非圆管雷诺数计算公式
第三章 液压流体力学基础(3)

Re
4vR
2v xv 2 Cr 2
Re>1000可认为是常数,流 量系数Cd=0.67~0.74,阀 口有倒角时Cd=0.8~0.9
Re> 1000 可认 为是 常数
锥阀的流量计算式:
2p Cd dmxv sin 2p
q CdA0
其中: A0 dmh dmxv sin d1 d 2 dm 2 Cd 0.77 ~ 0.82
1、平行平板缝隙
压差流动下的流量: bh3 q p 12l 作剪切流动的流量(相 对运动): 1 q vA u0bh 2 bh3 1 总流量:q p u0bh 12l 2
结论:缝隙的流量与缝隙值的三次方成正比,说明元件缝隙对 对泄漏影响很大。
u0
2、同心环缝隙流量
P1
3、阀腔的通流面积: A
4
(D2 d 2 )
例题3-13
• 图示圆柱形阀芯, D=2cm,d=1cm。 压力油在阀口处的 压力降为 △p1=3×105Pa, 4、动量定理: 在阀腔a点到b点的 F q( 2v 2 1v 1);紊流时, 1、 2 1 压力降 在水平方向上, 液体受力: △p2=0.5×105Pa, Fx q(v 2 cos 90 v1 cos ) qv1 cos (向右) 油的密度 5、根据作用于反作用,阀芯受力: 3 ρ=900kg/m ,通过 F 1 - Fx qv1 cos (向左) 阀口的角度α=69°, 流量系数Cd=0.65,6、阀腔压力降对阀芯的作用力: 求油液对阀芯的作 F 2 ( pa pb) A;向右 用力。 7、液流对阀芯总的作用力:
圆管中水流雷诺数

水流的雷诺数在流体力学中被广泛用于描述流体流动的不稳定性和混沌现象。
本文将介绍雷诺数的概念,并探讨其在圆管中水流中的应用。
1. 雷诺数的概念雷诺数是一种无量纲数,由法国物理学家雷诺在19世纪末提出。
它用来描述流体流动的稳定性和混沌程度。
雷诺数(Re)定义为流体的惯性力和粘性力之比。
雷诺数的公式如下:Re = (ρ * V * L) / η其中,ρ是流体的密度,V是流体的速度,L是流体流动的特征长度,η是流体的粘度。
2. 圆管中水流的雷诺数在圆管中,当水流的速度和管径固定时,雷诺数可以用来描述流体流动的特性和行为。
具体来说,雷诺数越大,流动趋向于无序和混乱;雷诺数越小,流动趋向于有序和稳定。
在圆管中,雷诺数的计算公式变为:Re = (ρ * V * D) / η其中,ρ是水的密度,V是水流的速度,D是圆管的直径,η是水的粘度。
3. 雷诺数的应用雷诺数在圆管中水流中的应用主要体现在以下几个方面:3.1 流体稳定性当雷诺数小于临界雷诺数时,水流呈现出稳定的层流状态,流线整齐且不交错。
在层流状态下,水流的速度分布和压力梯度较为均匀,对于某些实验或工程应用来说,层流状态是必需的。
3.2 转变层流到湍流当雷诺数超过临界雷诺数时,水流呈现出不稳定的湍流状态。
湍流状态下,水流速度和压力分布不规则,出现涡流和旋涡,并且流动非常不稳定。
湍流状态下的水流会引起更大的能量损耗,同时对于某些工程应用来说,湍流状态是不可避免的。
3.3 湍流的阻力湍流状态下的水流相比于层流状态下,对于管壁的阻力更大。
湍流的阻力通常可以用阻力系数来表示,而阻力系数与雷诺数有关。
当雷诺数很小时,阻力系数较小;当雷诺数逐渐增大时,阻力系数会增大。
3.4 管道设计对于设计圆管中的水流系统来说,了解雷诺数的变化对于确定管道尺寸、流速范围和系统参数非常重要。
根据具体的工程需求,可以通过调整流速和管道直径来控制雷诺数从而达到所需的流体状态。
结论雷诺数是描述流体流动稳定性和混沌程度的无量纲数。
流体力学第五章题库

名词解释1.黏性流体单位中立形式的伯努利方程:w a a h gv g pz g v g p +++=++22z 22222111αραρ2.方程适用条件1.流动为定常流动2流体为黏性不可压缩的重力流体3列方程的两过流断面必须是缓变流截面,而不必顾忌两截面间是否有急变流。
3.动能修正系数α的大小取决于过流断面上流速分布的均匀程度,以及断面的形状和大小,流速分布越均匀,其数值越接近于一,流速分布越不均匀,其数值就越大,。
4.流体在其流动过程中要克服黏性摩擦力,总流的机械能沿流程不断减小,总水头线不断降低。
5.相似准则:在几何相似的条件下,两种物理现象保证相似的条件或准则。
6.牛顿数:作用力与惯性力的比值。
Ne=F/ρl ²v ²7.弗劳德数:物理意义为惯性力与重力的比值。
