )(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞) 【答案】C【解析】:2{|1}{|11}P x x x x =≤=-≤≤,[1,1]P M P a =⇒∈-,选C 。
(2)复数212i i-=+( ) (A )i (B )-i (C )4355i -- (D )4355i -+ 【答案】A【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i ii i ---------+====++----,选A 。
(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是( )(A) (1,)2π(B) (1,)2π- (C) (1,0) (D)(1,π) 【答案】B【解析】:222sin (1)1x y ρθ=-⇒++=,圆心直角坐标为(0,-1),极坐标为(1,)2π-,选B 。
(4)执行如图所示的程序框图,输出的s 值为( )(A )-3 (B )-12 (C )13(D )2 【答案】D【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。
(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。
给出下列三个结论:○1AD+AE=AB+BC+CA ; ○2AF ·AG=AD ·AE ③△AFB ~△ADG 其中正确结论的序号是( ) (A )①② (B )②③ (C )①③ (D )①②③ 【答案】A.【解析】:①正确。
2011年普通高等学校招生全国统一考试数学试题(北京卷) 文 (精校版含答案)

2011年普通高等学校招生全国统一考试数学(文)(北京卷) 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞(2)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是 (A)32(B)16+(C)48(D)16+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)在ABC 中,若15,,sin 43b B A π=∠==,则a = . (10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .(11)已知向量),(01),(a b c k ==-=2a b -与c ,共线,则k = .(12)在等比数列{}n a 中,若141,4,2a a ==则公比q = ; 12n a a a ++⋯+= .数 若关于x 的方程()f x k = 有两个不同的实(13)已知函根,则实数k 的取值范围是 . (14)设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。
2021年普通高等学校招生全国统一考试(北京卷)数学试题(理科)解析版

2 ⎨⎨普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 5 页. 150 分.考试时长 120 分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共 40 分)一、选择题共 8 小题。
每小题 5 分.共 40 分.在每小题列出的四个选项中,选出符合胜目要求的一项. 1.已知集合 A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则 A ∩B=A (- ∞ ,-1)B (-1,- 2 3 2) C (- 3,3)D (3,+ ∞ )【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为A = {x ∈ R | 3x + 2 > 0} ⇒ x > - 2,利用二次不等式可得 B = {x | x < -1 或 x > 3}画出数轴易得:3A B = {x | x > 3} .故选 D .【答案】D⎧0 ≤ x ≤ 2, .设不等式组 ⎩0 ≤ y ≤ 2距离大于 2 的概率是,表示平面区域为 D ,在区域 D 内随机取一个点,则此点到坐标原点的 π(A )4(B )π- 22π(C )6(D )4 -π 4⎧0 ≤ x ≤ 2 【解析】题目中 ⎩0 ≤ y ≤ 2表示的区域如图正方形所示,而动点 D 可以 存在的位置为正方形面积减去四分之一圆的面积部分,因此2 ⨯ 2 - 1π⋅ 22P = 4 = 4 -π,故选 D 。
2 ⨯ 2 4【答案】D3. 设 a ,b ∈R 。
“a=0”是“复数 a+bi 是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当 a = 0 时,如果b = 0 同时等于零,此时 a + bi = 0 是实数, 不是纯虚数,因此不是充分条件;而如果a + bi 已经为纯虚数,由定义实部为零,虚部不为零可以得到 a = 0 ,因此想必要条件,故选 B 。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(北京卷)(文科)
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(北京卷)(文科) 测试题 2019.91,已知向量m=(sinA,cosA),n=,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数的值域.2,设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a+b 、a-b , ab 、 ∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)3,若,则(用数字作答)4,若直线与圆 (为参数)没有公共点,则实数m 的取值范围是5,若三棱锥的三个侧圆两两垂直,则其外接球的表面积是6,设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a+b 、a-b , ab 、 ∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填1)-()cos 24cos sin ()f x x A x x R =+∈ab {},F a b Q=+∈Q M ⊆55432543210(2)x a x a x a x a x a x a -=+++++12345a a a a a ++++=340x y m ++=1cos 2sin x y θθ=+⎧⎨=-+⎩θab {},F a b Q=+∈Q M ⊆上)7,若集合,,则集合等于( )A .B .C .D .8,若,则( )A .B .C .D .9,“双曲线的方程为”是“双曲线的准线方程为”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10,已知中,,那么角等于( )A .B .C .D .测试题答案1, 解:(Ⅰ) 由题意得由A 为锐角得(Ⅱ) 由(Ⅰ)知 所以 因为x ∈R ,所以,因此,当时,f(x)有最大值. 当时,有最小值-3,所以所求函数的值域是2, 解:①对除法如不满足,所以排除,②取,, ③④的正确性容易推得。
