应用弹塑性力学习题解答

合集下载

弹塑性力学-陈明祥版的-课后习题答案++教学内容

弹塑性力学-陈明祥版的-课后习题答案++教学内容
弹塑性力学
陈明祥
中国地质大学 力学教研室
第一章 绪 论
一、 学科分类 ·弹塑性力学 二、 弹塑性力学的研究对象 三、 弹塑性力学的基本思路与研究方法 四、 弹塑性力学的基本任务 五、 弹塑性力学基本假设 六、 弹塑性力学发展概况 七、张量概念及其基本运算
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
(3) 力与变形间的本构关系 (物理分析)
固体材料受力作用必然产生相应的变形。 不同的材料,不同的变形,就有相应不同的 物理关系。
◆ 弹塑性力学研究问题的基本方法
以受力物 体内某一 点(单元 体)为研 究对象
单元体的受力—— 应力理论;
单元体的变形—— 变形几何理论;
单元体受力与变形
间的关系——本构理 论;
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
(1) 受力分析及静力平衡条件 (力的分析)
物体受力作用处于平衡状态,应当满足的条件 是什么?(静力平衡条件)
(2) 变形的几何相容条件 (几何分析)
材料是均匀连续的,在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠 ”, 此时材料变形应满足的条件是什么?(几何相 容条件)
不考虑因变形而引起的力作用线方向的改变; (B)在研究问题的过程中可以略去相关的二次及二
次以上的高阶微量;
从而使得平衡条件与几何变形条件线性化。
六、弹塑性力学发展概况
◆ 1678年英国科学家虎克(R.Hooke)提出 了固体材 料的弹性变形与所受外力成正比——虎克定律。
◆ 19世纪20年代,法国科学家纳维叶 ( C.L.M.H.Navier )、柯西 ( A.L.Cauchy )和 圣文南 ( A.J.C.B.Saint Venant ) 等建立了 弹性力学的理论基础。

弹塑性力学 陈明祥版的 课后习题答案++汇总

弹塑性力学 陈明祥版的 课后习题答案++汇总
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
⑷ 几何假设——小变形条件
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ห้องสมุดไป่ตู้在一定单位制下,除指明其大小还应指出其方向

弹塑性力学习题解答

弹塑性力学习题解答

塑性:弹性:2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。

证明: 〔1〕将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy yy x y yx x x f f τστσ 〔a 〕 0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ 〔b 〕 显然〔a 〕、〔b 〕是满足的〔2〕对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式⎪⎩⎪⎨⎧=+=+)()()()(s f l m s f m l y s xy y x s yx x τστσ 〔c 〕 那么有),cos(),cos(x n q x n x -=σ),cos(),cos(y n q y n y -=σ所以q x -=σ,q y -=σ。

对于单连体,上述条件就是确定应力的全部条件。

〔3〕对于多连体,应校核位移单值条件是否满足。

该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-=με,q Ey )1(-=με,0=xy γ 〔d 〕 然后,将〔d 〕的变形分量代入几何方程,得q Ex u )1(-=∂∂μ,q E y v )1(-=∂∂μ,0=∂∂+∂∂y u x v 〔e 〕 前而式的积分得到 )()1(1y f qx E u +-=μ,)()1(2x f qy Ev +-=μ 〔f 〕 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式〔f 〕代入〔e 〕的第三式得 dxx df dy y df )()(21=- 等式左边只是y 的函数,而等式右边只是x 的函数。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )

G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax

弹塑性力学试卷及弹性力学教材习题及解答

弹塑性力学试卷及弹性力学教材习题及解答

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

弹塑性力学试题集锦(很全,有答案)

弹塑性力学试题集锦(很全,有答案)

弹塑性力学试题集锦(很全,有答案)弹塑性力学2008级试题一简述题(60分)1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。

塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。

2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。

应力状态:某点处的9个应力分量组成的新的二阶张量?。

3)球张量和偏量??m0 球张量:球形应力张量,即??????0中?m? 偏?m0?0?,其??m??1??3x??y??z?量:偏斜应力?xy张量?xz,即??x??m?Sij???yx??zx?1?y??m?zy???yz?,其中?z??m???m?13??x??y??z?5)转动张量:表示刚体位移部分,即?0????1??v?uWij?????2??y??x???1??w??u?2??x?z?1??u?v?????2??y?x?????????01??w?v?????2???y?z?1??u?w??????2??z?x?????1?v?w???????2??z?y????0??6)应变张量:表示纯变形部分,即??u??x????1???ij???v?u2???y??x???1??w??u?2??x?z?1??u?v?????2???x??y????????v?y1??w?v?????2??y?z??1??u?w??????2??z?x?????1?v?w???????2??z?y????w???z?7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关系,2即应变协调条件。