Fr=v/(gl )½ 8.雷诺数:物理意义为惯性力与黏性力的比值。
Re=vl/υ 9.欧拉数:物理意义为总压力与惯性力的比值。
Eu=Δp/ρv ² 10.柯西数:物理意义为惯性力与弹性力的比值。
Ca=ρv ²/K 11.马赫数:(流场中流体为气体)物理意义为惯性力与弹性力的比值。
Ma=v/c 12.韦伯数:物理意义为惯性力与表面张力的比值。
We=ρv ²l/σ13.斯特劳哈尔数:物理意义为当地惯性力与迁移惯性力的比值。
Sr=l/vt14.层流:着色流体和周围的流体互不掺混,流线为直线,流体质点只有沿圆管轴向的运动,而没有径向运动,这种流动状态称为层流或片流。
15.紊流:流体质点不仅有轴向运动,也具有径向运动,处于一种无序的紊乱状态,这种流动状态称为紊流或湍流。
16.边界层:黏性流体流经固体壁面时,在固体壁面法线方向上存在一速度急剧变化的薄层,称为边界层。
17.管道进口段:边界层相交以前的管段称为管道进口段(或称起始段),其长度以L*表示。
18.准定常流动/时均定常流:流场中的时均参数不随时间改变的紊流流动称为准定常流动或时均定常流。
管道阻力计算表格

紊流
7 工业管道当量糙粒高度(K)
mm
0.15
查的
8
工业管道相对粗糙度
/
0.001
9 查莫迪图沿程阻力系数(λ)
0.020
查的
10பைடு நூலகம்
紊流下限
m/s 0.035053333 和流速比较
11
紊流上限
m/s 1.418066667 和流速比较
12
管内流水的流速大于紊流上限值:λ=0.11*(K/d)0.25
13
管内流水的流速上下限值之间:λ=0.11*(K/d+68/Re)0.25
14
管内流水的流速小于下限值:λ=0.3164/Re0.25
15
沿程阻力系数(λ)
/
0.020
大于上限值
16
沿程阻力系数(λ)
/
0.020
上限值之间
17
沿程阻力系数(λ)
/
0.01208
小于下限值
18
沿程阻力损失(m)H=λ×L/d×υ2/2g
序号 1 2 3 4 5
名称 管内水的流速(υ)
管道直径(d) 运动粘度(ν) 动力粘度(η)
密度(ρ)
单位 m/s mm 10-6m2/s 10-6pa·s kg/m³
数值 1.5 150 0.478 469.9 983.2
备注
50℃水查的 50℃水查的 50℃水查的
6
雷诺数(Re)
/
470711
25 当量直径de=4R。当量直径应用到沿程阻力计算和雷诺数计算的公式中。
26
沿程阻力:H=λ×L/de×υ2/2g
27
雷诺数:Re=υde/ν
注:1、铝管和铜管当量粗糙度K≤0.01;2、玻璃管当量粗糙度K≤0.01;3、普通钢 管当量粗糙度K=0.02~0.1;4、镀锌钢管当量粗糙度K=0.15;5、生锈钢管当量粗糙 度K=0.5~1.0;6、铸铁管当量粗糙度K=0.25;7、塑料管当量粗糙度K=0.05;8、具 有轻度腐蚀的无缝钢管K=0.2~0.3;9、具有腐蚀的无缝钢管K=0.5以上;
流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ∙=∙-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα∙-=∙=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du AT (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:hb bh R 2+=,b 为明渠宽度,h 为明渠水深) 15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
工程流体力学(4)

(p+ p s ds)dA s (2)
τ τ
dz pdA θ
(1)
重力
dz ρgdsdA = ρgdAdz ds
ρ gdAds
两端面积力 pdA ( p + dp)dA = dpdA 粘性引起的摩擦阻力
u =0 t
z
τ 2πrds
p s ( p + ds)dA s (2)
定常流:
u u du a =u + =u s t ds
Q V = = 373 c m / s A Vd Re = = 3979 > 2300
ν
Vc = Rec
ν
d
紊流
= 216
cm / s
如果要达到层流,只需将V降到Vc,这时Q下降, 如果要维持原流量不变,采用什么方法?