2024年北京高考数学真题卷(含答案)
绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数 学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=( ) A. {}43x x -<< B. {}11x x -<≤ C. {}0,1,2 D. {}14x x -<<2. 已知i 1iz =-,则z =( ). A. 1i -B. i -C. 1i --D. 1 3. 求圆22260x y x y +-+=的圆心到20x y -+=的距离( )A.B. 2C.D.4. (4x 的二项展开式中3x 的系数为( ) A. 15 B. 6 C. 4- D. 13- 5. 已知向量a r ,b r ,则“()()·0a b a b +-=r r r r ”是“a b =r r 或a b =-r r ”的( )条件. A. 必要而不充分条件B. 充分而不必要条件C. 充分且必要条件D. 既不充分也不必要条件6 已知()()sin 0f x x ωω=>,()11f x =-,()21f x =,12min π||2x x -=,则ω=( ) A. 1B. 2C. 3D. 4 7. 记水质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为( )A. 12n n < .的B. 12n n >C. 若1S <,则12n n <;若1S >,则12n n >;D. 若1S <,则12n n >;若1S >,则12n n <;8. 已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,,,则该四棱锥的高为( )A.B.C.D. 9. 已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是( ) A. 12122log 22y y x x ++> B. 12122log 22y y x x ++< C. 12212log 2y y x x +>+ D. 12212log 2y y x x +<+ 10. 若集合(){}2,|(),01,12x y y x t x x t x =+-≤≤≤≤表示的图形中,两点间最大距离为d 、面积为S ,则( )A. 3d =,1S <B. 3d =,1S >C. d =,1S <D. d =,1S >第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 已知抛物线216y x =,则焦点坐标为________.12. 已知ππ,63α⎡⎤∈⎢⎥⎣⎦,且α与β的终边关于原点对称,则cos β的最大值为________. 13. 已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为________. 14. 已知三个圆柱体积为公比为10的等比数列.第一个圆柱的直径为65mm ,第二、三个圆柱的直径为325mm ,第三个圆柱的高为230mm ,求前两个圆柱的高度分别为________.15. 已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是______.①n a ,n b 均为等差数列,则M 中最多一个元素;②n a ,n b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素;的④n a 单调递增,n b 单调递减,则M 中最多一个元素 三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在△ABC 中,7a =,A为钝角,sin 2cos B B =. (1)求A ∠;(2)从条件①、条件②和条件③这三个条件中选择一个作为已知,求△ABC 的面积.①7b =;②13cos 14B =;③sin c A = 注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.17. 已知四棱锥P -ABCD ,//AD BC ,1AB BC ==,3AD =,2DE PE ==,E 是AD 上一点,PE AD ⊥.(1)若F PE 中点,证明://BF 平面PCD .(2)若AB ⊥平面PED ,求平面PAB 与平面PCD 夹角的余弦值.18. 已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元 赔偿次数0 1 2 3 4 单数 800 100 60 30 10在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i )毛利润是保费与赔偿金额之差.设毛利润为X ,估计X 的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.19. 已知椭圆方程C:()222210x y a b a b +=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t ..是20. 已知()()ln 1f x x k x =++在()()(),0t f t t >处切线为l .(1)若切线l 的斜率1k =-,求()f x 单调区间;(2)证明:切线l 不经过()0,0;(3)已知1k =,()(),A t f t ,()()0,C f t ,()0,0O ,其中0t >,切线l 与y 轴交于点B 时.当215ACO ABO S S =△△,符合条件的A 的个数为?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21. 设集合(){}{}{}{}{},,,|1,2,3,4,5,6,7,8M i j s t i j s t =∈∈∈∈.对于给定有穷数列A 和序列Ω:1ω,2ω,···,s ω,(),,,k k k k k i j s t M ω=∈,定义变换T :将数列A 的第1i ,1j ,1s ,1t 列加1,得到数列()1T A ;将数列()1T A 的第2i ,2j ,2s ,2t 列加1,得到数列()21T T A …;重复上述操作,得到数列21s T T T L ,记为Ω(A ).