2011考研数学基础班概率论与数理统计讲义

合集下载

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设X1和X2是两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和.f2(x),分布函数分别为F1(x)和F2(x),则( ).A.f1(x)+f2(x)必为某一随机变量的概率密度B.F1(x)F2(x)必为某一随机变量的分布函数C.F1(x)+F2(x)必为某一随机变量的分布函数D.f1(x)f2(x)必为某一随机变量的概率密度正确答案:B解析:解一由命题3.2.1.2知,仅(B)入选.解二F1(x)F2(x)=P(X1≤x)P(X2≤x)=P(X1≤x,X2≤x).取X=max{X1,X2),并由于P(X1≤x,X2≤x)=P(max{X1,X2)≤x),则由定义可知,F1(x)F2(x)必为随机变量X=max{X1,X2}的分布函数.仅(B)入选.解三因故(A)不正确.又故(C)错误.取Xi在区间[0,2]上服从均匀分布,则于是有因而(D)也不成立.仅(B)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计2.[2011年] 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是( ).A.f1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)F1(x)正确答案:D解析:解一因f1(x),f2(x),F1(x),F2(x)分别为随机变量的密度函数与分布函数,故f1(x)≥0,f2(x)≥0,0≤F1(x)≤1,0≤F2(x)≤1,所以f1(x)F2(x)+f2(x)F1(x)≥0.而故f1(x)F2(x)+f2(x)F1(x)为概率密度.仅(D)入选.解二由题设有则f1(x)F2(x)+f2(x)F1(x)=F1’(x)F2(x)+F1(x)F2’(x)=(F1(x)F2(x))’.因F1(x)F2(x)为随机变量max{X1,X2)的分布函数(见命题3.2.1.2),故其导数f1(x)F2(x)+f2(x)F1(x)必为随机变量max{X1,X2}的概率密度.仅(D)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计3.[2018年] 设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且则P{X ≤0}=( ).A.0.2B.0.3C.0.4D.0.5正确答案:A解析:因为f(1+x)=f(1-x),所以f(x)的图形关于x=1对称,因此P(x≤0)=P(x≥2).又因为所以P(x≤0)+P(x≥2)=2P(x≤0)=1-0.6=0.4,从而P(x≤0)=0.2,故选(A).知识模块:概率论与数理统计4.[2010年] 设随机变量X的分布函数则P(X=1)=( ).A.0B.1/2C.1/2-e-1D.1-e-1正确答案:C解析:因P(X=1)=P(X≤1)-P(X<1)=F(1)-F(1-0),而故P(X=1)=1-e-1-1/2=1/2-e-1.仅(C)入选.知识模块:概率论与数理统计5.[2013年] 设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{-2≤Xi≤2)(i=1,2,3),则( ).A.p1>p2>p3B.p2>p1>p3。

2011考研数学一真题和答案解析

2011考研数学一真题和答案解析

2010年考研数学一真题一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限lll l →∞[l 2(l −l )(l +l )]l=(A)1 (B)l (C)l l −l (D)l l −l 【考点】C 。

【解析】 【方法一】这是一个“1∞”型极限lll l →∞[l 2(l −l )(l +l )]l =lll l →∞{[1+(l −l )l +ll (l −l )(l +l )](l −l )(l +l )(l −l )l +ll }(l −l )l +ll(l −l )(l +l )l =l l −l【方法二】 原式=lll l →∞llll l 2(l −l )(l +l )而lll l →∞lll l 2(l −l )(l +l )=lll l →∞lll (1+(l −l )l +ll(l −l )(l +l ))=lll l →∞l ∙(l −l )l +ll(l −l )(l +l ) (等价无穷小代换)=l −l则lll l →∞[l 2(l −l )(l +l )]l=l l −l【方法三】对于“1∞”型极限可利用基本结论:若llll (l )=0, llll (l )=0,且llll (l )l (l )=l则ll l (1+l (l ))l (l )=l l ,求极限由于lll l →∞l (l )l (l )=lll l →∞l 2−(l −l )(l +l )(l −l )(l +l )∙l =llll →∞(l −l )l 2+lll (l −l )(l +l )=l −l则lll l →∞[l 2(l −l )(l +l )]l =l l −l【方法四】lll l →∞[l 2(l −l )(l +l )]l=lll l →∞[(l −l )(l +l )l 2]−l=lll l →∞(1−l l )−l ∙lll l →∞(1+l l )−l=l l ∙l −l=l l −l综上所述,本题正确答案是C 。

湖南省考研数学专业复习资料概率论与数理统计重点整理

湖南省考研数学专业复习资料概率论与数理统计重点整理

湖南省考研数学专业复习资料概率论与数理统计重点整理概率论与数理统计是数学专业考研中非常重要的一门课程。

它不仅在理论上有着广泛的应用,而且在实际问题的解决中也起着重要的作用。

为了帮助湖南省考研数学专业的同学们更好地复习概率论与数理统计,本文将对该课程的重点内容进行整理和总结。

一、概率论的基本概念和性质1.1 概率的定义与性质概率是事件发生的可能性大小的度量,其定义包括古典概型、几何概型和统计概型。

概率具有非负性、规范性、可列可加性等基本性质。

1.2 随机变量与概率分布随机变量是概率实验结果的数值描述,分为离散型和连续型随机变量两种。

概率分布描述随机变量取值的概率,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 数学期望数学期望是随机变量取值的平均值,对于离散型随机变量和连续型随机变量有不同的计算方法。

1.4 方差与协方差方差衡量随机变量取值与其均值之间的离散程度,协方差衡量两个随机变量之间的相关程度。

二、随机变量的常用分布2.1 离散型随机变量的分布常见的离散型随机变量分布包括伯努利分布、二项分布、多项分布、泊松分布等,每种分布的特点和计算方法需要熟练掌握。

2.2 连续型随机变量的分布常见的连续型随机变量分布包括均匀分布、正态分布、指数分布、伽玛分布等,每种分布的特点、密度函数和分布函数需要熟悉。

2.3 极限定理中心极限定理和大数定律是概率论中两个重要的极限定理,它们在实际问题中的应用非常广泛。

三、参数估计与假设检验3.1 参数估计参数估计是根据样本数据估计总体参数的值,包括点估计和区间估计两种方法。

最大似然估计是常用的点估计方法。

3.2 假设检验假设检验是根据样本数据判断总体参数是否满足某种假设,包括单个总体的假设检验和两个总体的假设检验。

四、多元分布及相关分析4.1 多元随机变量及其分布多元随机变量是对多个随机变量的描述,包括离散型和连续型两种情况。

多元随机变量的分布包括联合分布、边缘分布和条件分布。

考研数学(三)考试大纲解析(概率论与数理统计 第7章 参数估计)【圣才出品】

考研数学(三)考试大纲解析(概率论与数理统计 第7章 参数估计)【圣才出品】

L(x1, x2,, xn; ) maxL(x1, x2,xn; )
这样得到的
与样本值
x1,
x2
,
,
xn
有关,常记为
( x1 ,
x2
,
,
xn
)
,称为参数
的最大似然
估计值,而相应的统计量 ( X1, X 2,, X n ) 称为参数 的最大似然估计量.
3.最大似然估计值的求法
(1)在很多情形下, p(x; ) 和
(
)
三、最大似然估计法
1.似然函数
(1)离散型
若总体 X 属离散型,其分布律 P{X x} p(x; ), 的形式为已知, 为待估参数, 是 可能取值的范围,设 X1, X2,, Xn 是来自 X 的样本,则 X1, X2,, Xn 的联合分布律为
n
p(xi; )
i 1
又设 x1, x2,, xn 是相应于样本 X1, X2,, Xn 的一个样本值,易知样本 X1, X2,, Xn 取到 观察值 x1, x2,, xn 的概率,亦即事件{X1 x1, X2 x2,, Xn xn} 发生的概率为

n
f (xi; )dxi
i 1
n
n
其值随 的取值而变化,取 的估计值 使概率
i 1
f (xi ; )dxi.
取到最大值,但因子
dxi
i 1
n
L( ) L(x1, x2,, xn; ) f (xi; )
不随 而变,故只需考虑函数
i1
的最大
值,这里 L( )称为样本的似然函数.若
L(x1, x2,, xn; ) maxL(x1, x2,, xn; )
xl

考研概率论与数理统计教材

考研概率论与数理统计教材

一、引言概率论与数理统计是考研数学中的重要组成部分,对于理工科专业考生而言,这部分内容尤为重要。

为了帮助考生更好地复习考研概率论与数理统计,本文将为您推荐几本优秀的教材,并提供相应的使用指南。

二、教材推荐1. 《概率论与数理统计教程》(茆诗松)本书为普通高等教育“十二五”规划教材,由著名概率论与数理统计专家茆诗松教授主编。

全书共八章,前四章为概率论部分,后四章为数理统计部分。

本书注重基本概念和统计思想的讲解,强调各种方法的应用,适合初次接触概率统计的读者阅读。

2. 《概率论与数理统计》(王松桂)本书是一本高等学校非数学专业的概率论与数理统计教材,共9章,内容包括随机事件、随机变量、随机向量、数字特征、极限定理、样本与统计量、参数估计、假设检验,回归分析与方差分析。