?2?x?y2??2?y?x2??2?xy?x?y。

8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。

弹塑性力学第十一章答案

第十一章习题答案11.3使用静力法和机动法求出图示超静定梁的极限载荷。

解1:( 1)静力法首先该超静定梁(a )化为静定结构(b )、(c )。

分别求出其弯矩图,然后叠 加,得该超静定梁的弯矩图(f ) 在极限情况下M A 二-M s , M B =M S设C 点支反力为R C ,则:R c 2l R C (2I -h) =M由上二式得P 二 当P 值达到上述数值时,结构形成破坏机构,故 P 为该梁的完全解(2)机动法设破坏机构如图(g ),并设B 点挠度为6,贝 玉八儿,(21 -1!)21、 l i 21 -h外力功W e⑶s41 _ I内力功W i= M ^1A M — M s「.h(2I -h )由W e二W i,可得极限载荷上限为l i 2I -l i由于在P “作用下,-MjM x <M s,故上式所示载荷为完全解的极限载荷。

解2:( 1)静力法先将该超静定梁化为静定梁(b)、(c),分别作弯矩图,叠加得该超静定梁的弯矩图(f)设A点为坐标原点,此时弯矩方程为:1 2M (X)=R B(I -x)-?q(l -x)在极限状态时,有x=0 , M 0 --M sx = X i , M i. X i = M s人dM x /口令0 得q(I-X i)=R B (1)dx而R B I—*ql2二-M S(2)1 2R B(I —X i )—?q(l —Xi )=Ms (3)联立解(1)、(2)、(3)得(1M s丫2qM s 二 / -〒解得q =1 12 - 144-16 步41 -hf I I「I U I F I U I I h -------------------- 4在以上q0值作用下,梁已形成破坏机构,故其解为完全解(2)机动法如图(g)设在A、C两点形成塑性铰* -屯% =2二内力功为W - -M s -二M S L2V - 3Mp外力功为1 1 2W e = 2。

勺xvdx q PI2由虚功原理W i=WI该解与完全解的误差为* 0g 3%q解3:(1)静力法设坐标原点在C点,此时弯矩方程为:BC段(0 汨.「2)M (x)二R c x qx2. 1 < 1AB段(I, 2 Ex 汨)M(x) = &x——ql x ——I 2 I 4得Rc -q =0取较大的值,可得q0:仇66*M为极大值,设■在BC段,由dx得:q^M^ q0: 11.66^I2x |2(1)在极限情况下 M I —M s , M =M s即:R c I -3qI^ -M s1R c _qq 2 二M s 联立解(1)、(2)、(3)得 q J 88_ 一882 -18 32 悸 9 I 2 取正号q =19.2鸟工I 2 由于此时形成破坏机构,故q 值完全解 (2)机动法,如图(g )设此梁在A 和•处形成塑性铰,则内力功为外力功为宁龄齐8I " 由虚功原理W i =W 得「葺厂仏由极值条件汁0得4 ^-2I 代入q 的表达式,则得q •的极小值q嗥114万心19芈由于此结果满足-M s 乞M < M s ,故所得q 的值为完全解的极限载荷。

武汉大学弹塑性力学课程习题集+答案

应力解平衡方程:0F z y x x =+∂∂+∂∂+∂∂zx yx x ττσ,几何方程:xux ∂∂=x ε,x u y u y x xy ∂∂+∂∂=γ, 物理方程:v x λεεσ+=2G x ,xy γτG xy =,边界条件x zx yx x T n m l =++ττσ 1、如图所示的楔形体受水压力作用,水的容重为γ,试写出边界条件解:在x =0上,l = -1,m =0, (σx )x=0⋅ (-1) +(τyx )x =0⋅0 = γy (τxy )x =0⋅ (-1) +(σy )x =0⋅0 = 0 (σx )x =0=-γy (τxy )x =0⋅在斜边上 l = cos α,m = -sin ασx cos α - τyx sin α = 0 τxy cos α -σy sin α = 02、半无限空间体受均布荷载作用根据问题的对称性,位移应只是z 的函数 u z =w (z ) 体积应变是dzdwz u y u x u z y x v =∂∂+∂∂+∂∂=ε 代入平衡微分方程()0222=++g dzwd G ρλ,()()()()B A z g E w ++--+-=212211ρννν应力是()A z G vvy x +--==ρσσ1,()A z G z +-=ρσ,0===zx yz xy τττ 应用边界条件求待定常数:l =m =0,n =1,0==y x T T ,q T z =边界条件是:σz ⎪z =0=q 得A =q /ρg ,B 代表刚度位移,应由位移边界条件确定3、用应力函数ϕ=dxy 3+bxy 求解悬臂梁一端受集中力作用下问题的应力解(不考虑体积力)。

