AO工艺参数及影响

合集下载

污水处理工艺之AO(缺氧好氧)简介

污水处理工艺之AO(缺氧好氧)简介

2.2 AO工艺(缺氧好氧)2.2.1 AO工艺原理AO工艺也叫缺氧好氧工艺法,A(Anoxi的英文缩写)是缺氧段,主要用于脱氮;O(Oxic)是好氧段。

是国外20世纪七十年代末开发出来的一种污水处理新技术工艺,它不仅能去除污水中的BOD5、CODcr而且能有效的去除污水中的氮化合物。

工艺流程如下:缺氧好氧工艺组合法,它的优越性是使有机污染物得到降解之外,还具有一定的生物脱氮功能,是将缺氧状态下的反硝化技术应用于好氧活性污泥法之前,所以A/O工艺是改进的活性污泥法。

A段溶解氧一般不大于0.2mg/L,O段溶解氧2~4mg/L。

在完成O段回流的反硝化作用的同时,异养菌也将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,当污水中的有机污染物经过经缺氧水解后,产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在好氧池,充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环。

其生物脱氮的基本原理:脱氮过程一般包括三个过程,分别是氨化、硝化和反硝化:(1)氨化反应(Ammonification):污水中的蛋白质和脂肪等含氮有机物,在异养型微生物作用下分解为氨氮的过程;(2)硝化(Nitrification):污水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为硝态氮的过程;(3)反硝化(Denitrification):污水中的硝态氮在缺氧条件下载反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

其中硝化反应分为两步进行,亚硝化和硝化:第一步,亚硝化反应:2NH4++3O2→2NO2-+2H2O+4H+第二步,硝化反应:2NO2-+O2→2NO3-总的硝化反应:NH4++2O2→NO3-+H2O+2H+其中反硝化反应过程分三步进行:第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO22、系统脱氮原理缺氧好氧组合工艺,其运行过程中,同时具有短程硝化-反硝化反应,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮;再者在A池中存在的NO2-同样也可和NH4+进行反应脱氮,即短程硝化-厌氧氨氧化:NH4++NO2-→N2+2H2O因此缺氧好氧组合工艺,在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。

AO工艺、A2O工艺、氧化沟 、SBR工艺

AO工艺、A2O工艺、氧化沟 、SBR工艺

一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AO工艺运行指标的控制

AO工艺运行指标的控制

A/O工艺运行指标的控制!导读:污水处理的运行需要众多控制参数的合理调控,只有这样,才能保证处理工艺的正常、高效运行。

本文详细介绍A/O(脱氮)工艺主要参数指标的控制!污水处理的运行需要众多控制参数的合理调控,只有这样,才能保证处理工艺的正常、高效运行。

本文详细介绍A/O(脱氮)工艺主要参数指标的控制!1、pH值一般污水处理系统可承受的pH值变动范围为6~9,超出范围需进行投加化学调和剂调整;pH值过小会造成混凝絮体小、生物处理中原生动物活动减弱;过大则体现为混凝絮体粗大,出水浑浊,活性污泥解体,原生动物死亡。

对于生活污水,pH值一般符合要求,不需人为调控。

2、B/CB/C即系统进水的可生化性,数值上为同一样品的BOD5与COD的比值。

对于二级污水处理厂,B/C表征污水成分是否满足生物处理的要求。

对于活性污泥系统,一般认为B/C≥0.3,为可生化性良好,生物处理发挥作用。

而可生化性<0.3时,污水中有机物含量不足,无法满足生物处理中微生物生长的需要,生物处理效率低下,此时,调控方法是向污水中投加有机营养源。

3、水力停留时间HRTHRT即平均水力停留时间,指待处理污水在反应器内的平均停留时间,也就是污水与生物反应器内微生物作用的平均反应时间,为反应器有效容积与进水量的比值。