§5.层流向紊流的过渡
一.脉动现象和时均化 紊流运动实质上是一种非定常运 动。如采用特定仪器(如热线风速仪) 可测出其速度变化如图所示。把这种 运动参数随时间变化的现象称为脉动 现象。同样,其它物理量也是脉动值。
lg h f = lg K + m lg V
A
C
即
h f = KV
m
B v'c
vc
lgV
损失与速度成指数关系。
由实验得出结论: 1 ) 当V < Vc时,m = 1,层流的h f ∝ V, V 与 成一次方的关系。
2 当V > Vc时,m = 1.75 2,h f ∝ V
1.75 2
由此可见,沿程损失与流动状态关系密切, 故在解此类问时,应首先判别流态。
层流
0 Vc
过渡 vc'
紊流
流体力学计算公式
1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ•=•-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα•-=•=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du AT (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:hb bh R 2+=,b 为明渠宽度,h 为明渠水深) 15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2—2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
流体动力学中的雷诺数及其应用
流体动力学中的雷诺数及其应用1. 引言流体动力学是研究流体力学性质和流体行为的分支学科,雷诺数(Reynolds number)是流体动力学中的一个重要参数,用于描述流体中惯性力和粘性力之间的相对重要性。
在此文档中,我们将探讨雷诺数的定义、计算方法以及其在流体动力学中的应用。
2. 雷诺数的定义雷诺数是由英国工程师奥利弗·雷诺兹(Osborne Reynolds)于19世纪末提出的,用于描述流动中的惯性效应和粘性效应。
雷诺数的定义如下:$$Re = \\frac{{\\rho v L}}{{\\mu}}$$其中,Re为雷诺数,$\\rho$为流体的密度,v为流体的速度,L为流动的特征长度,$\\mu$为流体的粘度。
3. 雷诺数的计算方法为了计算雷诺数,我们需要知道流体的密度、速度、特征长度以及粘度。
这些数据可以通过实验测量或数值模拟获得。
3.1 实验测量实验测量是获取流体参数的常用方法之一。
通过在实验室中安装流体力学实验设备,可以测量流体的密度、速度和粘度。
特征长度可以根据流体中的几何形状确定。
3.2 数值模拟数值模拟是计算流体参数的常用方法之一。
通过使用计算流体动力学(CFD)软件,可以模拟流体的行为并计算流体的密度、速度和粘度。
特征长度可以通过模拟中的流动几何形状确定。
3.3 例子假设我们要计算水流在圆管中的雷诺数。
已知水的密度为1000 kg/m³,管道内径为0.1 m,水流速度为1 m/s,水的粘度为0.001 Pa·s。
根据上述公式,我们可以计算得到:$$Re = \\frac{{1000 \\times 1 \\times 0.1}}{{0.001}} = 100000$$因此,水流在该圆管中的雷诺数为100000。
4. 雷诺数的应用雷诺数在流体动力学中有着广泛的应用。
下面将介绍雷诺数在不同领域中的具体应用。
4.1 流体稳定性雷诺数可以用于判断流体流动的稳定性。
流体力学 第6章
6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v
8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数
水力直径——精选推荐
水力直径、水力半径、当量直径1. 水力直径(hydraulic diameter)的引入水力直径是在管内流动(internal pipe flow)中引入的,其目的是为了给非圆管流动取一个合适的特征长度来计算其雷诺数。