本书注重概率统计概念的阐释,并注意举例的多样性。

3. 《21世纪高等院校教材:概率论与数理统计》(经济、管理类)本书根据教育部颁布的经济、管理本科专业《经济数学》教学大纲编写,共11章。

内容包括随机事件及其概率、随机变量及其分布、多维随机向量及其概率分布、随机变量(向量)的数字特征、大数定律与中心极限定理等概率论基础,以及数理统计的基本概念、参数估计、假设检验、方差分析、回归分析等数理统计基础。

本书注重基本知识、基本技能、基本方法的训练以及实际应用能力的培养。

4. 《新核心理工基础教材:概率论与数理统计学习指导与习题精解》本书紧扣教材,共分10章,第1章至第5章是概率论,第6章至第10章是数理统计。

每一章由精选习题、习题精解、阅读与提高三部分组成,并将一些新的研究成果融入本书之中。

本书可作为高等院校统计学专业以及理工类等其他专业师生阅读参考,也可作为考研参考用书。

三、使用指南1. 熟悉教材内容:在复习过程中,要全面了解教材内容,掌握各个章节的基本概念、定理和公式。

2. 注重基础知识:概率论与数理统计是一门基础学科,要注重基础知识的学习,为后续的深入学习打下坚实的基础。

考研高数重点概率论数理统计公式整理(超全)

考研高数重点概率论数理统计公式整理(超全)

的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)


∩ Ai = ∪ Ai
德摩根率: i=1
i=1
A∪B = A∩B, A∩B = A∪ B
(7)概率 的公理化 定义
设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
这样一组事件中的每一个事件称为基本事件,用ω 来表示。
基本事件的全体,称为试验的样本空间,用 Ω 表示。
一个事件就是由 Ω 中的部分点(基本事件ω )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 Ω 的子集。 Ω 为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) = L( A) 。其中 L 为几何度量(长度、面积、体积)。 L(Ω)
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
j =1
此公式即为贝叶斯公式。
P(Bi ) ,( i = 1 , 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i = 1, 2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了

数学真题2011考研试卷

数学真题2011考研试卷数学真题2011考研试卷包含了多个部分,涵盖了高等数学、线性代数、概率论与数理统计等领域。

以下是2011年考研数学真题的模拟内容:一、选择题(共10题,每题3分,共30分)1. 设函数\( f(x) = x^2 + 2x - 3 \),求\( f(-1) \)的值。

A. -2B. 0C. 2D. 42. 已知向量\( \vec{a} = (1, 2) \),\( \vec{b} = (3, 4) \),求向量\( \vec{a} \)和\( \vec{b} \)的点积。

A. 11B. 14C. 8D. 103. 根据题目所给的线性方程组,判断其解的个数。

A. 唯一解B. 无穷多解C. 无解D. 无法判断...(此处省略其他选择题)二、填空题(共5题,每题4分,共20分)1. 若\( e^x = 2 \),则\( x \)的值为______。

2. 已知矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),求矩阵\( A \)的行列式。

3. 若随机变量\( X \)服从正态分布\( N(\mu, \sigma^2) \),求其期望和方差。

...(此处省略其他填空题)三、解答题(共5题,每题10分,共50分)1. 证明:若\( \lim_{x \to a} f(x) = L \),则\( \lim_{x \to a} [f(x)]^2 = L^2 \)。

2. 解线性方程组:\[\begin{cases}x + 2y + 3z = 6 \\4x + 5y + 6z = 15 \\7x + 8y + 9z = 24\end{cases}\]3. 证明:若函数\( f(x) \)在区间\( [a, b] \)上连续,则至少存在一点\( c \in [a, b] \),使得\( \int_{a}^{b} f(x)dx = f(c)(b - a) \)。

概率论与数理统计15讲

6
例如 一个人的身高和体重是非常有关系的, 但 是又并不完全是严格的函数关系, 那么关 系程度究竟有多大呢? 一个人的吸烟量和他的平均寿命是有关系 的, 这个关系量又有多大呢?
7
一种化肥的施用量和农作物的产量是有关 系的, 这个关系的大小又是如何呢? 这样一些问题都希望能够用一个数字就表 示出来, 这就是人们想到要用协方差和相 关系数的原因.
27
p k P { X k } C n k p k q n - k ( k 0 , 1 ,, n ) 如果X~b(n,p), 则X可看作是由n个取1概率 为p的相互独立的0-1分布的随机变量 Xi,i=1,2,...,n的和,
X=X1+X2+...+Xn
28
X的分布函数为
F(x) Cn kpkqn-k kx
n
n p
C p q k -1 k -1 ( n -1) - ( k -1) n -1
k 1
令i k -1
n -1
n p
C p q i i ( n -1) - i n -1
np
i0
43
考虑E[X(X-1)]=E(X2)-E(X)
n
E [ X ( X - 1)]
k (k
-
1)
C
k n
p k q n-k
39
二项分布的期望和方差 如X~b(n,p), 则X可看作n个相互独立的0-1分 布的随机变量X1,X2,...,Xn之和, X=X1+X2+...+Xn
40
而且我们知道0-1分布的期望为p, 方差为pq, 其中q=1-p. 因此易得
E(X)=E(X1)+E(X2)+...+E(Xn)=np