若1359a a a a +++为偶数,证明:“Ω(A )为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.A2.C3.C4.B5.A6.B7.C8.D9.A 10.C第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11.()4,0 12.12-##0.5- 13.12±14.115mm,23mm 215.①③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(1)2π3A =; (2)选择①无解;选择②和③△ABC.17.(1)证明见解析(218.(1)110(2)(i)0.122万元 (ii)0.1252万元19.(1)221,42x y e +== (2)2t =20.(1)单调递减区间为(1,0)-,单调递增区间为(0,)+∞.(2)证明见解析 (3)221.略绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D【9题答案】【答案】A【10题答案】【答案】C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.【11题答案】【答案】()4,0【12题答案】 【答案】12-##0.5- 【13题答案】 【答案】12±【14题答案】 【答案】115mm,23mm 2【15题答案】【答案】①③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】(1)2π3A =;(2)选择①无解;选择②和③△ABC . 【17题答案】【答案】(1)证明见解析(2【18题答案】【答案】(1)110(2)(i)0.122万元(ii)0.1252万元 【19题答案】【答案】(1)221,42x y e +== (2)2t =【20题答案】【答案】(1)单调递减区间为(1,0)-,单调递增区间为(0,)+∞.(2)证明见解析(3)2 【21题答案】【答案】略。
2017年普通高等学校招生全国统一考试(北京卷文科) 数学试题及答案(学生版)
2017年普通高等学校招生全国统一考试(北京卷文科)数学试题一、单选题(本大题共8小题,每小题____分,共____分。
)1.已知,集合,则()A. B. C. D.2.若复数在复平面内对应的点在第二象限,则实数的取值范围是()A. B. C. D.3.执行如图所示的程序框图,输出的值为()A. 2B.C.D.4.若满足则的最大值为()A. 1B. 3C. 5D. 95.已知函数,则()A. 是偶函数,且在R上是增函数B. 是奇函数,且在R上是增函数C. 是偶函数,且在R上是减函数D. 是奇函数,且在R上是增函数6.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 60B. 30C. 20D. 107.设m, n为非零向量,则“存在负数,使得m=λn”是“m·n”()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是()(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 1093二、填空题(本大题共6小题,每小题____分,共____分。
)9.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若sin=,则sin=_________.10.若双曲线的离心率为,则实数m=__________.11.已知,,且x+y=1,则的取值范围是__________.12.已知点P在圆上,点A的坐标为(-2,0),O为原点,则的最大值为__.13.能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.14.某学习小组由学生和学科网&教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________.②该小组人数的最小值为__________.三、简答题(综合题)(本大题共6小题,每小题____分,共____分。
高考理科数学试题及答案(高清版)
普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题,满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z i =1-i ,则z 等于()A .-1-i B .1-i C .-1+i D .1+i A .3+4i B .5+4i C .3+2i D .5+2i2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为()A .1B .2C .3D .43.下列命题中,真命题是()A .x 0∈R ,0ex ≤B .x ∈R ,2x >x 2C .a +b =0的充要条件是1ab=-D .a >1,b >1是ab >1的充分条件4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A .球B .三棱锥C .正方体D .圆柱5.下列不等式一定成立的是()A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .2111x >+(x ∈R )6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()A .14B .15C .16D .177.设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是()A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数8.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()AB.C .3D .59.若函数y =2x 图象上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为()A .12B .1C .32D .210.函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有()()12121()22x x f f x f x +≤[+],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3];④对任意x 1,x 2,x 3,x 4∈[1,3],有12341()44x x x x f +++≤[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是()A .①②B .①③C .②④D .