非圆管由于沿湿周的壁面剪切应力(wall shear stress)不是均匀分布,只能计算其沿湿周的平均值。
两种情况的表达式比较起来,可以很直观的得到一个比拟,即A/P ~ r/2。
两边同时乘以4,有4A/P ~ 2r(= D)。
这样就将非圆管的4倍截面积除以湿周和圆管的真实直径在水力学意义上等效起来。
计算雷诺数时,对圆管显然是取直径做特征长度的,从而4A/P也就可以作为非圆管的特征长度,称之为“水力直径”。
显然圆管其本身的真实直径也就是水力直径,从物理意义上即可看出,简单的几何关系也易证。
另一个很好的例子是拟无限宽(W >> H)的平行板间流动,其水力直径应近似取2倍的板间距(2H)而不是板间距本身。
2. 水力半径(hydraulic radius)的引入与前者看似关联实则使用场合迥异。
物理来源是相同的,但是其引入的目的是为明槽流动(open-channel flow)取一个合适的特征长度。
最典型的是半圆截面明槽流(或者管内流但是只有下半圆截面积有流体),显然其特征长度取为真实半径r,也即半圆明槽流的水力半径等于真实半径r。
简单数学计算可得,对于半圆明槽流,其A/P = r。
对于其他形状的明槽流,同样定义A/P为其特征长度,称为“水力半径”。
从数学上看,对某一截面形状而言,“水力直径是水力半径的4 倍”这个关系是成立的,但是从物理意义上讲这个关系没有意义。
我们不会同时计算某一种流动的水力直径和水力半径。
对于管内流只用水力直径来表征,而明槽流则只用水力半径来表征。
对应于上段的那个例子,假如去掉两平行板中的上面一块,则流动变成拟无限宽明槽流,其特征长度应取水力半径,近似等于水深H而不是原来的2H。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非圆管雷诺数计算公式
一、引言
流体力学是研究流体在不同条件下运动和力学特性的学科。
在流体力学中,雷诺数是一个重要的无量纲参数,用于描述流体运动的特性。
对于圆管中的流体运动,雷诺数可以通过圆管直径、流体速度和流体动力粘度来计算。
然而,在一些工程和科学应用中,流体是在非圆管中流动的,此时我们需要使用非圆管雷诺数来描述流体运动的特性。
二、非圆管雷诺数的计算公式
非圆管雷诺数的计算公式与圆管雷诺数的计算公式有所不同。
对于非圆管来说,我们需要考虑其几何形状对流体运动的影响。
一种常用的非圆管雷诺数计算公式是基于等效直径的方法。
等效直径是指将非圆管的几何形状转化为一个等效的圆管,使得该圆管具有相同的流体阻力和雷诺数。
根据等效直径的定义,我们可以得到非圆管雷诺数的计算公式如下:
Re = (ρVD)/μ
其中,Re是非圆管雷诺数,ρ是流体的密度,V是流体的速度,D 是等效直径,μ是流体的动力粘度。
三、非圆管雷诺数计算实例
为了更好地理解非圆管雷诺数的计算方法,我们可以通过一个实例来进行计算。
假设我们研究的是一个矩形截面的管道,该管道的宽度为b,高度为h。
我们希望计算在该矩形截面管道中流动的水的非圆管雷诺数。
我们需要计算矩形截面的等效直径。
根据矩形截面的几何形状,可以得到等效直径的计算公式如下:
D = 4A/P
其中,A是矩形截面的面积,P是矩形截面的周长。
接下来,我们需要确定流体的速度和动力粘度。
假设水的速度为V,动力粘度为μ。
我们可以使用非圆管雷诺数的计算公式来计算非圆管雷诺数:
Re = (ρVD)/μ
通过以上步骤,我们就可以得到矩形截面管道中流动的水的非圆管雷诺数。
四、非圆管雷诺数的应用
非圆管雷诺数在工程和科学应用中具有重要的意义。
通过计算非圆管雷诺数,我们可以预测和分析非圆管中流体运动的特性,例如流
体的速度分布、阻力特性等。
在工程上,非圆管雷诺数的计算可以帮助我们优化管道系统的设计。
例如,在输送液体的管道系统中,通过合理地选择管道的形状和尺寸,可以降低阻力,提高流体输送的效率。
在科学研究中,非圆管雷诺数的计算可以帮助我们理解和解释自然界中的一些现象。
例如,在生物学中,通过计算非圆管雷诺数,可以研究鱼类和海洋动物的游动特性,从而揭示它们在水中的行为和适应机制。