概率论与数理统计__典型例题及其分析

概率论与数理统计 典型例题及其分析第三章 多维随机变量及其分布Y ⑴ 求,a b 应满足的条件; ⑵ 若X 与Y 相互独立 ,求 a,b 的值. 【思路】 先利用联合分布律的性质1ijijp=∑∑确定a,b 应满足的条件,再利用独立性的定义来求出a 与b. 【解】⑴ 因为1ij ijp =∑∑,所以11111,84248b a +++++= 因此 11.24a b += ⑵ 由于 X 与Y 相互独立,即对所有,i j x y 有 ()()(),,i j i j P X x Y y P X x Y y ===== 于是 ()()()112,121,46a P X Y P X Y a a ⎛⎫⎛⎫=======++⎪⎪⎝⎭⎝⎭解得 112a =或1.2a =同理 ()()()131,212,88b P X Y P X Y B b ⎛⎫⎛⎫=======++ ⎪⎪⎝⎭⎝⎭解得 18b =或3.8b = 再由11.24a b +=知 13,128a b == 【解毕】 【技巧】 由于X 与Y 的独立性,故对所有的,i j x y 应有()()(),,i j i j P X x Y y P X x Y y ===== 因此,我们可在联合分布律表中找到几个比较容易计算的值来分别确定分布律中的参数,例如()13,1,24P X Y ===而()()1131,66P X Y a ⎛⎫===∙+ ⎪⎝⎭可求得1;12a =又()13,2,8P X Y ===而18求得3.8b =这种参数的确定方式,需要读者熟练掌握. 例3.2.2 (1999年考研题)设随机变量X 与Y 相互独立 ,下表列出了二维随机变量(),X Y 的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空间处:- 62 -j【思路】 利用边缘分布律的求法及独立性来进行,例如,从11,86p +=求得11,24p =再利用独立性知1111.6p p =⨯从而知11,4p =等等. 【解】 利用;i ij jij jip p pp ==∑∑以及 1i jijp p==∑∑ 与独立性 ij i j p p p =. 求解空格内的数值,故11111111111,,68246p p p p p =-===⨯即11,4p =又由121,p p +=可得2131.44p =-= 反复运用上列公式,可求得 1322232313111,,,,.128423p p p p p ===== j例3.2.3 (1999年考研题)已知随机变量1X 和2X 的概率分布分别为 1x -1 0 1 2x 0 1 与 P111 424 P 1122, 而且()120 1.P X X ==求1X 和2X 的联合分布;问: ⑴ 1X 和2X 是否独立? ⑵ 为什么? 【思路】 已知1X 和2X 的边缘分布,一般是不能确定1X 和2X 的联合分布的,但题中给了一附加条件()120 1.P X X ==因此就要从条件入手加以分析,再利用边缘分布与联合分布的关系,就可求解此题了.独立性的判断是比较简单的.【解】⑴ 由()120 1.P X X ==知()1200,P X X ≠=即()()12121,11,10.P X X P X X =-===== 于是1X 和2X 的联合分布有如下结构:1j p 从而利用边缘分布律与联合分布律的关系知()()()1121211,01,1,P X P X X P X X =-==-=+==即 1110,4p +=从而得111.4p = 同理可知31222111,,0.p p p ===故1X 和2X 的联合分布律为1j p ⑵ 由以上结果知 ()120,00,P X X === 而 ()()12111000.224P X P X ===⨯=≠ 可见,1X 与2X 不独立. 【技巧】先.将边缘分布的数据以及由条件()1201P X X ==中对应数据填入表中,得到联合分布律表的基本结构,再来求其余ij p 的值,是对解离散型随机向量的基本技巧.按独立性的要求,可以检验1X 与2X 是否独立,特别对不独立的说明只需找出一对(),i j x y ,使ij i j p p p ≠即可.例3.2.4 将两封信投入3个编号为1,2,3的信箱,用,X Y 分别表示投入第1,2号信箱的信的数目,求(),X Y 的边缘分布律,并判断X 与Y 是否独立.【思路】 首先确定(),X Y 的所有可能取值,并用古典概型求出取相应值的概率,即可得到(),X Y 的联合分布律,剩下的问题也就迎刃而解了.【解】 将2封信投到3个信箱的总投法239,n ==而X 和Y 的可能取值均为0,1,2,于是- 64 -()0,0P X Y P ===(两封信都投入第3号信箱)=1;9()1,0P X Y P ===(两封信中一封投入第1号信箱,另一封投入第3号信箱)11212.99C C == 同理可得:()()220,1;1,1;99P X Y P X Y ====== ()()()1,22,12,20.P X Y P X Y P X Y ========= 这样,可得(),X Y 的联合分布律,又由于()()()()22,,0,1,2,,,0,1,2.i i P X k P X k Y i k P X k P X i Y k k ============∑∑故所求的分布律为X 的边缘分布律在表中的最后一列,Y 的边缘分布律在表中的最后一行. 由于()10,09P X Y ===,而()()44100,999P X P Y ===⨯≠故X 与Y 不独立. 【解毕】 【技巧】 二维离散型随机变量的联合分布律,在实际问题中可用事件的乘机(交)的概率求得,此时概率的乘法公式是十分常用的计算技巧. 例3.2.5 设(),X Y 服从区域(){}2,:01D x y y x =≤≤-上的均匀分布,⑴ 写出(),X Y 的联合密度函数;⑵ 求X 和Y 的边缘密度函数; ⑶ 求概率()2P Y X ≥.【思路】 先画出区域D 的图形,再按上面的解法来求解. 【解】 (1)由于区域D 是由曲线21y x =-和0y =所围成的(如图3.2.1所示),其面积为()12141.3D x dx -=-=⎰ 所以(),X Y 的联合密度为()23,01,40, y xf x y ⎧≤≤-⎪=⎨⎪⎩其他图3.2.1⑵ X 的边缘密度函数为()()()()2120331,11,11,440, 0, x X x x dy x f x f x y dy -+∞-∞⎧⎧⎪--<<⎪-<<===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 而Y 的边缘密度函数为()()3,011,40, 0, Y dx y y f y f x y dy +∞-∞⎧<<⎪<<===⎨⎪⎪⎩⎩⎰其他其他 ⑶ 记(){}2,:G x y y x =≥,则G D ⋂为图3.2.2阴影部分,从而()()()()2221,,33 .442Gx G Dx P Y X P X Y G f x y dxdydxdy dxdy -⋂≥=∈====⎰⎰⎰⎰⎰【寓意】 本题要求熟悉二维均匀分布和计算边缘密度及概率的基本方法,求这些问题的技巧读者应牢牢掌握,最关键的问题是激发呢区间和积分区域的确定. 图 3.2.2例3.2.6 设二维随机变量(),X Y 的概率密度为 (), 0,,0, Ay Ae x y f x y -⎧<<=⎨⎩其他⑴ 确定常数A ;⑵ 求随机变量X 的密度()X f x ;⑶ 求概率()1P X Y +≤. (后二问为1992年考研题) 【解】⑴ 记D 为(),f x y 的零区域,即 (){},:0D x y x y =<< 其图形如图3.2.3所示.由联合密度的性质得(),1f x y dxdy +∞+∞-∞-∞=⎰⎰,从而有()01, .AyAyDxI f x y dxdy Aedxdy dx Ae dy A+∞+∞+∞+∞---∞-∞====⎰⎰⎰⎰⎰⎰ 因此,A=1. ⑵ X 的边缘密度为 ()(), 0, 0,0, 00, 0yx X x e d yx e x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰⑶ 设(){},:1G x y x y =+≤,则D G ⋂如图3.2.4所示.故()()1112121, 12.xyyGD GxP X Y f x y dxdy edxdy dx e dy e e -----⋂+≤====+-⎰⎰⎰⎰⎰⎰- 66 -图 3.2.3 图3.2.4【技巧】 在利用(),1f x y dxdy +∞+∞-∞-∞=⎰⎰确定(),f x y 中的常数时,若(),0f x y ≠的区域为D ,则只需用(),1Df x y dxdy =⎰⎰就可以了.例3.3.1 设(),X Y 的联合分布律为求:⑴ 常数a; ⑵ 联合分布函数在点31,22⎛⎫⎪⎝⎭处的值31,;22F ⎛⎫ ⎪⎝⎭ ⑶ ()1|0.P X y ==【解】⑴ 由联合分布律的性质1ij ijp =∑∑知 1111,446ij ijp a ==+++∑∑ 求得1.3a =⑵(),X Y 的联合分布函数(),F x y 在点31,22⎛⎫⎪⎝⎭处的值 ()()3131111,,1,11,0.2222442F p X Y P X Y P X Y ⎛⎫⎛⎫=≤≤===-+===+= ⎪ ⎪⎝⎭⎝⎭⑶ ()()()11,0341|0.110743P X Y P X Y P X ========+ 【解毕】 【技巧】 求联合分布函数(),F x y 时,只需把取值满足,i j x x y y ≤≤的点(),i j x y 的概率ij p 找出来,然后求和就可以了,值得注意的是不要有遗漏.而求条件分布律时的关键是将其边缘分布求出即可,而边缘分布律的求法在前节已反复强调过多次.例3.3.2 已知随机变量X 和Y 联合概率密度为 ()4, 01,01,,0, xy x y f x y ≤<≤<⎧=⎨⎩其他求⑴ 条件密度()||X Y f x y 及()||;Y X f y x ⑵ X 和Y 的联合分布函数(),F x y .(第二问为1995年考研题) 【思路】 根据条件密度的定义,我们首先要求出X 与Y 的边缘密度,然后再来求条件密度.而联合分布函数的求法是一个较为繁琐的工作,需要分区域讨论,这些区域不能遗漏. 【解】⑴ 由于X 的边缘密度为 ()()104, 012, 01 ,0, 0, X x y d yx x x f x f x y dy +∞-∞⎧≤<≤<⎧⎪===⎨⎨⎩⎪⎩⎰⎰其他.