③④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11.(a +x )4的展开式中x 3的系数等于8,则实数a =________.12s 值等于________.13.已知△ABC 的等比数列,则其最大角的余弦值为________.14.数列{a n }的通项公式πcos12n a n =+,前n 项和为S n ,则S 2012=________.15.对于实数a 和b ,定义运算“*”:22*.a ab a b a b b ab a b ⎧-≤=⎨->⎩,,,设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:品牌甲乙首次出现故障时间x (年)0<x ≤11<x ≤2x >20<x ≤2x >2轿车数量(辆)2345545每辆利润(万元)123 1.8 2.9将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.17.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin13°cos17°;②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1.(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.19.如图,椭圆E :22221x y a b+=(a >b >0)的左焦点为F 1,右焦点为F 2,离心率12e =.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M 的坐标;若不存在,说明理由.20.已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵1ab⎛⎫= ⎪⎝⎭A(a>0)对应的变换作用下得到的曲线为x2+y2=1.①求实数a,b的值;②求A2的逆矩阵.(2)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),π32⎛⎫⎪⎪⎝⎭,圆C的参数方程为22cos,2sinxyθθ=+⎧⎪⎨=⎪⎩(θ为参数).①设P为线段MN的中点,求直线OP的平面直角坐标方程;②判断直线l与圆C的位置关系.(3)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].①求m的值;②若a,b,c∈R+,且11123ma b c++=,求证:a+2b+3c≥9.22.(文)已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1.A由z i=1-i,得221i(1i)i i i i+11ii i11z---=====----.2.B∵a1+a5=10=2a3,∴a3=5.故d=a4-a3=7-5=2.3.D∵a>1>0,b>1>0,∴由不等式的性质得ab>1,即a>1,b>1⇒ab>1.4.D∵圆柱的三视图中有两个矩形和一个圆,∴这个几何体不可以是圆柱.5.C∵x2+1≥2|x|⇔x2-2|x|+1≥0,∴当x≥0时,x2-2|x|+1=x2-2x+1=(x-1)2≥0成立;当x<0时,x2-2|x|+1=x2+2x+1=(x+1)2≥0成立.故x2+1≥2|x|(x∈R)一定成立.6.C∵由图象知阴影部分的面积是3122121211)d()32326x x x x=⋅-=-=⎰,∴所求概率为11616=.7.C ∵D (x )是最小正周期不确定的周期函数,∴D (x )不是周期函数是错误的.8.A由双曲线的右焦点与抛物线y 2=12x 的焦点重合,知32pc ==,c 2=9=4+b 2,于是b 2=5,b =.因此该双曲线的渐近线的方程为2y x =±,即20y ±=.故该双曲线的焦点到其渐近线的距离为d ==.9.B由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x 的图象与直线x +y -3=0的交点P 时取得最大值,即得2x =3-x ,即x =1=m .10.D ①如图1,图1在区间[1,3]上f (x )具有性质P ,但是是间断的,故①错.②可设f (x )=|x -2|(如图2),当x ∈[1,3]时易知其具有性质P ,但是f (x 2)=|x 2-2|=222,1x x x x ⎧-≤≤⎪⎨-<≤⎪⎩P (如图3).故②错.图2图3③任取x 0∈[1,3],则4-x 0∈[1,3],1=f (2)=004()2x x f +-≤12[f (x 0)+f (4-x 0)].又∵f (x 0)=1,f (4-x 0)≤1,∴12[f (x 0)+f (4-x 0)]≤1.∴f (x 0)=f (4-x 0)=1.故③正确.④3412123422()(42x x x x x x x x f f ++++++=≤34121()+()222x x x x f f ++⎡⎤⎢⎥⎣⎦≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故④正确.11.答案:2解析:∵T r +1=4C r a r x 4-r ,∴当4-r =3,即r =1时,T 2=14C ·a ·x 3=4ax 3=8x 3.故a =2.12.答案:-3解析:(1)k =1,1<4,s =2×1-1=1;(2)k =2,2<4,s =2×1-2=0;(3)k =3,3<4,s =2×0-3=-3;(4)k =4,直接输出s =-3.13.答案:24-解析:设△ABC 的最小边长为a (m >0),则其余两边长为,2a ,故最大角的余弦值是22222cos 4θ==-.14.解析:∵函数πcos2n y =的周期2π4π2T ==,∴可用分组求和法:a 1+a 5+…+a 2009=50311+1=503++个...;a 2+a 6+...+a 2010=(-2+1)+(-6+1)+...+(-2010+1)=-1-5- (2009)503(12009)2--=-503×1005;a 3+a 7+…+a 2011=50311+1=503++个…;a 4+a 8+…+a 2012=(4+1)+(8+1)+…+(2012+1)=503(52013)2⨯+=503×1009;故S 2012=503-503×1005+503+503×1009=503×(1-1005+1+1009)=3018.15.答案:(1316,0)解析:由已知,得()22200x x x f x x x x ⎧≤⎪⎨⎪⎩-,,=-+,>,作出其图象如图,结合图象可知m 的取值范围为0<m <14,当x >0时,有-x 2+x =m ,即x 2-x +m =0,于是x 1x 2=m .当x <0时,有2x 2-x -m =0,于是314x -=.故123(118)4m x x x =.设h (m )=m (1,∵h ′(m)=(1-+[m()]=10,∴函数h (m )单调递减.