触探试验
实验一静力触探试验实验报告书(一)

实验一静力触探试验实验报告书(一)引言概述:在地质工程领域中,静力触探试验是一种常用的地质勘探方法。
本实验旨在通过静力触探试验,对不同地层的力学性质进行研究,为工程项目的设计和施工提供可靠的地质数据和参数。
本报告将详细介绍实验的目的、方法、结果和讨论,并总结本次实验的主要结论。
大点1:实验目的1.1 研究不同地层的力学性质。
1.2 掌握静力触探试验的操作方法。
1.3 分析实验结果,评估地层的承载能力。
小点1.1.1 确定实验区域的选取标准。
小点1.1.2 选择合适的试验点位。
小点1.1.3 确定试验的深度范围。
小点1.2.1 了解静力触探仪器的使用方法。
小点1.2.2 制定合理的试验方案。
小点1.2.3 准备必要的触探工具和配件。
小点1.3.1 对触探曲线进行解读和分析。
小点1.3.2 计算地层的强度指标。
小点1.3.3 归纳地层的特征及承载能力。
大点2:实验方法2.1 选取实验区域,并确定试验点位。
2.2 准备静力触探仪器和配件。
2.3 进行静力触探试验。
2.4 记录实验数据。
2.5 分析触探曲线和计算地层参数。
小点2.1.1 考虑地质条件和实验要求。
小点2.1.2 考察试验点位的可行性和典型性。
小点2.1.3 确定试验点位的布设方式。
小点2.2.1 确保触探仪器和配件的完好性。
小点2.2.2 配置稳定的触探装置。
小点2.2.3 调试仪器和配件的工作状态。
小点2.3.1 按照试验方案进行触探操作。
小点2.3.2 控制触探速度和触探力的稳定性。
小点2.3.3 保护试验设备和人身安全。
小点2.4.1 记录试验点位的具体位置。
小点2.4.2 记录试验过程中的观测和操作。
小点2.4.3 清理试验现场,整理实验数据。
小点2.5.1 采用曲线解读法分析触探曲线。
小点2.5.2 根据地质力学原理计算地层参数。
小点2.5.3 综合分析结果,对各地层进行评价。
大点3:实验结果和分析3.1 触探曲线的特征及解读结果。
重型动力触探试验

目录(Ⅰ)文字部分一、工程概况二、检测试验方法、标准及依据1 检测试验方法2 检测试验主要技术标准及依据三、重型(Ⅱ)动力触探试验概况1 试验工作量布置2 试验概况四、检测试验结果1 检测试验分析判断2 检测试验结果五、结论与建议(Ⅱ)图表部分云南大理至丽江江高速公路(K80+811~K80+813)碎石桩重型(Ⅱ)动力触探试验报告一、工程概况大理至丽江高速公路土建合同段K80+811~K80+813共打了9根碎石桩作试桩,选取3根作重型(Ⅱ)动力触探试验。
二、检测试验方法、标准及依据1. 检测试验方法沉管碎石桩复合地基质量检验目前尚无法定规程,沉管碎石桩复合地基质量检验包括碎石桩施工质量检验和加固效果检验两个方面。
沉管碎石施工质量检验(即成型质量检验)采用方法为动力触探(N63.5)和单桩载荷试验,目的为检验碎石桩成型质量,检测评定的项目应包括碎石桩密实度、桩长及单桩承载力。
碎石桩复合地基加固效果检验采用方法为单桩复合地基平板载荷试验。
根据上述试验对碎石桩复合地基工程质量进行总体评估。
重型(Ⅱ)动力触探试验是检验碎石施工质量(即成型质量)的一种常用方法。
主要是采用一定的锤击能量(锤重63.5kg,自由落距76cm),将一定规格的圆锥探头(探头锥角60°,锥底面积43cm2)打入土中,根据打入土中的难易程度(本次试验采用每贯入10cm的锤击数)来判断碎石桩的成型质量。
(1) 触探试验满足下列要求:1)采用固定落距的自由落锤方式,保证穿心锤自由下落;2)保持探头与触探杆有很好的垂直导向,最大偏斜度不超过2%;锤击速率保持在15~30击/分钟;3)触探一般应连续进行,锤击数大于50时方可停止,在排除异常因素之后应继续进行。
4)现场记录采用每贯入10cm的锤击数为一阵击的实测锤击数N63.5记录一次。
(2)影响因素校正1)触探杆长校正:当触探杆长度小于2米时,锤击数不作校正当触探杆长度大于2米时,按下式校正N63.5=αNN63.5—经杆长校正后的试验锤击数N—贯入10cm的实测锤击数α—触探杆长校正系数,按表1选定或进行内插。