其他同理,有 ()()2, 01,,0, Y y y f y f x y dx +∞-∞≤<⎧==⎨⎩⎰其他故当01y <<时,()Y f y >0,且 ()()()|4, 01,,2|0, X Y Y xyx f x y yf x y f y ⎧≤<⎪==⎨⎪⎩其他从而,在{}Y y =条件下,X 的条件密度为 ()|2, 01,01,|0, X Y x x y f x y ≤<<<⎧=⎨⎩其他同样可得,在{}X x =条件下,Y 的条件密度为 ()|2, 01,01,|0, Y X y y x f y x ≤<<<⎧=⎨⎩其他⑵ 对联合分布函数()(),,F x y P X x Y y =≤≤要分区域讨论.对于0x <或0y <,有 ()(),,0;F x y P X x Y y =≤≤= 对于01,01,x y ≤<≤<有 ()2200,4;yx F x y uvdudv xy ==⎰⎰对于1,1x y ≥≥,有 (),1;F x y = 对于1,01,x y ≥≤<有 ()()2,1,;F x y P XY y y =≤≤= 对于1,01,y x ≥≤<有 ()()2,,1;F x y P X x Y x =≤≤= 从而,X 和Y 的联合分布函数为 ()22220, 00,01,01,,, 01,1,, 1,01,1, 1,1x y x y x y F x y x x y y x y x y<<⎧⎪≤<≤<⎪⎪=≤<≤⎨⎪≤≤<⎪≤≤⎪⎩或【技巧】 由于本题中,X 与Y 的地位完全平等,因此,在求条件密度时,只需求出一个,另一个用对- 68 -称性即可得到,此对称性在(),F x y 中也有很好的体现,对称性的利用也经常是我们解决数学问题的一种技巧,另外,在求(),X Y 的分布函数时,一定要牢牢记住它的定义:()(),,.F x y P X x Y y =≤≤对一切,x y 都要讨论,它是一个分区域函数,不同值的定义范围一定要证明. 例3.4.1 设二维随机变量(),X Y 的概率密度函数为 ()()2,01,0,,0, ky x x y x f x y ⎧-≤≤≤≤=⎨⎩其他试求常数k ,并问X 与Y 是否相互独立?【思路】 常数k 的确定仍是利用联合密度的性质,而独立性质的判断只须验证是否成立()()(),,X Y f x y f x f y =为此,首先要求出X 与Y 的边缘密度()X f x 与()Y f y .【解】 由联合密度的性质知()()()1010151,22,24xx y f x y dxdy ky x dxdy k dx x ydy k +∞+∞-∞-∞≤≤≤≤==-=-=⎰⎰⎰⎰⎰⎰ 所以,24.5k =(),X Y 关于X 的边缘密度为()()()()2024122, 012, 0 1,550, 0, x X x ydy x x x x f x f x y dy +∞-∞⎧⎧-≤≤-≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其他.其他而(),X Y 关于Y 的边缘密度为()()()()122412, 01,34,01,52,50, 0, Y y ydx y y y y y x f y f x y dx +∞-∞⎧⎧≤<-+≤≤⎪⎪-===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 很明显,当01,0,x y x <<<<时,有 ()()(),,X Y f x y f x f y ≠ 所以X 与Y 不互相独立. 【注】本例中,(),X Y 的联合密度(),0f x y ≠的区域是三角形区域(){},:01,0D x y x y x =≤≤≤≤.虽然(),f x y 在D 上可表达成分离变量形状 ()()()12,f x y kg x g y =,这里,()12,g x x =-()2.g y y =但需要注意的是,只有当D 为矩形区域(){},:,D x y a x b c y d =≤≤≤≤(包括全平面、半平面等)时,()()()12,f x y kg x g y =才是使X 与Y 相互独立的充要条件.从而本题中X 与Y 不是相互独立的.如果(),X Y 的联合密度改为()()~~2,01,01,,0, k y x x y f x y ⎧⎪-≤≤≤≤=⎨⎪⎩其他则此时,X 与Y 必相互独立.例3.4.2 设X 和Y 是两个相互独立的随机变量,X 服从区间()0,1上的均匀分布,Y 服从参数12λ=的指数分布,求a 的二次方程220a Xa Y ++=有实根的概率.【思路】 方程220a Xa Y ++=有实根当且仅当2440,X Y ∆=-≥故本题是求概率()2P X Y ≥,而要计算此概率必须知道X 与Y 的联合密度,因此 首先必须根据题中独立性的假定求出(),.f x y【解】 有题设知,X 与Y 的概率密度分别为 ()1 010, X x f x <<⎧=⎨⎩,其他. 和 () 00, y 0Y x f y ⎧>⎪=⎨⎪≤⎩y-21e 2.由于,X Y 相互独立,故X 与Y 的联合密度为 ()()(), 01,0,0, X Y x y f x y f x f y ⎧<<>⎪==⎨⎪⎩y-21e 2其他又因为方程220a Xa Y ++=有实数当且仅当2440,X Y ∆=-≥故所求概率为()()()()2221120000101, 1 1110.x x yx y x y P X Y f x y dxdy dxdy dx dy dx dx ≥≥<<>⎛⎫≥====- ⎪ ⎪⎝⎭=-=Φ-Φ⎤⎦⎰⎰⎰⎰⎰⎰⎰⎰22y y x ---222x -211e e e 22e而()()10,10.8432Φ=Φ=(查正态分布表),故方程220a Xa Y ++=有实根的概率为0.1448. 【技巧】 本题是二维连续型随机变量的综合题,要求读者熟悉均匀分布,指数分布的定义,掌握独立性和概率计算的基本方法,知道怎么利用独立性构造联合分布.同时,要求大家在计算形如2-Ax e的积分时,如何应用正态分布的性质和特征,这种计算技巧,在概率论、微积分中是常用的.例3.4.3 一电子仪器由两个部件构成,以X 和Y 分别表示两部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为 ()()0.50.50.51,0,0,,0, x y x y e e e x y F x y -+--⎧--+≥≥⎪=⎨⎪⎩其他⑴ 问X 和Y 是否独立; ⑵ 求两个部件的寿命都超过100小时的概率.α【解】 (方法1)直接利用分布函数计算. ⑴ X 与Y 的边缘分布函数分别为()()0.51, 0,,0, 0.x X e x F x F x x -⎧-≥=+∞=⎨<⎩ 与 ()()0.51, y 0,,0,y 0.y Y e F y F y -⎧-≥=+∞=⎨<⎩ 故有 ()()(),, ,,X Y F x y F x F y x y =-∞<<+∞ 从而,X 与Y 相互独立. ⑵ 由于X 与Y 相互独立,故- 70 -()()()()()()()0.050.050.10.1,0.10.10.110.110.1 10.110.1 .x y P X Y P X P Y P X P Y F F eeeα---=>>=>>=-≤-≤⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤=--==⎡⎤⎣⎦⎣⎦(方法2)利用概率密度进行计算.⑴ 以(),f x y ,()(),X Y f x f y 分别表示(),,,X Y X Y ,的概率密度,则()()()0.5,0.25, 0,0,,0, x y F x y e x y f x y x y -+⎧∂≥≥⎪==⎨∂∂⎪⎩其他. ()()0.50.5,0,,0, x X e x f x f x y dy +∞--∞⎧≥==⎨⎩⎰其他. ()()0.50.5,0,,0, y Y e y f y f x y dx +∞--∞⎧≥==⎨⎩⎰其他. 由()()(),, (,)X Y f x y f x f y x y =-∞<<+∞知X 与Y 独立. ⑵()()0.50.10.10.10.1,0.10.25.x y P X Y dy edx e α+∞+∞-+-=>>==⎰⎰ 【解毕】【技巧】 用分布函数和概率密度均可以判定随机变量的独立性,具体应用哪种方法要依题而定.一般较为常用的是概率密度的方法,但本题中用前一方法反而简单些.在本题的计算时,读者要注意X 与Y 的对称性,不必重复计算,另外,利用分布函数(),F x y 的性质也可以直接计算出α,即()()()()()0.10.1,0.1,0.1,,0.10.1,0.1.P X Y F F F F e α-=>>=+∞+∞-+∞-+∞+=例3.5.1 设二维随机变量的联合分布律为求:(1)1;Z X Y =+(2)2Z X Y =(3)3;Z Y=(4)()4max ,Z X Y =的分布律 【思路 】 思路与一维离散型随机变量的函数的分布律的计算类似,注意上面介绍的技巧.【解】 我们将(),i j x y 的取值与取这些值的概率以及要计算的所有随机变量的函数()1,2,3,4k Z k =的Y X Y从而得到:(1)1Z X Y =+的分布律为(2)2Z X Y =的分布律为 Y(3)3XZ=的分布律为(4)()4,Z max X Y =分布律为【注】(1)二维离散型随机变量的函数的分布律的计算是有一定的方法可循的,读者在利用上述方法计算时要搞清楚它的背景.在求XY的分布律时,注意要求()00.P Y =≠ (2)如果已知X 与Y 独立,且X 与Y 的分布律给定时,求(),Z g X Y =的分布律的方法是:首先利用独立性构造出X 与Y 的联合分布律表,然后再按本题类似的技巧处理. 例3.5.2 (1987年考研题)设随机变量X 与Y 相互独立,其概率密度函数分别为()1,01,0, X x f x ≤≤⎧=⎨⎩其他.和 (), 0,0, y 0y Y e y f y -⎧>=⎨≤⎩. 求随机变量2Z X Y =+的概率密度函数. 【思路】 这是计算两个独立随机变量和的概率密度的典型题,可有两种解法,一是通过2Z X Y =+的分布函数来求解.另一是利用卷积公式来计算. 【解】 (方法1)分布函数法.因为,X Y 相互独立,所以(),X Y 的联合概率密度函数为()()(), 01,0,,0, y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他.