故x 1x 2x 3的取值范围为(1316,0).16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则231()5010P A +==.(2)依题意得,X 1的分布列为X 1123P125350910X 2的分布列为X 2 1.82.9P110910(3)由(2)得,E (X 1)=1×125+2×350+3×910=14350=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.17.解:方法一:(1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=11131cos2cos24444αα--+=.18.解:(1)以A 为原点,AB ,AD ,1AA的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E (2a,1,0),B 1(a,0,1),故1AD =(0,1,1),1B E =(2a -,1,-1),1AB =(a,0,1),AE =(2a,1,0).∵1AD ·1B E =2a-×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥1AB ,n ⊥AE ,得00.2ax z axy +=⎧⎪⎨+=⎪⎩,取x =1,得平面B 1AE 的一个法向量n =(1,2a-,-a ).要使DP ∥平面B 1AE ,只要n ⊥DP ,有2a -az 0=0,解得012z =.又DP平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时12AP =.(3)连接A 1D ,B 1C ,由长方体ABCD A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD=(0,1,1).设1AD 与n 所成的角为θ,则11·2cos ||||a a AD AD θ--== n n .∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°3322a =,解得a =2,即AB 的长为2.19.解:方法一:(1)因为|AB |+|AF 2|+|BF 2|=8,即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8,又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a ,所以4a =8,a =2.又因为12e =,即12c a =,所以c =1.所以b ==故椭圆E 的方程是22143x y +=.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m ,所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.设M (x 1,0),则0MP MQ ⋅=对满足(*)式的m ,k 恒成立.因为MP =(14k x m--,3m ),MQ =(4-x 1,4k +m ),由0MP MQ ⋅= ,得211141612430kx k kx x m m m-+-+++=,整理,得(4x 1-4)km+x 12-4x 1+3=0.(**)由于(**)式对满足(*)式的m ,k 恒成立,所以1211440,430,x x x -=⎧⎨-+=⎩解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .方法二:(1)同方法一.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m ,所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.取k =0,m =,此时P (0,Q (4,以PQ 为直径的圆为(x -2)2+(y)2=4,交x 轴于点M 1(1,0),M 2(3,0);取12k =-,m =2,此时P (1,32),Q (4,0),以PQ 为直径的圆为225345()()2416x y -+-=,交x 轴于点M 3(1,0),M 4(4,0).所以若符合条件的点M 存在,则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0),所以MP =(41k m --,3m),MQ =(3,4k +m ),从而1212330k kMP MQ mm ⋅=--++= ,故恒有MP MQ ⊥ ,即存在定点M (1,0),使得以PQ 为直径的圆恒过点M .20.解:(1)由于f ′(x )=e x +2ax -e ,曲线y =f (x )在点(1,f (1))处切线斜率k =2a =0,所以a =0,即f (x )=e x -e x .此时f ′(x )=e x -e ,由f ′(x )=0得x =1.当x ∈(-∞,1)时,有f ′(x )<0;当x ∈(1,+∞)时,有f ′(x )>0.所以f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P (x 0,f (x 0)),曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0),令g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),故曲线y =f (x )在点P 处的切线与曲线只有一个公共点P 等价于函数g (x )有唯一零点.因为g (x 0)=0,且g ′(x )=f ′(x )-f ′(x 0)=e x -e x 0+2a (x -x 0).(1)若a ≥0,当x >x 0时,g ′(x )>0,则x >x 0时,g (x )>g (x 0)=0;当x <x 0时,g ′(x )<0,则x <x 0时,g (x )>g (x 0)=0.故g (x )只有唯一零点x =x 0.由P 的任意性,a ≥0不合题意.(2)若a <0,令h (x )=e x -e x 0+2a (x -x 0),则h (x 0)=0,h ′(x )=e x +2a .令h ′(x )=0,得x =ln(-2a ),记x ′=ln(-2a ),则当x ∈(-∞,x *)时,h ′(x )<0,从而h (x )在(-∞,x *)内单调递减;当x ∈(x *,+∞)时,h ′(x )>0,从而h (x )在(x *,+∞)内单调递增.①若x 0=x *,由x ∈(-∞,x *)时,g ′(x )=h (x )>h (x *)=0;x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0,知g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *.②若x 0>x *,由于h (x )在(x *,+∞)内单调递增,且h (x 0)=0,则当x ∈(x *,x 0)时有g ′(x )=h (x )<h (x 0)=0,g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0.又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-[e +f ′(x 0)],c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0.故g (x )在(x 2,x 1)内存在零点,即g (x )在R 上至少有两个零点.③若x 0<x *,仿②并利用3e 6xx >,可证函数g (x )在R 上至少有两个零点.综上所述,当a <0时,曲线y =f (x )上存在唯一点P (ln(-2a ),f (ln(-2a ))),曲线在该点处的切线与曲线只有一个公共点P .21.(1)选修4-2:矩阵与变换解:①设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′).由 0 1x a y b '⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭x ax y bx y ⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭,得,.x ax y bx y '=⎧⎨'=+⎩又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1.依题意得222,22,a b b ⎧+=⎨=⎩解得1,1,a b =⎧⎨=⎩或1,1,a b =-⎧⎨=⎩因为a >0,所以1,1.a b =⎧⎨=⎩②由①知, 1 01 1⎛⎫=⎪⎝⎭A ,2 1 0 1 0 1 01 1 1 1 2 1⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A ,所以|A 2|=1,(A 2)-1= 1 02 1⎡⎤⎢⎥-⎣⎦.(2)选修4-4:坐标系与参数方程解:①由题意知,M ,N 的平面直角坐标分别为(2,0),(0,233).又P 为线段MN 的中点,从而点P 的平面直角坐标为(1,33),3②因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),(0,3),所以直线l 30y +-=.又圆C 的圆心坐标为(2,),半径r =2,圆心到直线l 的距离32d r ==<,故直线l 与圆C 相交.(3)选修4-5解:①因为f (x +2)=m -|x |,f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.②由①知111123a b c ++=,又a ,b ,c ∈R +,由柯西不等式得a +2b +3c =(a +2b +3c )(11123a b c ++)≥29=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 2008年普通高等学校招生全国统一考试
数学(理工农医类)(北京卷)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.
第Ⅰ卷(选择题 共40分)
注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.
一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.已知全集UR,集合|23Axx≤≤,|14Bxxx或,那么集合
UABð等于( )
A.|24xx≤ B.|34xxx或≤≥ C.|21xx≤ D.|13xx≤≤ 2.若0.52a,πlog3b,22πlogsin5c,则( ) A.abc B.bac C.cab D.bca 3.“函数()()fxxR存在反函数”是“函数()fx在R上为增函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
4.若点P到直线1x的距离比它到点(20),的距离小1,则点P的轨迹为( ) A.圆 B.椭圆 C.双曲线 D.抛物线
5.若实数xy,满足1000xyxyx,,,≥≥≤则23xyz的最小值是( )
A.0 B.1 C.3 D.9 6.已知数列na对任意的*pqN,满足pqpqaaa,且26a,那么10a等于( ) www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com A.165 B.33 C.30 D.21
7.过直线yx上的一点作圆22(5)(1)2xy的两条切线12ll,,当直线12ll,关于yx对称时,它们之间的夹角为( )
A.30 B.45 C.60 D.90 8.如图,动点P在正方体1111ABCDABCD的对角线1BD上.过点P作垂直于平面
11BBDD的直线,与正方体表面相交于MN,.设BPx,MNy,则函数()yfx的
图象大致是( )
2008年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷) 第Ⅱ卷(共110分)
注意事项: 1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知2()2aii,其中i是虚数单位,那么实数a .
10.已知向量a与b的夹角为120,且4ab,那么(2)bab的值为 .
11.若231nxx展开式的各项系数之和为32,则n ,其展开式中的常数项为 .(用数字作答) 12.如图,函数()fx的图象是折线段ABC,其中ABC,,的坐标分别为(04)(20)(64),,,,,,
则((0))ff ; 0(1)(1)limxfxfx .(用数字作答) A B C D M N P A1 B1 C1 D1 y x A. O y x B. O y x C. O y x D. O 2 B C A y
x 1 O 3 4 5 6
1 2 3 4 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 13.已知函数2()cosfxxx,对于ππ22,上的任意12xx,,有如下条件:
①12xx; ②2212xx; ③12xx. 其中能使12()()fxfx恒成立的条件序号是 . 14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点()kkkPxy,处,其中11x,11y,当2k≥时,
111215551255kkkkkkxxTTkkyyTT
,
. ()Ta表示非负实数a的整数部分,例如(2.6)2T,(0.2)0T.