动力触探试验方案

动力触探试验方案目录1.检测内容2.检测方案3.检测结果4.结论1.检测内容本次检测的内容为软基处理段的地基均匀性、密实性及其承载力。
通过动力触探试验,对地基的质量进行评估,为后续的土建工作提供可靠的依据。
2.检测方案本次检测采用动力触探试验,通过对地基进行垂直冲击,测量反弹能量和击穿深度,评估地基的均匀性、密实性和承载力。
试验方案经过编制、审核和审批,保证了检测的准确性和可靠性。
3.检测结果经过试验,软基处理段的地基均匀性良好,密实性较高,承载力符合设计要求。
对于存在的局部松软问题,我们提出了相应的处理措施,以确保工程质量。
4.结论本次检测结果表明,软基处理段的地基质量良好,符合设计要求。
我们将继续加强施工管理,确保工程按照设计要求进行,保证施工质量。
一、动力触探试验范围动力触探试验是一种常用的地基勘察方法,适用于测定土层的物理性质、土层的压缩性和承载力等参数。
试验范围主要包括土壤、砂土、粉土、黏土等不同类型的土层。
二、编制依据本文编制依据国家有关标准和规范,结合实际工程情况,采用动力触探试验的常规方法和流程。
三、检测人员、仪器设备动力触探试验需要专业的技术人员和合适的仪器设备。
检测人员应具备相关的专业知识和技能,并经过培训和考核合格。
仪器设备应符合国家标准和规范要求,保证检测数据的准确性和可靠性。
四、检测环境动力触探试验需要在适宜的环境条件下进行。
检测现场应平整、干燥、无杂物,以确保试验数据的准确性和可靠性。
同时,应注意环境保护,避免对周围环境造成污染和破坏。
五、地基承载力要求地基承载力是动力触探试验的重要参数之一。
在进行试验前,需要明确工程的地基承载力要求,以便于根据试验数据进行合理的分析和判断。
六、检测工作流程动力触探试验的工作流程主要包括准备工作、试验操作、数据记录和处理等环节。
检测人员应按照规范要求,严格执行每个环节的操作流程,确保试验数据的准确性和可靠性。
七、检测中应注意的安全事项动力触探试验需要在现场进行,存在一定的安全风险。
触探试验的计算公式

计算公式;1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压、静力触探试验入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。
静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。
(多为设计单位采用) 。
2、动力触探试验、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。
动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。
目前承建单位一般选用轻型和重型。
①轻型触探仪适用于砂土、粉土及粘性土地基检测, (一般要求土中不含碎、卵石) ,轻型触探仪设备轻便,操作简单,省人省力,记录每打入 30cm 的锤击次数,代用公式为 R=(0.8×N-2)×9.8(R-地基容许承载力 Kpa ,N-轻型触探锤击数) 。
②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为 63.5kg 的穿心锤,以 76cm 的落距,将触探头打入土中,记录打入 10cm 的锤击数,代用公式为 y=35.96x+23.8(y-地基容许承载力 Kpa , x-重型触探锤击数)。
3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为 63.5kg 的、标准贯入试验:穿心锤,以 76cm的恒定高度上自由落下,将一定规格的触探头打入土中 15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中 30 cm,用此 30cm 的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。
动力触探试验详解课件