故2Z X Y =+的分布函数为 ()()()22,.Z X Y ZF z P X Y Z f x y dxdy +≤=+≤=⎰⎰记(),0f x y ≠的区域为(){},:01,0D x y x y =≤≤>,积分区域为(){},:2,G x y X Y Z =+≤于是().y Z D GF z e dxdy -⋂=⎰⎰为此,考虑区域D G ⋂的情形.① 当0z ≤时,D G ⋂≠∅(见图3.5.1),于是,()0.Z F z = ② 当02z <≤时,D G ⋂为图3.5.2中的阴影部分,于是()()()22220111.2z xyyx z z Z D GF z e dxdy dxe dy e dx z e ππ-----⋂===-=-+⎰⎰⎰⎰⎰图3.5.1 图3.5.2当2z >时,D G ⋂为图3.5.3中的阴影部分,于是()()1220111.2z xyy z Z D GF z e dxdy dxe dy e e ----⋂===--⎰⎰⎰⎰所以,随机变量2Z X Y =+的概率密度为 ()()()()'20, 0,11, 02,211, 2.2z z z zz f z F z e z e e z --⎧⎪≤⎪⎪==-<≤⎨⎪⎪->⎪⎩(方法2)卷积公式法.若记2W X =,为求W 的密度函数,我们先考虑W 的分布函数()()()()2220, 0,, 02,21, 2.W wXw F w P WwP Xw P X w w f x d x w w-∞⎛⎫=≤=≤=≤⎪⎝⎭≤⎧⎪⎪==<≤⎨⎪>⎪⎩⎰故W 的概率密度为()1, 02,20, W w f w ⎧<≤⎪=⎨⎪⎩其他.图3.5.3因为,X Y 相互独立,所以W 与Y 也相互独立,从而2Z X Y W Y =+=+的概率密度可按卷积公式计算,即 ()()()z W Y f z f wf z wd w+∞-∞=-⎰为使被积函数非零,则必须满足条件 02,0,w z w <≤⎧⎨->⎩ 即 02,.w w z <≤⎧⎨<⎩ 从而,分情况讨论:① 若0,z ≤则{}{}02,w w z <≤⋂<=∅于是 ()0;z f z = ② 若02,z <≤则 {}{}{}020,w w z w z <≤⋂<=<<故 ()()()0111;22zz w zz f z e dw e ---==-⎰ ③ 若2z >,则{}{}{}020,w w z w z <≤⋂<=<<故 ()()()220111.22z w z z f z e dw e e ---==-⎰ 综上知 ()()()20, 0,11, 02,211, 2.2z z zz f z e z e e z --⎧⎪≤⎪⎪=-<≤⎨⎪⎪->⎪⎩【技巧】 这类问题的求解,主要工作量是求分段函数的积分和积分上、下限的确定,希望读者仔细体会此题求解的方法,得到举一反三的效果.第一种分布函数的方法是通常的方法,第二种卷积公式法仅适用随机变量和的情形.其实,对两随机变量和的线性组合,我们也有如下推广的卷积公式:设(),X Y 的联合概率密度为(),f x y ,则()0,0Z aX bY a b =+≠≠的概率密度为()11,,.z z ax z by f z fx dx f y dy b b a a +∞+∞-∞-∞--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭⎰⎰不妨用此公式去验证一下本题的结论. 例3.5.3 设二维随机变量(),X Y 的概率密度函数为 ()(), 0,0,,0, x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他求Z X Y =-的概率密度. 【思路】 用分布函数法.【解】 显然,当0z ≤时,有 ()()()0;z F z P Z z P X Y z =≤=-≤= 当0z >时,有 ()()()()()00,.x y z x y zx y zy F z P Z z P X Y z f x y dxdy e dxdy -+-≤-≤>>=≤=-≤==⎰⎰⎰⎰此积分的积分区域如图3.5.4所示.因此,化此重积分为累次积分,得()()()()03331112221.z x zx zx y x y z zx zz z z z z F z dxedy dxedye e e e e ++∞+-+-+------=+⎛⎫=-++- ⎪⎝⎭=-⎰⎰⎰⎰所以有 ()1, 00, 0.z Z e z F z z -⎧->=⎨≤⎩从而Z X Y =-的概率密度为()(), 0,0, 0.z Z Z e z df z F z dz z -⎧>==⎨≤⎩ 图3.5.4 【寓意】 本题考查的是给定(),X Y 联合概率密度的条件下,求X 和Y 的函数的分布函数,关键是对二重积分确定其积分区域.例3.5.4 设二维随机变量(),X Y 服从取区域(){},:0,0D x y x a y a =<<<<上的均匀分布,试求:(1)XZ Y=的概率密度;(2)()max ,M X Y =的概率密度. 【思路】 利用分布函数法来处理,先分别求出Z 和M 的分布函数,然后再求导.【解】 (1)由于(),X Y 的概率密度为 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故当0z <时,()0.Z X F z P Z Y ⎛⎫=≤=⎪⎝⎭而当01z <<时,有()()201,.2zya Z xz yX z F z P z f x y dxdy dy dx Y a ≤⎛⎫=≤=== ⎪⎝⎭⎰⎰⎰⎰当1z ≥时,有 ()()2011,1.2a aZ xx z yzX F z P z f x y dxdy dx dy Y a z≤⎛⎫=≤===- ⎪⎝⎭⎰⎰⎰⎰从而XZ Y =的概率密度为 ()()20, 0,1, 0<z<1,21, 1.2Z Z z d f z F z dz z z<⎧⎪⎪==⎨⎪⎪≥⎩(2)由于 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故 ()()1, 0,,0, X x a f x f x y dy a+∞-∞⎧<<⎪==⎨⎪⎩⎰其他. ()()1, 0,,0, Y y a f y f x y dx a +∞-∞⎧<<⎪==⎨⎪⎩⎰其他.从而,X 与Y 相互独立,且均服从()0,a 上的均匀分布,故对()max ,M X Y =的分布函数有()()()()()()()()()22max ,,, 0,0, M X Y F z P M z P X Y z P X z Y z P X z P Y z z z a F z F z a =≤=≤=≤≤=≤≤⎧<<⎪==⎨⎪⎩其他,.由此得()max ,M X Y =的概率密度为 ()()22, 0<z<a,0, .M M zd f z F z adz ⎧⎪==⎨⎪⎩其他 【注】 此题时考查对随机变量的商及极值函数的分布的计算,其中的关键仍然时积分区域的确定.当然,商运算等也已有现成的公式,我们在此一并介绍给读者.若(),X Y 的联合密度为(),f x y ,则有()()()()()()(),; ,;11,; ,.X Y X YXY X Y f z f x z x dx f z f x x z dx z f z f x dx f z f zy y dy x x y +∞+∞+--∞-∞+∞+∞-∞-∞=-=-⎛⎫== ⎪⎝⎭⎰⎰⎰⎰综例3.6.1 在10件产品中有2件一等品,7件二等品和1件次品,从10件产品中不放回地抽取3件,用X 表示其中的一等品数,Y 表示其中的二等品数.求:(1)(),X Y 的联合分布律;(2),X Y 的边缘分布律;(3)X 和Y 是否独立; (4)在 0X =的条件下,Y 的条件分布律.【解】 ⑴ 依题设知X 只能取0,1,2,Y 只能取0,1,2,3.显然,当2i j +<或3i j +>时,有 (),0.P X i Y j ===当23i j ≤+≤时,由古典概率知 ()()3271310,0,1,2,0,1,2,3.i j i j C C C P X i Y j i j C --===== 将这些一一计算并列表后,即得(),X Y 的分布律的具体表示. ⑵ ,X Y 的边缘分布律也列于分布律表中,具体形式如下:⑶ 而()()000,120P X P Y ===≠因此,X 与Y 不相互独立. ⑷ 在0X =的条件下,Y 的条件概率为 ()()()0,|0,0,1,2,3.0P X Y j P Y j X j P X =======因此Y 的条件分布律如下:【寓意】本例时二维离散型随机变量的综合题,首先要求读者了解如何用古典概型来求解相关的概率,进而考查联合分布律与边缘分布律的关系及独立性的判别,条件分布律的计算只需知道条件概率的定义便可给出.综例 3.6.2 设12,34,,ξξξξ独立同分布,且 ()()00.6,10.4,1,2,3,4.i i P P i ξξ=====(第一问为1994年考研题)求:(1)行列式1234ξξξξξ=的概率分布;(2)方程组112231420,0x x x x ξξξξ+=⎧⎨+=⎩ 只有零解的概率.【思路】 要求行列式ξ的分布律,先要将ξ的所有可能取值找到,然后利用独立性将取这些值的概率计算出来,而第二问就是求系数行列式0ξ≠的概率. 【解】(1)记114223,,ηξξηξξ==则 142312ξξξξξηη=-=-由于12,34,,ξξξξ相互独立,故12,ηη也相互独立,且12,ηη都只能取0,1两个值,而()()()()()122323111,1110.16,P P P P P ηηξξξξ==========()()120010.160.84.P P ηη====-= 随机变量12ξηη=-有3个可能取值-1,0,1,易见()()()()121210,1010.840.160.1344,P P P P ξηηηη=-=======⨯= ()()()()121211,0100.160.840.1344,P P P P ξηηηη========⨯= ()()()01110.7312.P P P ξξξ==-=--== 于是行列式ξ的概率分布为(2)由于齐次方程 112231420,0.x x x xξξξξ+=⎧⎨+=⎩ 只有零解的充要条件是系数行列式不为0,故此题就简化为求概率 ()()01010.73120.2688.P P ξξ≠=-==-=【技巧】 本题实质上是求多维离散型随机变量的函数分布的问题,通过引入变量12,ηη将其化为二维随机变量函数分布问题,问题的解决最关键的是用到了独立性的性质:若随机变量12,,,n ξξξ相互独立,则()112,,,m g ξξξ与()212,,,m m n g ξξξ++也相互独立.