解:(1)显然满足变形协调方程(2)满足静力边界条件 由应力函数求应力分量dx y 6y 22=∂∂=ϕσx ,0x22=∂∂=ϕσy ,b dy 3y x 22--=∂∂∂-=ϕτxy (a )边界条件:在2hy ±=处,()02=±=h y y σ,()02=±=h y xy τ (b ) (a )代入(b )得: 0)2(32=--b hd (c )在x =0的边界(l = -1,m = 0)上,力边界条件要求0dxy 61m l X 0=-=⋅-=+==x x yx x στσ,b dy 31m l Y 2+=⋅-=+=xy y xy τστO α1yx应用圣维南原理近似满足:bh dh 41bydy 1dy Y P 3223+=+=⋅=-⎰h h (d ) 联立(c )和(d )得,h P 23b =,3hP2d -= (e ) 将(e )代入(a )并由12I 3h =,28S 22y h -=,Px -=M 得 y I M =x σ,σy = 0 ,IPS -=xy τ4、简支梁收均匀分布荷载作用,梁高度h ,跨度2L ,试求应力分量和跨中挠度设σy 仅是y 的函数,σy =f(y),即()y f x y =∂∂=22ϕσ,得()()()y f y xf y f x 21221++=ϕ 代入协调方程022=∇∇ϕ得,022122424414442=+++dyfd dy f d dy f d x dy f d x 对于-L ≤x ≤L ,上面方程都成立,所以44dy fd =0,414dy f d =0,224242dy f d dy f d +=0 积分得: f(y)=A y 3+B y 2+C y +D , f 1(y)=E y 3+F y 2+G y +R ,()M Ly Ky Hy y B y A y f ++++--=23452610 因此 ()()⎪⎭⎫⎝⎛++--+++++++=23452323261021Ky Hy y B y A Gy Fy Ey x D Cy By Ay x ϕ 得:()()K Hy By Ay F Ey x B Ay x yx 262226323222++--+++=∂∂=ϕσ DCy By Ay xy +++=∂∂=2322ϕσ()()G Fy Ey C By Ay x yx xy++-++-=∂∂∂-=2323222ϕτ由σx ,σy ,是x 的偶函数,τxy 是x 的奇函数得:E=F=G=0 上下边界条件:()q h y y -=-=2σ,()02==h y y σ,()02=-=h y xy τ,()02==h y xy τ将σx ,σy ,τxy 代入得A=-2q/h 3 ,B=0,C=3q/2h ,D=-q/2由对称性,两端边界条件:()01=*=+==L x x yx x x m l T στσ,()⎪⎭⎫ ⎝⎛+--=*=+==h q y hqL m l T L x xy y xy y 236123τστ,由圣维南原理,()0222===--⎰⎰dy dy T Lx h h x h h x σ,()qL dy dy T Lx h h xyh h y -===--⎰⎰2222τ,()022===--⎰⎰ydy dy y T Lx h h x h h x σ 将σx ,σy ,τxy 代入得h q hqL H 1032-= ,K=0,将以上常数代入σx ,σy ,τxy 得出应力解为⎪⎪⎭⎫ ⎝⎛-+=53422h y h y q y I M x σ,22112⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=h y h y q y σ,I QSxy =τ 其中,()222x L q M -=,qx Q -= RITZ 法1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x y D V by b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω 两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。

弹塑性力学习题及答案

DOC 文档资料本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学 陈明祥版的 课后习题答案++共207页PPT

弹塑性力学 陈明祥版的 课后习题答案
++
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!Leabharlann
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用弹塑性力学习题解答 目 录 第二章 习题答案 ................................................................................ 第三章 习题答案 ................................................................................ 第四章 习题答案 ................................................................................ 第五章 习题答案 ................................................................................ 第六章 习题答案 ................................................................................ 第七章 习题答案 ................................................................................ 第八章 习题答案 ................................................................................ 第九章 习题答案 ................................................................................ 第十章 习题答案 ................................................................................ 第十一章 习题答案 .......................................................................... 1 第二章 习题答案 2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解 该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系

而法向分量满足关系最后结果为 2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解 求出后,可求出及,再利用关系 可求得。 最终的结果为

2.8已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解 求主方向的应力特征方程为

式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 2.9已知应力分量中,求三个主应力。 解 在时容易求得三个应力不变量为,

,特征方程变为 求出三个根,如记,则三个主应力为 记 2.10已知应力分量 ,是材料的屈服极限,求及主应力。 解 先求平均应力,再求应力偏张量,,

,,,。由此求得 然后求得,,解出 然后按大小次序排列得到

,, 2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解 特征方程为记,则其解为,

,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得

对,,代入得 对,,代入得 对,,代入得 2.12当时,证明成立。 解

由,移项之得 证得

第三章 习题答案

3.5 取为弹性常数,,是用应变不变量表示应力不变量。 解:由,可得, 由,得 3.6 物体内部的位移场由坐标的函数给出,为,,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为