三、上覆压力的影响
随着贯入深度的增加,土的有效上覆压力和侧压力 都会增加。实验也表明,上覆压力对触探贯入阻力的影 响也是显著的。
但对于一定相对密实度的砂土,上覆压力对圆锥动 力触探试验结果存在一个“临界深度”,即锤击数在此 深度范围内随着灌入深度的增加而增大,超过此深度后, 锤击数趋于稳定,并且临界深度随着相对密度和探头直 径的增加而增大。
三、技术要求
1.为确保恒定的锤击能量,应采用固定落距的自动落 锤装置。
2.锤击时应保持探杆的垂直,锤击过程应防止锤击偏 心、探杆歪斜和探杆侧向晃动。
因此,要求探杆连接后的最初5m最大偏斜度不应 超过1%,大于5m后的最大偏斜度不应超过2%。每贯 入1m,应将探杆转一圈半,使触探能保持垂直贯入, 并减少探杆的侧阻力。贯入深度超过10m后,每贯入 0.2m即旋转一次。
绘制锤击数沿深度的变化曲线,不论是实测的N还是
试 修正的N’,处理方法都相同。
验 资 料 整
以锤击数为横坐标,贯入深度为纵坐标。对轻型动
力触探按每贯入30cm的击数绘制N10—h曲线,重型动力 触探每贯入10cm的击数绘制N63.5—h曲线或N’63.5—h曲线。
理
2.划分土层界限 划分力学分层的原则:考虑动贯入阻力在土层变化
件传输能量效率等因素的影响,要损失一部分能量,应
进行修正:
Ep=e1 e2 e3EM
或直接采用势能定义:Ep=H×Mg(H表示落距) 或近似为 Ep=0.6EM Ep——平均每击传递给圆锥探头的能量; e1——落锤效率系数,对自由落锤,e1≈0.92; e2——能量输入探杆系统的传输效率系数,对于国内通 用的大钢探头,e2≈0.65 e3——杆长传输能量的效率系数,随杆长的增大而增大, 杆长大于3m时,e3≈1。
动力触探仪检测地基承载力试验方法

动力触探仪检测地基承载力试验方法1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压、静力触探试验入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。
静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。
(多为设计单位采用) 。
2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。
动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土。
动力触探仪分为:轻型触探仪、重型触探仪及超重型触探仪三类。
目前承建单位一般选用轻型和重型。
①轻型触探仪适用于:砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石) ,轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm 的锤击次数,代用公式为:R=(0.8×N-2)×9.8 (1)R-地基容许承载力 Kpa ,N-轻型触探锤击数。
②重型触探仪适用于:各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为 63.5kg 的穿心锤,以 76cm 的落距,将触探头打入土中,记录打入 10cm 的锤击数,代用公式为:y=35.96x+23.8 (2)y-地基容许承载力 Kpa , x-重型触探锤击数。
、标准贯入试验: 3.的标准标准贯入仪试验是动力触探类型之一,其利用质量为 63.5kg 的恒定高度上自由落下,将一定规格的触探头打穿心锤,以 76cm 贯入试验:,然后开始记录锤击数目,接着将标准贯入器再打入土中 30 cm,入土中 15cm 标准贯入试验是国内广泛应用(N)作为标准贯入试验指标,用此 30cm 的锤击数的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。
静力触探试验
孔压探头
18
§2.2 静力触探试验的仪器设备
1)单桥探头 主要由外套筒、顶柱、空心柱等组成。
.