对于生物处理,HRT要符合相应工艺要求,否则水力停留时间不足,生化反应不完全,处理程度较弱;水力停留时间过长则会导致系统污泥老化。

表1不同污水处理工艺HRT当处理效果不佳时,可参照设计值进行HRT的校核,校核水力停留时间时,水量应该算上污泥回流量与内回流量等。

若HRT过小,应缓慢减小污水量,过大则缓慢加大污水量。

注意,污水量的增减都应缓慢变动,否则造成系统的冲击负荷;由于污水处理任务艰巨,不要轻易减小进厂污水量,而是在回流量上做出调整。

4、污泥浓度MLSS及MLVSSMLSS为活性污泥浓度,MLVSS为挥发性活性污泥浓度,一般占MLSS的55%~75%,可以概指为污泥中的有机成分。

ao+接触氧化工艺运行成本

ao+接触氧化工艺运行成本

ao+接触氧化工艺运行成本(实用版)目录1.AO+接触氧化工艺简介2.AO+接触氧化工艺运行成本的构成3.AO+接触氧化工艺运行成本的影响因素4.AO+接触氧化工艺的优化和改进5.结论正文一、AO+接触氧化工艺简介AO+接触氧化工艺,即厌氧 - 好氧 - 接触氧化工艺,是一种广泛应用于有机废水处理的技术。

该工艺主要通过厌氧、好氧和接触氧化三个反应区,对有机废水进行处理,具有处理效果好、操作简单、投资和运行费用较低等优点。

二、AO+接触氧化工艺运行成本的构成AO+接触氧化工艺的运行成本主要包括以下几个方面:1.设备投资:包括反应器、曝气设备、沉淀池、污泥处理设备等的购置费用。

2.运行费用:主要包括水电费、维修费、化学品费(如 pH 调节剂、絮凝剂等)、污泥处理费等。

3.人力成本:包括操作人员、管理人员的工资及福利等。

三、AO+接触氧化工艺运行成本的影响因素AO+接触氧化工艺的运行成本受多种因素影响,主要包括以下几个方面:1.废水水质:废水中有机物浓度、pH 值、营养物质含量等都会影响处理效果和运行成本。

2.设备选型和质量:设备的性能、可靠性、耐用性等直接影响设备的投资和运行费用。

3.运行参数:如水力停留时间、曝气量、污泥浓度等,都会影响处理效果和运行成本。

4.管理水平:如操作人员的技术水平、设备维护情况等,也会影响运行成本。

四、AO+接触氧化工艺的优化和改进为了降低 AO+接触氧化工艺的运行成本,可以从以下几个方面进行优化和改进:1.优化设备选型和布局,提高设备的利用率和使用寿命。

2.采用高效的生物反应器,提高处理效果,降低处理负荷。

3.采用自动控制技术,优化运行参数,降低人力成本。

4.加强设备维护和管理,减少设备故障和维修费用。

污水处理工艺之AO(缺氧好氧)简介

污水处理工艺之AO(缺氧好氧)简介

2。

2 AO工艺(缺氧好氧)2.2。

1 AO工艺原理AO工艺也叫缺氧好氧工艺法,A(Anoxi的英文缩写)是缺氧段,主要用于脱氮;O(Oxic)是好氧段.是国外20世纪七十年代末开发出来的一种污水处理新技术工艺,它不仅能去除污水中的BOD5、CODcr而且能有效的去除污水中的氮化合物。

工艺流程如下:缺氧好氧工艺组合法,它的优越性是使有机污染物得到降解之外,还具有一定的生物脱氮功能,是将缺氧状态下的反硝化技术应用于好氧活性污泥法之前,所以A/O工艺是改进的活性污泥法.A段溶解氧一般不大于0.2mg/L,O段溶解氧2~4mg/L.在完成O段回流的反硝化作用的同时,异养菌也将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,当污水中的有机污染物经过经缺氧水解后,产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在好氧池,充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3—,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3—还原为分子态氮(N2)完成C、N、O在生态中的循环。

其生物脱氮的基本原理:脱氮过程一般包括三个过程,分别是氨化、硝化和反硝化:(1)氨化反应(Ammonification):污水中的蛋白质和脂肪等含氮有机物,在异养型微生物作用下分解为氨氮的过程;(2)硝化(Nitrification):污水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为硝态氮的过程;(3)反硝化(Denitrification):污水中的硝态氮在缺氧条件下载反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

其中硝化反应分为两步进行,亚硝化和硝化:第一步,亚硝化反应:2NH4++3O2→2NO2-+2H2O+4H+第二步,硝化反应:2NO2 +O2→2NO3-总的硝化反应:NH4++2O2→NO3 +H2O+2H+其中反硝化反应过程分三步进行:第一步:3NO3 +CH3OH→3NO2-+2H2O+CO2第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2第三步:6H++6NO3 +5CH3OH→3N2+13H2O+5CO22、系统脱氮原理缺氧好氧组合工艺,其运行过程中,同时具有短程硝化—反硝化反应,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮;再者在A池中存在的NO2-同样也可和NH4+进行反应脱氮,即短程硝化-厌氧氨氧化:NH4++NO2 →N2+2H2O因此缺氧好氧组合工艺,在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果.2.2。