,, 该点处微单元体的转动角度为 3.7 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图3.1所示,在一点的3个方向分

别粘贴应变片,若测得这3个应变片的相对伸长为,,

,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将

, ,,,,代入其中,可得 则主应变有

解得主应变,,。由最大主应变可得 上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 3.8 物体内部一点的应变张量为

试求:在方向上的正应变。 根据式,则方向的正应变为

3.9 已知某轴对称问题的应变分量具有的形式,又设材料是不可压缩的,求应具有什么形式? 解: 对轴对称情况应有,这时应变和位移之间的关系为

,,。应变协调方程简化为,由不可压缩条件,可得 可积分求得,是任意函数,再代回

,可得。 3.10 已知应变分量有如下形式,,, ,,,由应变协调方程,试导出 应满足什么方程。

解:由方程,得出必须满足双调和方程。 由,得出 由,得出 由此得,其它三个协调方程自动满足,故对没有限制。

第四章 习题答案

4.3有一块宽为,高为的矩形薄板,其左边及下边受链杆支承,在右边及上边分别受均布压力和作用,见题图4.1,如不计体力,试求薄板的位移。 题图4-1 解:1.设置位移函数为

(1) 因为边界上没有不等于零的已知位移,所以式

中的、都取为零,显然,不论式(1)中各系数取何值,它都满足左边及下边的位移边界条件,但不一定能满足应力边界条件,故只能采用瑞兹法求解。

2.计算形变势能。为简便起见,只取、两个系数。 (2)

(3) 3.确定系数和,求出位移解答。因为不计体力,且注意到,式4-14简化为

(4) (5) 对式(4)右端积分时,在薄板的上下边和左边,不是,就是,故积分值为零。在右边界上有

(6) 同理,式(5)右端的积分只需在薄板的上边界进行,

(7) 将式(3)、式(6)、式(7)分别代入式(4)、式(5)可解出和:

, (8) (9) 4.分析:把式(8)代入几何和物理方程可求出应力分量,不难验证这些应力分量可以满足平衡微分方程和应力边界条件,即式(8)所示位移为精确解答。在一般情况下(这是一个特殊情况),在位移表达式中只取少数几个待定系数,是不可能得到精确解答的。

4.4设四边固定的矩形薄板,受有平行于板面的体力作用(),坐标轴如题图4.2所示。求其应力分量。 题图4-2 解: 1.本题为平面应力问题,可用瑞兹法求解。由题意知位移分量在边

界上等于零,所以,所以式中的、都取为零,且将位移函数设置为如下形式:

(1) 把或代入上式,因为,或,所以,位移边界条件是满足的。 2.把式(1)代入式(9-16),得薄板的变形势能为

(2) 3. 确定系数和。由于位移分量在边界上为零,所以,方程式4-14简化为

(3) 式(2)代入式(3),得

(4) 由于,从式(4)的第一式得,由第二式得 当和取偶数时,和都为零,当和取奇数时,和都为2。因此,当取偶数时,。当取奇数时,

将和代入式(1)得位移分量为 4.利用几何方程和物理方程,可求出应力分量(和取奇数);

4.5有一矩形薄板,三边固定,一边上的位移给定为,见题图4.3,设位移分量为, 式中,为正整数,可以满足位移边界条件。使用瑞兹法求维持上述边界位移而要在处所施加的面力。 题图4-3 解:1.平面应力问题时的变形势能为式 其中

2.确定待定系数。按题意三边固定(),一边只存在而面力待求。所以,

(2) 将式(1)代入式(2),得

当体力分量为零时,,得

当时,,,所以,此时有 ,而 3.位移和应力解答为

4.求上边界施加的面力(设),在处 4.6用伽辽金法求解上例。 解:应用瑞兹法求解上例时,形变势能的计算工作量较大。由于此问题并没有应力边界条件,故可认为上例题意所给的位移函数不但满足位移边界条件,而且也满足应力边界条件,因此,可以用伽辽金法计算。 对于本题,方程可以写成

将上题所给的表达式代入,积分后得

当体力不计时,,此时,而由下式确定:

当时,即,当时,上式成为 由此解出及位移分量如下: 求出的位移和应力分量,以及上边界的面力,都有上例用瑞兹法求得结果相同。

4.7铅直平面内的正方形薄板边上为,四边固定,见题图4.4,只受重力作用。

设,试取位移表达式为

用瑞兹法求解(在的表达式中,布置了因子和,因为按照问题的对称条件,应该是和的奇函数)。 题图4-4 解:1位移表达式中仅取和项:

(1) 2由得变形势能为

(2) 其中 代入式(2),得

(3)

相关文档
最新文档