19
§2.2 静力触探试验的仪器设备
单桥探头是我国所特有的一种探头类型。 它是将锥头与外套筒连在一起,因而只能测量 一个参数——比贯入阻力ps 。这种探头结构简 单,造价低,坚固耐用,是我国使用最多的一 种探头。
ps值是单桥探头在贯入过程中所受到的总 的贯入阻力P与探头圆锥锥底截面积A的比值, ps = P/A。比贯入阻力反映了探头锥尖阻力和侧 壁摩擦阻力两部分的综合作用。
.
20
§2.2 静力触探试验的仪器设备
2)双桥探头 锥头与摩擦筒分开,可同时测锥尖阻力qc 和侧壁摩阻力fs两个参数的探头。
.
21
§2.2 静力触探试验的仪器设备
2.探杆
探杆是传递贯入力的媒介,为保证触探孔的垂直, 探杆一般采用高强度合金无缝钢管制造。
探杆也有一定的规格和要求,应有足够的强度, 应采用高强度无缝管材,其屈服强度不宜小于 600MPa。探杆与接头的连接要有良好的互换性。每 根探杆的长度一般为1m,其直径应和探头直径相同; 但单桥探头探杆直径应比探头直径小。
孔压静探试验中,与先前孔之间的距离正常情况下应至少为孔 直径的25倍。
3.探杆平直度的检查
前5m,弯曲度不得大于0.05%,5m以后的,孔深小于10m时,
不得大于0.2%,大于10m时,不得. 大于0.1%。
38
§2.4 试验方法和技术要求
四、触探仪的贯入
1.进行贯入试验时,若遇到密实、粗颗粒或含碎 石颗粒较多的土层,在试验前应先进行预钻孔,必要 时使用套筒防止孔壁的坍塌。在软土或松散土中,预 钻孔应该穿过硬壳层。
圆锥动力触探试验.
1974年和1982年在欧洲召开的二次国际触探学术会议,
用穿心锤的重量(或锤击能量)的不同,将动力触探分为:
为轻型、重型、超重型三种。其规格及适用土类见表4-1。
表4-1 圆锥动力触探的类型及规格
类 型 直径(mm) 探头规格 截面积(cm2) 锥角(°) 落锤 锤质量(kg) 落距(cm) 轻 型 40 12.6 60 10 50 25 贯入30cm击数 N10 重 型 74 43 60 63.5 76 42 贯入10cm击数 N63.5 超重型 74 43 60 120 100 50~60 贯入10cm击数 N120
表4-4 碎石土的密实度
锤击数N63.5 N63.5<=5 5<N63.5<=10 10<N63.5<=20 N63.5>=20 密实度 松散 稍密 中密 密实
注:(1)本表适用于平均粒径小于50且最大粒径不超过100mm的 卵石、碎石、圆砾、角砾。 (2)表内N63.5为修正后的平均值。
2.确定地基土的承载力
→探头做功,因此,能量平衡:(见图4-1)
Rd Ah Ep W N
N Ep Rd A h As
(h/N=s,表示平均每击的贯入度)
Ep
或
Rd Ah N Ep
二、原理表述
当规定一定的贯入深度 h,采用一定规格(规定的 探头截面、圆锥角、重量)的落锤和规定的落距,那么 锤击数N的大小就直接反映了动贯入阻力 Rd的大小,即 直接反映被贯入土层的密实程度和力学性质。因此,实 践中常采用贯入土层一定深度的锤击数作为圆锥动力触
第4章 圆锥动力触探试验
第一节 概述 第二节 试验的基本原理
第三节 试验的技术要求 第四节 试验影响因素分析 第五节 试验的资料整理及应用
圆锥动力触探试验
二、人为因素
落锤的高度、锤击的速度和操作方法; 读数量测方法和精度; 触探孔的垂直程度、探杆的偏斜度 钻孔的护壁、清孔清孔
三、其他因素
土的性质 触探深度 地下水
圆锥动力触探试验