综例3.6.3 设随机变量(),X Y 服从(){}22,:0,1D x y y xy =≥+≤上的均匀分布,定义随机变量,U V如下:0, 0,1, 0,2, .X U X Y X Y <⎧⎪=≤<⎨⎪≥⎩0, 3,1, 3.XV X⎧≥⎪=⎨<⎪⎩ 求(),U V 的联合概率分布,并计算()0.P UV ≠【思路】 写出(),U V 的所有可能取值,并利用均匀分布的特征计算其取值的概率.【解】 由题设知,(),X Y 的联合密度函数为 ()()()2, ,,,0, ,.x y D f x y x y D π⎧∈⎪=⎨⎪∉⎩(),U V 有6个可能取值:()()()()()0,0,0,1,1,0,1,1,2,0和()2,1.由,U V 的定义知()()()()()()()()000,0,1,0,1,10,021, .4AOC BCE x yx yP U V P P U V P P U V P X Y X P X Y S f x y dxdy dxdy S π≤<≤<===∅===∅===≤<<=≤<====⎰⎰⎰⎰扇其中,AOC S 扇和BCE S 分别表示图3.6.1中扇形AOC 与半圆BCE 的面积.同理有()()()()()()()()()10,10,0 ,212,0, ,612,1,.12BCE BCE AOF BCE S P U V P X X P X S S P U V P Y X X P X S S P U V P Y X X P Y X S ===<<=<=====≤≥=≥=====≤≥=≤<==扇COE 扇BOF 扇所以,(),U V 的联合概率分布为图 3.6.1从而 ()()()01,12,1.4123P UV P U V P U V ≠===+===+= 【技巧】 本题是求连续型随机变量的离散值函数的分布问题,解题过程中巧妙地应用了均匀分布的性质从而简化了计算.综例3.6.4 设随机变量(),X Y 的联合概率密度为 (), 0,,0, .y cxe x y f x y -⎧<<<+∞=⎨⎩其他⑴ 求常数c; ⑵ X 与Y 是否独立?为什么? ⑶ 求()()|||,|X Y Y X f x y f y x ; ⑷ 求()()1|2,1|2;P X Y P X Y <<<= ⑸ 求(),X Y 的联合分布函数; ⑹ 求Z X Y =+的密度函数; ⑺ 求()1P X Y +<; ⑻ 求()()min ,1P X Y <.【解】 (1)根据(),1,f x y dxdy +∞+∞-∞-∞=⎰⎰得 ()20013.22y yy ccdy cxe dy y e dy c +∞+∞--===Γ=⎰⎰⎰这里利用了特殊函数()10x x e dx αα+∞--Γ=⎰的性质:()()1,αααΓ+=Γ故 1.c =(2)先分别计算X 和Y 的边缘密度.()(),0, 0,,0, 0.0,0yxX x xe dy x xe x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰()()21, 0, y 0,,20, y 0.0, 0y y yY xxe dx y y e f y f x y dx y -+∞--∞⎧⎧>>⎪⎪===⎨⎨⎪⎪≤⎩≤⎩⎰⎰由于在0x y <<<+∞上,()()(),X Y f x y f x f y ≠,故X 与Y 不独立. (3)由条件分布密度的定义知()()()2|2,0,,|0, .X Y Y xx y f x y yf x y f y ⎧<<<+∞⎪==⎨⎪⎩其他 ()()()|,,0,|0,.x y Y X X f x y e x y f y x f x -⎧<<<+∞==⎨⎩其他 (4)直接由条件概率定义知()()()()()1212120222201,121,221|2.21512yxy Y dx xe dyf x y dxdy e e P X Y P X Y P Y ef y dyy e dy ----∞-∞---∞--<<<<====<-⎰⎰⎰⎰⎰⎰又由条件密度的性质知 ()()1|1|2|2X Y P X Y f x dx -∞<==⎰而 ()|,02,|220, .X Y xx f x ⎧<<⎪=⎨⎪⎩其他 ()111|2.24x P X Y dx <===⎰(5)由于()(),,,F x y P X x Y y =≤≤故有: 当0x <或0y <时,(),0.F x y = 当0y x ≤<<+∞时,有()()2200011,,11.22y yv vv y F x y P X x Y y dv ue du v e dv y y e ---⎛⎫=≤≤===-++ ⎪⎝⎭⎰⎰⎰当0x y ≤<<+∞时,有()()()()2001,,11.2y x xvu y x y u F x y P X x Y y dv ue dv u e e du x e x e -----=≤≤==-=-+-⎰⎰⎰综上知 ()()220, 00,1,11, 0,2111, 02yx y x y F x y y y e y x x e x e x y ---⎧⎪<<⎪⎪⎛⎫=-++≤<<+∞⎨ ⎪⎝⎭⎪⎪-+-≤<<+∞⎪⎩或 (6)根据两个随机变量和的密度公式 ()(),,z f z f x z x dx +∞-∞=-⎰ 由于要被积函数(),f x z x -非零,只要当0x z x <<-,即02zx <<时,从而有: 当0z <时, ()0;z f z =当0z ≥时, ()()22201;2zz x zxzz z f z xedx e xe dx e e ππ-----⎛⎫===+- ⎪⎝⎭⎰⎰因此, ()21, 0,20, 0.zz z z e e z f z z --⎧⎛⎫+-≥⎪ ⎪=⎨⎝⎭⎪<⎩(7)由于已经求出了Z X Y =+的密度,故()()1111220111.2z z z z P X Y f z dz e e dz e e -----∞⎡⎤⎛⎫+<==+-=--⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(8)()()()()()2111min ,11min ,111,115 11 1.22v vvP X Y P X Y P X Y dv ue du v e dv e +∞+∞---<=-≥=-≥≥=-=-=-⎰⎰⎰【技巧】 本题是二维连续型随机变量的综合题,几乎涵盖了其中的主要内容.在常数确定c 时,应用了Γ函数的定义和性质,当然,读者也可以直接用分部积分法计算.概率()1|2P X Y <=的求法,要利用条件密度()||2X Y f x 进行计算,其计算过程同一般的一维密度的计算方法.()1P X Y +<的计算,我们利用了第(6)问的结论,在不需要求X Y +密度的情形下,只要直接计算就可以了,即 ()111212011.xyxP X Y dxxe dy ee ----+<==--⎰⎰综例3.6.5 设[]~0,1,X U 且在{}X x =的条件下,[]~0,,0 1.Y U X x ≤≤求(1)()221|,01;P X Y X x x +≤=≤≤ (2)()221.P X Y +≤【思路】第一问等价于求(),P Y x ≤=故只需利用条件密度()||Y X f y x 来计算,而第二问的计算,首先要知道(),X Y 的联合分布密度(),f x y . 【解】 由题设知,X 的密度函数为 ()1, 01,0, X x f x ≤≤⎧=⎨⎩其他.而在{}X x =条件下,Y 的条件密度为()|1, 01,|0, .Y Xy x f y x x⎧≤≤≤⎪=⎨⎪⎩其他 从而(),X Y 的联合密度函数为: ()()()|1, 01,,|0, X Y X y x f x y f x f y x x⎧≤≤≤⎪==⎨⎪⎩其他① 对01x ≤≤,有()()()22221|1|P X Y X x P Y x X x P Y X x +≤==≤-==≤=()((|11|min min .Y X y y f y x dy dx x x x===- 82 -②()()(22221422001101111,ln 1.cos x y x y y x P X Y f x y dxdy dxdy dr rd x r πθθ+≤+≤≤≤≤+≤===⎰⎰⎰⎰⎰⎰极坐标变换【注】 本题中的()||Y X f y x 和(),f x y 虽然具有相同的表示式,但其含义却截然不同. ()||Y X f y x 是y 的一元函数,而不是二元函数,x 在此视为常量,这相当于微积分中,当二元函数一个自变量固定时,它只是另一个变量的一元函数.当x 变化时,Y 的条件密度函数也变化. 综例3.6.6 设二维随机变量(),X Y 在矩形 (){},:02,01G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度().f s【解】 由题设知,二维随机变量(),X Y 的概率密度为 ()()()1,,,,20,,.x y G f x y x y G ⎧∈⎪=⎨⎪∉⎩若若设()(),S X Y F s P S s ==≤为S 的分布函数,则:当0s <时,()()0,F s P XY s =≤= 当2s ≥时,()()1,F s P XY s =≤= 当02s ≤<时,曲线xy s =与矩形G 的上边交于点(),1s (见图3.6.1),于是 ()()(),F s P S s P XY s =≤=≤因而,S XY =的概率密度为 ()()1ln 2ln ,02,20, s s f s ⎧-≤<⎪=⎨⎪⎩其他.【解毕】【寓意】 本题实质上是求两随机变量的乘积的概率密度.第四章 随机变量的数学特征例4.2.1 一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望EX 和方差DX . 【思路】 关键是求出X 的分布律,然后用定义计算EX .【解】 引入事件:{}i=1,2,3.i A i =第个部件需要调整 根据题设,三部件需要调整的概率分别为()()()1230.10,0.20,0.30.P A P A P A ===由题设部件的状态相互独立,于是有()()()()()1231230 0.90.80.70.504.P X P A A A P A P A P A ====⨯⨯=()()12312312310.10.80.70.90.20.70.90.80.3 0.398P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=()()12312312320.10.20.70.10.80.30.90.20.3 0.092;P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=X从而00.50410.39820.09230.0060.6,i i iEX x p ==⨯+⨯+⨯+⨯=∑22222200.50410.39820.09230.0060.820.i i iEX x p ==⨯+⨯+⨯+⨯=∑故 ()2220.8200.60.46.DX EX EX =-=-=【解毕】【技巧】 本题的关键是引入事件i A ,将X 的分布律求出,因此,可以发现求期望和方差的难点转到了求X 的分布.