AO工艺标准,A2O工艺标准

AO工艺标准,A2O工艺标准

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L 以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

(整理)污水处理中AO工艺的设计参数

A/O生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。

污水进入厌氧池后,与回流污泥混合。

活性污泥中的聚磷菌在这一过程中大量吸收污水中的BOD,并将污泥中的磷以正磷酸盐的形式释放到混合液中。

混合液进入好氧池后,有机物被氧化分解,同时聚磷菌大量吸收混合液中的正磷酸盐到污泥中。

由于聚磷菌在好氧条件下吸收的磷多于厌氧条件下释放的磷,因此污水经过“厌氧-好氧”的交替作用和二沉池的污泥分离达到除磷的目的。

一般情况下,TP的去除率可达到85%以上。

A/O工艺设计参数①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3②污泥回流比:50~100%③混合液回流比:300~400%④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)⑧溶解氧:A段DO<0.2~0.5mg/LO段DO>2~4mg/L⑨pH值:A段pH =6.5~7.5O段pH =7.0~8.0⑩水温:硝化20~30℃反硝化20~30℃⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。

反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。

微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。

Ro=a’QSr+b’VX+4.6Nra’─平均转化1Kg的BOD的需氧量KgO2/KgBODb’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。

AO工艺、A2O工艺

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1) 效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2) 流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3) 缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AO工艺主要参数指标的控制

A/O工艺主要参数指标的控制!污水处理的运行需要众多控制参数的合理调控,只有这样,才能保证处理工艺的正常、高效运行。

本文详细介绍A/O(脱氮)工艺主要参数指标的控制!1、pH值一般污水处理系统可承受的pH值变动范围为6~9,超出范围需进行投加化学调和剂调整;pH值过小会造成混凝絮体小、生物处理中原生动物活动减弱;过大则体现为混凝絮体粗大,出水浑浊,活性污泥解体,原生动物死亡。

对于生活污水,pH值一般符合要求,不需人为调控。

2、B/CB/C即系统进水的可生化性,数值上为同一样品的BOD5与COD的比值。

对于二级污水处理厂,B/C表征污水成分是否满足生物处理的要求。

对于活性污泥系统,一般认为B/C≥0.3,为可生化性良好,生物处理发挥作用。

而可生化性<0.3时,污水中有机物含量不足,无法满足生物处理中微生物生长的需要,生物处理效率低下,此时,调控方法是向污水中投加有机营养源。

3、水力停留时间HRTHRT即平均水力停留时间,指待处理污水在反应器内的平均停留时间,也就是污水与生物反应器内微生物作用的平均反应时间,为反应器有效容积与进水量的比值。