第一节 概述 第二节 测试设备与测试原理 第三节 测试程序与要求 第四节 测试数据处理 第五节 测试精度影响因素 第六节 测试成果的应用
2、日本法
qd
4N(10k0P)a
其中 NN1N2 2
qf 5NcAc2NsAs(kN)
式中:N1为桩端处的N值,N2为桩尖上10B范围内的平均N值
四、评价地基土的密实度
孔隙比
砂土的密实度
碎石土密实度分类(《岩土工程勘察规范》)
五、 确定地基土的变形模量
六、 确定抗剪强度
(2)贯入时应使穿心锤自由落下。地面上的触探杆的高度不 宜过高,以免倾斜与摆动太大;
(3)锤击速率宜为每分钟15~30击; (4)及时记录每贯入0.10m所需的锤击数; (5)对于一般砂、圆砾和卵石,触探深度不宜超过12~15m;
超过该深度时,需考虑触探杆的侧壁摩阻的影响; (6)每贯入0.1m所需锤击数连续三次超过50击时,应停止试
三、 绘制Nx-H曲线
圆锥动力触探试验
第一节 概述 第二节 测试设备与测试原理 第三节 测试程序与要求 第四节 测试数据处理 第五节 测试精度影响因素 第六节 测试成果的应用
一、设备因素
穿心锤的形状和质量; 探头的形状和大小; 触探杆的截面尺寸、长度和质量; 导向锤座的构造及尺寸; 所用材料的材型及性能。
一、划分土类或土层剖面
锤击数越少, 土的颗粒越 细;
锤击数越多, 土的颗粒越 粗。
动力触探直方图及土层划分
动力触探试验检测方法
动力触探试验检测方法动力触探试验是一种常用的地质勘探方法,用于获取地下岩层的物理性质和地质结构信息。
本文将介绍动力触探试验的基本原理、仪器设备以及应用范围。
一、动力触探试验的基本原理动力触探试验是利用冲击力将探测器送入地下岩层,通过测量探测器在不同深度下的冲击力和阻力来推测岩层的物理性质和地质结构。
其基本原理如下:1. 冲击力与阻力关系:当探测器冲击地下岩层时,岩层的物理性质和地质结构会对冲击力和阻力产生影响。
通过测量冲击力和阻力的变化,可以推断岩层的硬度、密度、含水量等信息。
2. 冲击力传感器:动力触探试验主要依靠冲击力传感器来测量冲击力的变化。
冲击力传感器通常具有高灵敏度和快速响应的特点,能够准确记录冲击力的大小和变化趋势。
3. 阻力测量:除了测量冲击力,动力触探试验还需要测量阻力。
阻力的大小取决于岩层的物理性质和地质结构,通过测量阻力的变化,可以推断岩层的孔隙度、压缩性等信息。
二、动力触探试验的仪器设备动力触探试验需要使用特定的仪器设备来完成,主要包括以下几种:1. 冲击器:冲击器是动力触探试验的核心设备,用于将探测器送入地下岩层。
冲击器通常由一个重锤和一个冲击杆组成,重锤通过释放势能产生冲击力,将冲击杆推入岩层。
2. 探测器:探测器是用于测量冲击力和阻力的传感器,通常由冲击力传感器和阻力传感器组成。
冲击力传感器用于测量冲击力的大小和变化趋势,阻力传感器用于测量阻力的大小和变化趋势。
3. 钻杆和钻头:钻杆和钻头用于钻孔,使冲击器能够进入地下岩层。
钻杆通常由多节组成,可以根据需要进行延伸或缩短,钻头则用于切削地下岩层。
4. 数据记录仪:数据记录仪用于记录冲击力和阻力的变化,通常具有高精度和大容量的存储空间。
数据记录仪可以将测量数据保存下来,便于后续分析和处理。
三、动力触探试验的应用范围动力触探试验广泛应用于地质勘探和工程建设领域,主要用于以下方面:1. 地质勘探:动力触探试验可以提供地下岩层的物理性质和地质结构信息,对于地质勘探具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