同时,方差的计算一般均通过公式()22DX EX EX =-来进行.例4.2.2 对目标进行射击,直到击中目标为止.如果每次射击的命中率为p ,求射击次数X 的数学期望和方差.【解】 由题意可求得X 的分布律为()1, 1,2,,1.k P X k pq k q p -====-于是 1111.k k k k EX kpqp kq ∞∞--====∑∑为了求级数11k k kq∞-=∑的和,我们利用如下的技巧:由于11, 0<q<1.1k k q q∞==-∑- 84 -对此级数逐项求导,得1001,kk k k k k d dq q kq dq dq ∞∞∞-===⎛⎫== ⎪⎝⎭∑∑∑ 因此()12111,11k k d kq dq q q ∞-=⎛⎫== ⎪--⎝⎭∑ 从而 ()22111.1EX ppp pq ===- 为了求DX ,我们先求2EX .由于 ()()212121111.k k K k EX k k pqpq k k q p p ∞∞--===-+=-+∑∑ 为了求()221k k k k q∞-=-∑得值,注意到()()123112.11k k d d kq dq dq q q ∞-=⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭∑ 从而()2322121.1q EX p qp p pq =+=+- 因此 ()22221.p qDX EX EX p p-=-== 【寓意】 本题实质上是求几何分布的数学期望和方差.本题的主要技巧是利用了级数的逐项求导公式来求期望. 当然同样可用逐项积分方法来求11k k kq∞-=∑和211k k kq ∞-=∑,这种手段在级数求和或数学期望和方差的计算是十分奏效的.还有一点,我们在此说明一下,在本题中,由于X 的取值都是正数,所以只要正项级数1kk k xp ∞=∑收敛,则一定绝对收敛,即1k k k x p ∞=∑的和就为EX .而实际情况中,可能存在级数1k k k x p ∞=∑是条件收敛的,此时,X 的数学期望就不存在(虽然1kk k xp ∞=∑本身仍是收敛的),因此判断离散型随机变量的期望是否存在,要用关于级数绝对收敛的判断方法.例4.2.3 设X 是一随机变量,其概率密度为()1, 10,1, 01,0, x x f x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他.求DX .(1995年考研题) 【解】()()()()()()()011011222221110..11211 6EX xf x dx x x dx x x dx EX x f x dx x x dx x x dx x x dx +∞-∞-+∞-∞-==++-===++-=-=⎰⎰⎰⎰⎰⎰⎰于是 ()221.6DX EX EX =-=【解毕】 【技巧】 在计算数学期望和方差时,应首先检验一下()f x 的奇偶性,这样可利用对称区间上奇偶函数的积分公式简化求解,比如本题中,()f x 为偶函数,故()0.EX xf x dx +∞-∞==⎰同样DX 的计算也可直接简化.例4.2.4 已知连续型随机变量X 的密度函数为 ()221, -<x<+.xx f x -+-=∞∞求EX 与DX .(1987年考研题) 【思路】 一种求法是直接利用数学期望与方差的定义来求.另一种方法是利用正态分布的形式及其参数的含义.【解】 (方法1)直接法.由数学期望与方差的定义知()()()()()()222211111 1.x x x x EX xf x dx xedx edx x e dx e dx +∞+∞+∞+∞-------∞-∞+∞--===+-==⎰⎰⎰⎰⎰()()()()()22222212111 .2x t t DX E X EX x f x dx x dxt e e dt +∞+∞---∞-∞+∞+∞---∞=-=-=-==⎰⎰⎰⎰(方法2) 利用正态分布定义.由于期望为μ,方差为2σ()()222.x x μσ---∞<<+∞所以把()f x 变形为- 86 -()()221212x f x π--⨯=易知,()f x 为11,2N ⎛⎫ ⎪⎝⎭的概率密度,因此有 11,.2EX DX ==【解毕】 【技巧】 解决本题的关键是要善于识别常用分布的密度函数,不然的话,直接计算将会带来较大的工作量.反过来,用正态分布的特性也可以来求积分2kx e dx +∞--∞⎰等.(2)若干计算公式的应用主要包括随机变量函数的数学期望公式,数学期望与方差的性质公式的应用.例4.2.5 设X 表示10次独立重复射击中命中目标的次数,每次射中目标的概率为0.4,求2EX . (1995年考研题) 【解】 由题意知()~10,0.4X B 于是100.44,EX =⨯=()100.410.4 2.4.DX =⨯⨯-=由()22DX EX EX =-可推知()2222.4418.4.EX DX EX =+=+=【寓意】 本题考查了两个内容,一是由题意归结出随机变量X 的分布;二是灵活应用方差计算公式,如果直接求解,那么 ()1010221000.410.4kk k K EX k C -==-∑的计算是繁琐的.例4.2.6 设X 服从参数1λ=的指数分布,求()2XE X e -+.(1992年考研题)【解】 由题设知,X 的密度函数为(), 0,0, 0.x e x f x x -⎧>=⎨≤⎩且1EX =,又因为()22201,3Xxx xEeef x dx e e dx +∞+∞-----∞===⎰⎰ 从而 ()22141.33XX E X eEX Ee --+=+=+= 【解毕】 【寓意】 本题的目的是考查常见分布的分布密度(或分布律)以及它们的数字特征,同时也考查了随机变量函数的数学期望的求法.例4.2.7 设二维随机变量(),X Y 在区域(){},:01,G x y x y x =<<<内服从均匀分布,求随机变量21Z X =+的方差.DZ【解】 由方差的性质得知()214DZ D X DX =+=又由于X 的边缘密度为()()1, 01,0, .2, 010, xX xdy x f x f x y dy x x +∞--∞⎧<<⎪==⎨⎪⎩<<⎧=⎨⎩⎰⎰其他其他.于是()112200222212, 2,32121.2318EX x xdx EX x xdx DX EX EX ====⎛⎫=-=-= ⎪⎝⎭⎰⎰因此 , 1244.189DZ DX ==⨯=【解毕】 【技巧】 尽管本题给出的是二维随机变量,但在求X 的期望于方差时,可以从X 的边缘密度函数出发,而不必从X 与Y 的联合密度函数开始.在一般情形下,采用边缘密度函数较为方便.例4.2.8 设随机变量X 和Y 独立,且X 服从均值为1Y 服从标准正态分布,试求随机变量23Z X Y =-+的概率密度函数.(1989年考研题)【思路】 此题看上去好像与数字特征无多大联系,但由于X 和Y 相互独立且都服从正态分布,所以Z- 88 -作为,X Y 的线性组合也服从正态分布.故只需求EZ 和DZ ,则Z 的概率密度函数就唯一确定了. 【解】 由题设知,()()~1,2,~0,1X N Y N .从而由期望和方差的性质得2235,29.EZ EX EY DZ DX DY =-+==+=又因Z 是,X Y 的线性函数,且,X Y 是相互独立的正态随机变量,故Z 也为正态随机变量,又因正态分布完全由其期望和方差确定,故知()~5,9Z N ,于是,Z 的概率密度为 ()()2529, .z Z f z z --⨯=-∞<<+∞ 【解毕】【寓意】 本题主要考查二点内容,一是独立正态分布的线性组合仍为正态分布;其二是正态分布完全由其期望和方差决定.例4.2.9 假设随机变量Y 服从参数为1λ=的指数分布,随机变量 0, ,1, .k Y k X Y k ≤⎧=⎨>⎩若若 ()1,2k =(1) 求1X 和2X 的联合概率分布; (2) 求()12E X X +. 【解】 显然,Y 的分布函数为()1, 0,0, 0.y e y F y y -⎧->=⎨≤⎩10, 11 1.Y X Y ≤⎧=⎨>⎩若,,若 20, 21 2.Y X Y ≤⎧=⎨>⎩若,,若 (1)()12X X +有四个可能取值:()()()()0,0,0,1,1,0,1,1,且()()()()()()()()()()()()()()121121212120,01,21 11,0,11,20,1,01,212 21,1,11,22 P X X P Y Y P Y F e P X X P Y Y P X X P Y Y P Y F F e e P X X P Y Y P Y --===≤≤=≤==-===≤>====>≤=<≤=-=-===>>=>()2 12.F e -=-=于是得到1X 和2X 的联合分布律为(3) 显然,12,X X 的分布律分别为1X 0 1 2X 0 1P 11e -- 1e - P 21e -- 2e -因此 1212,.EX e EX e --==故 ()121212.E X X EX EX e e --+=+=+ 【解毕】【技巧】 本题中若不要求求X 与Y 的联合分布律,也可直接求出()12E X X +,这是因为 ()()()1111011.EX P Y P Y P Y e -=⨯>+⨯≤=>=而 222,EX PY e -=>= 因此 ()121212.E X X EX EX e e --+=+=+不仅如此,我们还能求12,X X 其他函数的期望.例如求()12E X X ,此时,由于121, 2,0 .Y X X >⎧=⎨⎩若,其他故 ()()()()21212022.E X X P Y P Y P Y e -=⨯>+⨯≤=>=例4.2.10 设随机变量(),X Y 服从二维正态分布,其密度函数为()()22121,2x y f x y e π-+= 求随机变量Z .【思路】 利用随机变量函数的期望的求法进行计算.。