按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)
已知函数2π()sin3sinsin2fxxxx(0)的最小正周期为π. (Ⅰ)求的值; (Ⅱ)求函数()fx在区间2π03,上的取值范围.
16.(本小题共14分) 如图,在三棱锥PABC中,2ACBC,90ACB,APBPAB,PCAC. (Ⅰ)求证:PCAB; (Ⅱ)求二面角BAPC的大小; (Ⅲ)求点C到平面APB的距离. A C B
P www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 17.(本小题共13分) 甲、乙等五名奥运志愿者被随机地分到ABCD,,,四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加A岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量为这五名志愿者中参加A岗位服务的人数,求的分布列.
18.(本小题共13分) 已知函数22()(1)xbfxx,求导函数()fx,并确定()fx的单调区间.
19.(本小题共14分) 已知菱形ABCD的顶点AC,在椭圆2234xy上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(01),时,求直线AC的方程; (Ⅱ)当60ABC时,求菱形ABCD面积的最大值. www.zgxzw.com 中国校长网
中国校长网资源频道 http://zy.zgxzw.com 20.(本小题共13分)
对于每项均是正整数的数列12nAaaa:,,,,定义变换1T,1T将数列A变换成数列
1()TA:12111nnaaa,,,,.
对于每项均是非负整数的数列12mBbbb:,,,,定义变换2T,2T将数列B各项从大到小排列,然后去掉所有为零的项,得到数列2()TB; 又定义2221212()2(2)mmSBbbmbbbb. 设0A是每项均为正整数的有穷数列,令121(())(012)kkATTAk,,,. (Ⅰ)如果数列0A为5,3,2,写出数列12AA,; (Ⅱ)对于每项均是正整数的有穷数列A,证明1(())()STASA; (Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A,存在正整数K,当kK≥时,
1()()kkSASA. www.zgxzw.com 中国校长网
中国校长网资源频道 http://zy.zgxzw.com 2008年普通高等学校招生全国统一考试
数学(理工农医类)(北京卷)参考答案
一、选择题(本大题共8小题,每小题5分,共40分) 1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B 二、填空题(本大题共6小题,每小题5分,共30分) 9.1 10.0 11.5 10 12.2 2
13.② 14.(12), (3402), 三、解答题(本大题共6小题,共80分) 15.(共13分)
解:(Ⅰ)1cos23()sin222xfxx311sin2cos2222xx π1sin262x
.
因为函数()fx的最小正周期为π,且0, 所以2ππ2,解得1.
(Ⅱ)由(Ⅰ)得π1()sin262fxx. 因为2π03x≤≤, 所以ππ7π2666x≤≤,
所以1πsin2126x≤≤, 因此π130sin2622x≤≤,即()fx的取值范围为302,. 16.(共14分) 解法一: (Ⅰ)取AB中点D,连结PDCD,. APBP,
PDAB.
ACBC,
CDAB.
A
C B
D
P www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com PDCDD,
AB平面PCD.
PC平面PCD,
PCAB.
(Ⅱ)ACBC,APBP, APCBPC△≌△.
又PCAC, PCBC.
又90ACB,即ACBC,且ACPCC, BC平面PAC.
取AP中点E.连结BECE,. ABBP,BEAP.
EC是BE在平面PAC内的射影,
CEAP.
BEC是二面角BAPC的平面角.
在BCE△中,90BCE,2BC,362BEAB, 6sin3BCBECBE.
二面角BAPC的大小为6arcsin3.
(Ⅲ)由(Ⅰ)知AB平面PCD, 平面APB平面PCD.
过C作CHPD,垂足为H. 平面APB平面PCDPD,
CH平面APB.
CH的长即为点C到平面APB的距离.
由(Ⅰ)知PCAB,又PCAC,且ABACA, PC平面ABC.
CD平面ABC,
PCCD.
在RtPCD△中,122CDAB,362PDPB, 222PCPDCD
.
233PCCDCHPD
.
A C B
E P
A C B
D
P H