触探试验触探试验是一种常用的原位测试技术。
由于其设备简单、易于操作、使用效率较高,因而应用较为广泛。
在长期的工程实践中,积累了大量的试验数据和丰富的应用经验,测试成果较为可靠。
试验方法包括动力触探(DPT )、标准贯入(SPT )和静力触探(CPT )三类。
其基本方法是, 用动力冲击或静力将一个特制的探头, 按一定的速率贯入土层中,以剪切破坏的方式挤开土层。
根据探头所承受的贯入阻力,划分土层、确定土层的承载力和变形性等指标。
1动力触探试验(Dynamic penetration test )1 概述动力触探试验是利用一定的锤击动能,将一定规格的圆锥探头贯入土体中,根据探头贯入土层的难易程度(贯入击数或贯入阻力的变化),测求土层工程地质性质的一种现场原位测试技术。
适用于一般粘性土、素填土、砂土、碎石土及各类强风化、全风化硬质岩石和软质岩石。
(1) 动力触探试验的类型:根据锤击能量,动力触探试验分为轻型、重型及超重型三种(表1-1)。
表1-1 轻型、重型及超重型动力触探技术规格参数类型 落锤重 (kg ) 落距 (cm ) 形状锥底面积 (cm 2) 贯入记录 量的符号 主要适用岩土轻型 10 50 实心圆锥 12.6 贯入30cm 锤击数 N 10浅部的填土、砂土、粉土、粘性土 重型 63.5 76±2 实心圆锥 43 贯入10cm 锤击数 N 63.5 砂土、中密以下碎石土、极软岩 超重型 120 100 实心圆锥 43 贯入10cm 锤击数 N 120 密实和很密的碎石土、软岩标准贯入63.576±2空心圆筒 9.6贯入30cm 锤击数N 砂土、粉土、一般粘性土(2) 动力触探试验的工程目的:动力触探试验指标主要用于以下工程目的: (a )测定地基土的强度及变形指标; (b )评价场地均匀性;(c )确定地基持力层及承载力; (d )检测地基加固与改良质量。
(3)动力触探试验的技术原理: 动力触探的锤击能量,除消耗于锤与探杆的碰撞、探杆的弹性变形及探杆与孔壁的摩擦外,主要用于克服土层对探头的阻力。
前者为无效能量,后者为有效能量。
若略去无效能量,则:eQgH = R d A s R d = eQgHN / A h式中:R—探头的单位动阻力(N / m2);dA —探头的横截面机(m2);s —每击的贯入度(m),s = h / N;h —贯入深度(m);N —贯入深度为h时的锤击数;e —锤击效率(与落锤方式、导杆摩擦及锤击偏心等有关);g —重力加速度(g=9.81m / s2);Q —锤质量(kg);H —落距(m)。
当e、Q、H、A、h一定时,由探头的单位动阻力或锤击数反映出的动贯入阻力与土层的密度及力学指标有关。
通过大量的试验及测试数据建立起来的经验关系,可应用于工程实践。
动力触探试验的影响因素较为复杂。
其中,某些因素可以采用标准化措施来控制,如试验方法、机械设备、落锤方式;而有些因素则只能通过经验校正予以处理,如杆长及地下水等。
2轻型动力触探(N)试验10适用于深度小于4m的一般粘性土、粘性素填土和砂土层。
(1)试验设备:轻型动力触探设备主要由圆锥探头、触探杆、穿心落锤三部分组成(图1- 1),落锤升降由人工操纵。
图1-1 轻型动力触探试验设备示意图穿心杆 2.穿心锤 3.锤垫 4.触探杆 5.探头(2)试验步骤:(a)探头贯入土层之前,先在触探杆上标出从锥尖起向上每30cm的位置。
(b)一人将触探杆垂直扶正,另一人将10Kg穿心锤从锤垫顶面以上50cm 处自由落体放下, 锤击速度以每分钟15-30击为宜。