考研数学概率与数理统计考试内容总结3篇

考研数学概率与数理统计考试内容总结3篇考研数学概率与数理统计考试内容总结3篇在进行考研的时候,数学的概率与数理统计考试内容一直是考生们十分关注的问题,下面就让小编给大家带来考研数学概率与数理统计考试内容,希望大家喜欢!下面就和小编一起来看看吧。

考研数学概率与数理统计考试内容篇1概率论与数理统计是考研数学一和数学三的必考内容,数学二的考生不考。

这部分的内容相对于高等数学而言算是较简单的部分,与线性代数一样都是考生必须要抓住的地方。

接下来跨考教育数学教研室吴方方老师就为考生归纳总结概率论与数理统计的考点,希望对考生复习有所帮助。

概率统计的考点每年都差不多,没什么大的变化。

从历年的考研真题来看,概率统计这部分的内容考查单一知识点比较少,即使是填空题和选择题都是这样。

大部分的考题都是考查考生的理解能力和综合应用能力,因此要求我们考生要能够灵活地应用所学的知识建立正确的概率模型。

要能够熟练的应用高等数学里的知识来解决我们概率统计上的问题,比如定积分和二重积分是我们同学们要必须掌握的住的知识,其在概率统计中一维和二维随机变量求概率都能用的上。

概率统计第一章的古典概型和几何概型是大部分考生所头疼的,其中古典概型更是让很多同学摸不着头脑,其实古典概型考试大都是以小题形式出现的,它并不是考试的重点,但确实是考试的难点。

而几何概型就是一个事件发生的概率等于这个事件的度量与整个样本空间度量的比,这个度量可以是长度、面积、体积。

相对于古典概型,几何概型是重要的。

接下来,就是随机变量的内容了。

我们主要考的是离散和连续两种随机变量,一维随机变量和二维随机变量主要考点包括:分布函数,概率密度,分布律,联合分布函数,联合概率密度,联合分布律,边缘分布函数,边缘概率密度,边缘分布律,条件分布律,条件概率密度,以及一维和二维随机变量的函数的分布。

其中随机变量函数的分布是考试的重点,一般是与第四章数字特征(期望、方差、协方差以及相关系数)结合来考大题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011考研数学基础班概率论与数理统计讲义第一章 随机事件和概率第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ³n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ³n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A .120种B .140种C .160种D .180种(4)一些常见排列①特殊排列相邻彼此隔开顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?②重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?③对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?④顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序)例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

例如:掷一枚硬币,出现正面及出现反面;掷一颗骰子,出现“1”点、“5”点和出现偶数点都是随机事件;电话接线员在上午9时到10时接到的电话呼唤次数(泊松分布);对某一目标发射一发炮弹,弹着点到目标的距离为0.1米、0.5米及1米到3米之间都是随机事件(正态分布)。

在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:(1) 每进行一次试验,必须发生且只能发生这一组中的一个事件;(2) 任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示,例如n ωωω ,,21(离散)。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A ,B ,C ,…表示事件,它们是Ω的子集。

如果某个ω是事件A 的组成部分,即这个ω在事件A 中出现,记为A ∈ω。

如果在一次试验中所出现的ω有A ∈ω,则称在这次试验中事件A 发生。

如果ω不是事件A 的组成部分,就记为A ∈ω。

在一次试验中,所出现的ω有A ∈ω,则称此次试验A 没有发生。

Ω 为必然事件,Ø为不可能事件。

(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):B A ⊂如果同时有B A ⊂,A B ⊃,则称事件A 与事件B 等价,或称A 等于B :A=B 。

A 、B 中至少有一个发生的事件:A B ,或者A +B 。

属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者B A ,它表示A 发生而B 不发生的事件。

A 、B 同时发生:A B ,或者AB 。

A B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。

基本事件是互不相容的。

Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。

它表示A 不发生的事件。

互斥未必对立。

②运算:结合率:A(BC)=(AB)C A ∪(B ∪C)=(A ∪B)∪C分配率:(AB)∪C=(A ∪C)∩(B ∪C) (A ∪B)∩C=(AC)∪(BC)德摩根率: ∞=∞==11i i i i A A B A B A =,B A B A =例1.16:一口袋中装有五只乒乓球,其中三只是白色的,两只是红色的。

现从袋中取球两次,每次一只,取出后不再放回。

写出该试验的样本空间Ω。

若A 表示取到的两只球是白色的事件,B 表示取到的两只球是红色的事件,试用A 、B 表示下列事件:(1)两只球是颜色相同的事件C ,(2)两只球是颜色不同的事件D ,(3)两只球中至少有一只白球的事件E 。

例1.17:硬币有正反两面,连续抛三次,若A i 表示第i 次正面朝上,用A i 表示下列事件:(1)前两次正面朝上,第三次正面朝下的事件C ,(2)至少有一次正面朝上的事件D ,(3)前两次正面朝上的事件E 。

3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≢P(A)≢1,2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫ ⎝⎛11)(i i i i A P A P常称为可列(完全)可加性。

则称P(A)为事件A 的概率。

(2)古典概型(等可能概型)1° {}n ωωω 21,=Ω, 2° nP P P n 1)()()(21===ωωω 。

设任一事件A ,它是由m ωωω 21,组成的,则有P(A)={})()()(21m ωωω =)()()(21m P P P ωωω+++n m =基本事件总数所包含的基本事件数A =例1.18:集合A 中有100个数,B 中有50个数,并且满足A 中元素与B 中元素关系a+b=10的有20对。

问任意分别从A 和B 中各抽取一个,抽到满足a+b=10的a,b 的概率。

例1.19:5双不同颜色的袜子,从中任取两只,是一对的概率为多少?例1.20:在共有10个座位的小会议室内随机地坐上6名与会者,则指定的4个座位被坐满的概率是A .141B .131C .121D . 111 例1.21:3白球,2黑球,先后取2球,放回,2白的概率?(有序)例1.22:3白球,2黑球,先后取2球,不放回,2白的概率?(有序)例1.23:3白球,2黑球,任取2球,2白的概率?(无序)注意:事件的分解;放回与不放回;顺序问题。

4、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)例1.24:从0,1,…,9这十个数字中任意选出三个不同的数字,试求下列事件的概率:A =“三个数字中不含0或者不含5”。

(2)减法公式P(A-B)=P(A)-P(AB)当B ⊂A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B)例1.25:若P(A)=0.5,P(B)=0.4,P(A-B)=0.3,求P(A+B)和P(A +B ).例1.26:对于任意两个互不相容的事件A 与B , 以下等式中只有一个不正确,它是: (A) P(A-B)=P(A) (B) P(A-B)=P(A) +P(A ∪B )-1 (C) P(A -B)= P(A )-P(B) (D)P[(A∪B)∩(A -B)]=P(A) (E)p[B A -]=P(A) -P(A ∪B )(3)条件概率和乘法公式定义 设A 、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1⇒P(B /A)=1-P(B/A)乘法公式:)/()()(A B P A P AB P =更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …)1-n A 。

例1.27:甲乙两班共有70名同学,其中女同学40名,设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率。

例1.28:5把钥匙,只有一把能打开,如果某次打不开就扔掉,问以下事件的概率?①第一次打开;②第二次打开;③第三次打开。

(4)全概公式设事件n B B B ,,,21 满足1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>,2°n i i B A 1=⊂,则有 )|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。

此公式即为全概率公式。

例1.29:播种小麦时所用的种子中二等种子占2%,三等种子占1.5%,四等种子占1%,其他为一等种子。

用一等、二等、三等、四等种子播种长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,试求种子所结的穗含有50颗以上麦粒的概率。

例1.30:甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只。

从这三只盒子的任意一只中任取出一只球,它是红球的概率是:A .0.5625B .0.5C .0.45D .0.375E . 0.225例1.31:100个球,40个白球,60个红球,不放回先后取2次,第2次取出白球的概率?第20次取出白球的概率?(5)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n ,2°n i i B A 1=⊂,0)(>A P ,则 ∑==n j jj i i i B A P B P B A P B P A B P 1)/()()/()()/(,i=1,2,…n 。

相关文档
最新文档