对于生物处理,HRT要符合相应工艺要求,否则水力停留时间不足,生化反应不完全,处理程度较弱;水力停留时间过长则会导致系统污泥老化。

表1 不同污水处理工艺HRT当处理效果不佳时,可参照设计值进行HRT的校核,校核水力停留时间时,水量应该算上污泥回流量与内回流量等。

若HRT过小,应缓慢减小污水量,过大则缓慢加大污水量。

注意,污水量的增减都应缓慢变动,否则造成系统的冲击负荷;由于污水处理任务艰巨,不要轻易减小进厂污水量,而是在回流量上做出调整。

4、污泥浓度MLSS及MLVSSMLSS为活性污泥浓度,MLVSS为挥发性活性污泥浓度,一般占MLSS 的55%~75%,可以概指为污泥中的有机成分。

它们是计量曝气池中活性污泥数量多少的指标。

活性污泥浓度表征生物池中微生物生长平衡情况,活性污泥控制在多少,主要是根据食微比进行核算,一般控制在2000~4000mg/L。

AO工艺简介及常规指标介绍


4、氨氮
氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在 的氮。城镇污水中的氨氮主要是生活污水中含氮有机物受 微生物作用的分解产物,或直接来自含氨氮的工业废水。 氨氮是营养物质,促进藻类等浮游生物的繁殖,形成水华 、赤潮,消耗水体中的溶解氧;氨氮也是耗氧物质,在亚 硝化菌和硝化菌作用下,氨氮被氧化成硝酸盐和亚硝酸盐 ,也会消耗水体中的溶解氧;水中缺氧就会引起鱼类死亡 。
1、主要无机污染物
无机污染是各种有害的金属、盐类、酸、碱性物质及无机 悬浮物等,所有造成的水质污染。建筑材料、化工等工业 生产排出的污染物中大量为无机污染物,各种酸、碱和无 机盐类的排放,会引起水体污染,首先破坏其自然缓冲作 用,抑制微生物生长,阻碍水体自净作用。
污水中含氮化合物有有机氮、氨氮、硝酸盐氮与亚硝酸 盐氮,成为总氮。有机氮很不稳定,容易在微生物作用 下分解成其他三种:在无氧的条件下分解为氨氮,在有 氧的条件下分解为氨氮、再转化为亚硝酸盐氮与硝酸盐 氮。氨氮在水中的形式为游离氨与离子状态铵盐两种。 总氮过高,危害水环境。
2、传统活性污泥法
以活性污泥为主体的废水生物处理的主要方法。活性污泥 法是向废水中连续通入空气,经一定时间后因好氧性微生 物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主 的微生物群,具有很强的吸附与氧化有机物的能力。利用 活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水 中的有机污染物。然后使污泥与水分离,大部分污泥再回 流到生物池,多余部分则排出活性污泥系统。
溶解氧(DO)
混合液溶解氧是影响活性污泥微生物最关键的因素,曝气 池混合液中必须有足够的溶解氧。如果溶解氧浓度过低, 好氧微生物正常的代谢活动就会下降,活性污泥会因此发 黑发臭,进而使其处理污染能力受到影响,而且溶解氧浓 度过低,易于滋生丝状菌,产生污泥膨胀,影响出水水质 。如果溶解氧浓度过高,氧的转移速率降低,活性污泥中 的微生物会进入自身氧化阶段,还会增加动力消耗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

001.无人机的英文缩写是 页脚内容 工艺运行参数的控制以及对水处理效果的影响 A/O工艺运行过程中所需控制的主要参数有水力停留时间、pH值、水温、原水成分、食微比(F/M)、溶解氧(DO)、活性污泥浓度(MLSS)、沉降比(SV30%)、污泥容积指数(SVI)、污泥龄、污泥回流比(%)以及混合液回流比(%)等。只有合理调控这些控制参数,才能很好地保证活性污泥处理工艺的正常、高效运行。 (1)水力停留时间HRT:水力停留时间(HRT)的长短直接影响氨氮和硝酸盐的去除效率,一般应根据设计所要求对氮的去除率决定相应的水力停留时间。在给定进出水氨氮或硝酸盐氮浓度的情况下,硝化或反硝化反应所需的最小水力停留时间可按照下式估计: 硝化反应: 微生物的浓度氨氮的比去除率度稳态时出水中的氨氮浓进水中的氨氮浓度