′(击/30cm)。
(c)记录每贯入土层30cm的锤击数N10(d)为避免因土对触探杆的侧壁摩檫而消耗部分锤击能量,应采用分段触探的办法,即贯入一段距离后,将锥尖向上拔,使探孔壁扩径,再将锥尖打入原位置,继续试验。
或每贯入10cm,转动探杆一圈。
(e)当N10′>100或贯入15cm锤击数超过50时,可停止试验。
(3)资料整理:(a)轻型动力触探由于贯入深度浅,可不作杆长修正,即N10′= N10。
(b)绘制轻型动力触探击数N10与深度h的关系曲线(图1-2)。
h(m)图1-2轻型动力触探击数N10与深度h的关系曲线(4)试验成果的应用:确定地基承载力特征值fa, 见表1-2、1-3及1-4。
表1-2 一般粘性土承载力特征值f a与N10的关系注:本表引自《建筑地基基础规范》(GBJ7-89)a10a10本表引自西安市资料.(5)试验记录格式(6)工程实例:唐山钱家营建筑地段地表至7m 深度内为稍密至中密状态中、细砂。
1976年7月28日唐山大地震,7m 以上的饱和砂岩土严重液化。
现采用降水强夯处理地基。
强夯前后的轻便动探值对比曲线见图1-3,可看出强夯加固的效果是很显著的,特别对于中砂层。
32036002.804.004.405.2062深度土性黄色细砂层灰白色中砂层N (击数)10图1-3 唐山钱家营工地降水强夯前后轻便触探击数对比3重型动力触探(N 63.5)试验主要用于碎石土、砂土及一般粘性土。
(1)试验设备:重型动力触探试验的设备主要由触探头、触探杆及穿心锤三部分组成(可参见图2-3)。
落锤升降由钻机操纵(2)试验步骤:(a )探头贯入土层之前,先测出锥尖到锤垫底面之间长度,即触探杆长度。
(b )待锤尖打入到预测位置时,从触探杆上标出,从地面向上每10cm 的位置。
(c )穿心锤自由落距76cm ,记录每贯入土层10cm 的锤击数N 63。
.5′。
锤击速率宜为15-30击/min 。
(d )每加上一根触杆时,需记录所加杆的长度,重新统计触探杆长度。
(e )若土质较松软、探头贯入速度较快时,亦可记录锤击5次的贯入深度。
(f )对触探杆侧壁摩擦影响较大的土层,可考虑采用分段触探的办法。
(参见轻型动探相关内容)。
(g )如N 63.。
5′>50,连续三次,可停止试验。
(3)资料整理:(a)触探杆长度的校正:当触探杆长度大于2m 时,需按下式校正:N 63。
.5=a ·N 63。
.5′式中:N 63。
.5—修正后的重型动探击数a--为触探杆长度校正系数,查表1-5。
(b)触探杆侧壁摩擦影响的校正:对于砂土和松散-中密的圆砾、卵石层触探深度在15m 内,一般可不考虑侧壁摩擦的影响。
(c)地下水影响的校正: 对于地下水位以下的中、粗、砾砂和圆砾、卵石,锤击数(N 63.5)可按下式修正: N 63.5= 1N ’63.5+ 0(d) 绘制重型动探击数N 63.5与深度h 的关系曲线。
表1-5 动探杆长度校正系数α注:l 为杆长。
(4)试验成果的应用:(a )确定地基土承载力特征值fa (原规范为标准值f k )(表1-6,1-7):表1-6 碎石土、砂土地基承载力特征值fa 与N 63.5关系注:本表引自《建筑地基基础设计规范》(GB50007-2002)63。
.5注:本表引自广东省建筑设计研究院(b)确定地基土的变形模量E 0(表1-8):表1-8 圆砾、卵石土的变形模量E 0与N 63。