HRT

反硝化反应: 微生物的浓度硝酸盐氮的比去除率氮浓度稳态时出水中的硝酸盐进水中的硝酸盐氮浓度

HRT

在给定氨氮负荷条件下,缩短HRT,硝化反应的效率显著下降,当HRT小于5h时,出水中氨氮浓度显著增加。经估算及经验得出最佳水力停留时间为:反硝化t≤2h,硝化t≥6h,当硝化水力停留时间与反硝化水力停留时间为3:1时,氨氮去除率达到70%~80%。 (2)pH值:A/O工艺中pH值的控制不但是排放水要求的控制,更是对活性污泥法主体微生物生长条件的要求。A/O工艺中的生物脱氮过程包括硝化和反硝化两个过程:硝化过程起主要作用的微生物是硝化细菌;反硝化过程起主要作用的微生物是反硝化细菌。 硝化反应是指氨态氮在硝化菌的作用下分解氧化的过程。硝化菌是指亚硝酸菌和硝酸菌,是化能自养菌,硝化菌对pH值的变化非常敏感,在硝化反应过程中,将释放出H+离子浓度增高,从而使pH值下降,影响硝化反应速度,为了保持适宜的pH值,应当在污水中保持足够的碱度,以保证对在反应过程中pH值的变化,起到缓冲的作用。而最佳pH值是8.0~8.4,在这一最佳pH值条件下,硝化速度,硝化菌最大的比增殖速度可达最大值。碱度的调整方案一般采用的首要方法是酸碱废水中和法,或者直接向所需处理污水中投加药剂:污水呈酸性时投加氢氧化钙、石灰或氧化镁等。 污水厂只是在进水和出水口设置了pH值在线监测仪,并没有在A/O生化池001.无人机的英文缩写是 页脚内容 内设置pH值在线监测仪,这样就无法准确了解生化池内pH值的变化情况,以致无法了解生化池的脱氮效果如何。 反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮(N2)的过程。反硝化菌是属于异养型兼性厌氧菌的细菌。反硝化菌对pH值的变化也是很敏感的,反硝化菌最适宜的pH值是6.5~7.5,在这个pH值范围内,反硝化速率最高,当pH值高于8或低于6时,反硝化速率将大为下降。 所以,A/O工艺中硝化最佳pH值为8.0~8.4,反硝化最佳pH值为6.5~7.5。 (3)温度:A/O工艺中硝化反应的适宜温度是20~30℃,15℃以下时,硝化速度下降,5℃时完全停止;反硝化反应的适宜温度是20~40℃,低于15℃时,反硝化菌的增殖速率降低,代谢速率也降低,从而降低了反硝化速率。 大多数污水厂的生化池都是露天建设的,在北方,夏天的温度在20~40℃范围内变化,对硝化及反硝化过程都比较适合,而冬季的温度则比较低,所以处理效率不如夏季处理效果好。在冬季低温季节,为了保持一定的反应速率,应考虑提高反应系统的污泥龄(生物固体平均停留时间):污泥龄的长短可以通过排放剩余污泥量来进行控制;提高污水的停留时间:污泥回流比控制的低些,可以延长污水在曝气池内的停留时间;降低负荷率:混合液回流比控制的高些,就可以降低污泥负荷率了; (4)原污水总氮浓度TN:由于在硝化反应过程中每去除1mg氨氮就需要8.6mg的无机HCO3-,故必须为硝化反应提供相应的无机碳源以满足硝化细菌的代谢需求。在实际水处理过程中,当氨氮含量较高时,无机碳的浓度往往不能满足微生物的需求,从而限制了硝化反应的进行和脱氮效率。也即A/O工艺过高的总氮浓度会抑制硝化反应,所以要求原污水总氮浓度TN<30mg/L。 (5)食微比(F/M):F值比作食物,M值比作微生物,即MLSS,是活性污泥浓度的意思,就是活性污泥存在的数量。 食微比(F/M)实际应用中是以BOD—污泥负荷率(Ns)来表示的。