.5击数平均值的关系注:本表引自铁道部第二勘测设计院(1988年)(c)确定地基土(碎石土)的密实度(表1-9)及地基土(砂土)的密实度(表1-10):表1-9 碎石土密实度与N 63。
.5平均值的关系注:本表引自《建筑地基基础设计规范》(GB50007-2002),本表适用于平均粒径小于等于50mm, 且最大粒径不超过100mm 的卵石、碎石、圆砾、角砾。
63。
.5注:N 63.5系指因杆长影响校正而未经地下水影响校正的锤击数。
本表引自《工程地质手册》第三版表3-2-13。
(5)记录格式:动力触探记录表工程名称 地 点 动探类型钻孔编号 钻孔标高 地下水位时间 校核 记录 (6)工程实例: 四川某工地高填方地基处理检测在填石强夯试验区,夯前及夯后15天、30天进行重型动探检测,动探击数N 63.5与深度h 的关系曲线见图1-4。
处理后的地表以下10m 深度内N 63。
.5皆大于5击,满足设计要求,而0—3.5m 内更是远远高于设计要求。
夯前曲线夯后15天曲线夯后30天曲线051015202530012345678910铺碎石层软弱土层现地面原清除根植土后地面N (击/10cm)h(m)63.5图1-4 四川某工地高填方地基处理(填石强夯试验区)重型动力触探曲线图4 超重型动力触探(N 120)试验适用于密实的碎石土或埋深较大的、较厚的碎石土。
(1) 试验要点:贯入时应使空心锤自由下落100cm, 地面上的触探杆不应过高; 贯入过程尽量连续,锤击速率宜为15-25击/min ;贯入深度不宜超过20m。
(2) 影响因素校正:(a)触探杆长度的校正:当触探杆长度大于1m时, 锤击数(N120)可按下式修正:N120= a N式中 a--触探杆长度修正系数,查表取值。
(b)触探杆侧壁摩擦影响的校正:N 120 = FnN式中 Fn--触探杆侧壁摩擦影响修正系数,查表取值。
2 标准贯入试验(Standart penetration test)2.1概述标准贯入实际上是一种特殊的动力触探试验,适用于砂土、粉土、一般粘性土及强风化岩等。
该试验用质量为63.5kg的穿心锤,以76cm的自由落距,将一定规格的标准贯入器预先打入土中0.15cm,然后再打入0.30cm,记录0.30cm的锤击数,称为标准贯入击数(N)。
标准贯入试验的工程目的是:(1)划分土层类别、采集扰动试样;(2)判断砂土的密实度或粘性土及粉土的稠度;(3)估测土的强度及变形指标、确定地基土的承载力;(4)评价砂土及粉土的振动液化;(5)估算单桩承载力及沉桩可能性;(6)检验地基加固处理质量。
2.2试验设备标准贯入试验由触探头(又称贯入器、对开式管筒)、锤垫及导向杆、落锤(质量为63.5kg的穿心锤)三部分组成(图1-5)。
落锤距离由自动脱钩装置控制。
图1-5 标准贯入试验设备穿心锤;2.锤垫;3.探杆;4.贯入器;5.出水孔;6.贯入器内壁;7.贯入器靴2.3试验步骤(1)先用钻具钻至欲测土以上15cm。
且钻具拔出后孔底与孔壁应保证无软粘土等挤出堵塞钻孔。
(2)标贯探头入土之前,先测出探头靴口到锤垫底面之间的长度,及探杆长度。
(3)将探头压入欲测土表面,然后进行锤击,锤击速率为15-30击/min,锤击落距76±2cm,先记录贯入15cm的预打击数,然后记下再贯入30cm 的标贯实测击数N′。
(4)若30cm内锤击数超过50,则停止试验。
(5)若需进行下一深度的贯入试验时,一般应隔1m后在进行。
(6)整个标贯过程中,孔壁不能有垮坍或孔壁上软粘土等挤出,造成探杆侧壁摩擦加大。