)]/()[/(5dkgMLSSkgBODXVQLNas• 式中 Q——污水流量(m3/d); V——曝气容积(m3); X——混合液悬浮固体(MLSS)浓度(mg/L); La——进水有机物(BOD)浓度(mg/L)。 公式本身所表达的含义是:在一天内进入处理系统的有机物量与已有的活性污泥量的比值关系。A/O工艺中最佳食微比为0.2~0.4kgBOD5/(kgMLSS·d)。食微比过低,相应的活性污泥浓度处在一个过剩的范围内,这部分过剩的活性污泥越多,消耗额外的溶解氧就越多了,以致曝气消耗增大。食微比过高,活性污泥浓度过快下降。如何控制合理的排泥,将食微比控制在合理的范围内,就需要积001.无人机的英文缩写是 页脚内容 累排泥的经验数据,特别是不同活性污泥浓度情况下的排泥情况。喀左污水厂根据沉降比以及出水情况改变污泥回流量及混合液回流量控制着活性污泥浓度。 (6)溶解氧(DO):活性污泥法工艺的微生物皆以耗氧菌为主体,缺乏溶解氧的时候首先影响的是处理效率,更甚者会对整个活性污污泥系统产生抑制,使恢复周期延长;而过度的溶解氧也会影响出水水质。就其控制而言就显得尤为重要。 氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必将影响硝化反应的过程,在进行硝化反应的曝气池内,溶解氧含量不能低于1mg/L。 反硝化菌是异养兼性厌氧菌,只有在无分子氧而同时存在硝酸和亚硝酸离子的条件下,它们才能够利用这些离子中的氧进行呼吸,使硝酸盐还原。如反应器内溶解氧较高,将使反硝化菌利用氧进行呼吸,抑制反硝化菌体内硝酸盐还原酶的合成,或者氧成为电子受体,阻碍硝酸氮的还原。但是,另一方面,在反硝化菌体内某些酶系统组分只有在有氧条件下,才能合成,这样,反硝化菌以在厌氧、好氧交替的环境中生活为宜,溶解氧应控制在0.5mg/L以下。 所以,A/O工艺中的溶解氧控制要求O段大于1mg/L;A段小于0.5mg/L。 喀左污水厂溶解氧的监控测点位置有4个,分别在A段和O段首末端,每天每两个小时在线监测一次,这样能够准确及时地掌握溶解氧变化,来判断污水处理效果好坏,以便适时作出调整。 (7)活性污泥浓度(MLSS):活性污泥浓度是曝气池(生化池)出口端混合液悬浮固体的含量,单位是mg/L,它是计量曝气池中活性污泥数量多少的指标,包括:①活性微生物;②吸附在活性污泥上不能为生物降解的有机物;③微生物自身氧化的残留物;④无机物。这四者包括了M.LSS的总量,实际操作中常以它作为相对计量活性污泥微生物量的指标。 A/O工艺污泥浓度一般要求大于3000mg/L,否则脱氮效率下降。 (8)沉降比(SV30%):取曝气池末端混合液100mL于100mL的量筒中,静止30min后,沉淀的活性污泥体积占整个混合液的体积比例即为活性污泥的沉降比。沉降比作为现场监测活性污泥系统运行状况最简易、有效的方法,此控制指标对整个活性污泥系统故障的及早发现具有重要的参考价值,可以说活性污泥沉降比是所有操作控制指标中最具操作参考意义的。 SV30%的正常范围是15~30%,低于15%,说明活性污泥浓度过低,需要增加回流比,高于30%,说明活性污泥浓度过高,需要减小回流比。 (9)污泥容积指数(SVI):活性污泥容积指数是指在曝气池末端去悬浮固体混合液倒入1000mL量筒中,静止30min,1g活性污泥干污泥所占的容积。 SVI=SV30/MLSS 因为活性污泥浓度的人为可控性好,而活性污泥沉降性人为可控性差,所以,SVI值只是活性污泥松散性型的表现指标,不具备对活性污泥直接调整的操作001.无人机的英文缩写是 页脚内容 性。 (10)污泥龄:污泥龄是指曝气池中工作的活性污泥总量与每日排放的剩余污泥的比值,在稳定运行时,剩余污泥量就是新增长的活性污泥量。因此污泥龄也是新增长的活性污泥在曝气池中的平均停留时间,或者理解为活性污泥总量增长一倍所需要的时间。 就活性污泥主体的微生物而言,其生命周期也是存在的,在不断地增殖、死亡交替过程中,也完成了对有机污染物的去除。污泥龄是一个非常重要的控制指标。 硝化细菌的增值速度较慢,世代时间较长,培养硝化细菌需要足够长的污泥龄,为了使硝化反应充分进行,硝化细菌在曝气池的停留时间(即污泥龄)就应不小于其世代时间,在实际工程设计中,考虑到负荷等因素的变化,A/O工艺中污泥龄应达到15d以上。 污泥龄与曝气池相关参数的关系可以用下式表示:

污泥龄(t)QXVX2124 式中 V——曝气池容积m; X1——曝气池混合液悬浮固体(MLSS)浓度(mg/L); X2——回流活性污泥混合液悬浮固体(MLSS)浓度(mg/L); Q——废弃活性污泥(排泥)流量m3/h; 24——计算值为小时,换算为天。 以上公式中,如果确定了要控制的污泥龄就可以方便的推算出废弃活性污泥时排泥的流量了。这里特别要注意MLSS值,作为回流活性污泥的浓度,理论上总比曝气池混合液的活性污泥浓度要高,通常要高出一倍以上,如果低于一倍的浓度,就应该检查活性污泥是否过于松散了。 (11)活性污泥回流比r(%):把回流的活性污泥混合液流量与进入曝气池首端的污水流量的比值称为活性污泥回流比,单位是“%”。 活性污泥回流是指流入二沉池的沉降活性污泥需要重新抽升到曝气池首端,与在曝气池首端入流的污水进行混合,以达到吸附降解有机物的目的。活性污泥的回流是用于补充曝气池活性污泥的浓度,在整个曝气池范围内达到首末段的活性污泥循环流动和降解。 (12)混合液回流比:混合液回流比是指混合液回流量与入流污水量之比,一般用R表示。混合液回流比不仅影响脱氮效率,而且影响动力消耗。脱氮率(η—TN去除率)与混合液回流比(R)间存在下列关系:

1R

相关文档
最新文档