高中数学抛物线与直线的交点问题

高中数学抛物线与直线的交点问题
高中数学抛物线与直线的交点问题

抛物线与直线的交点问题

1、 抛物线y=ax 2+bx+c 与直线y=m (坐标系中的水平直线)的交点问题:

①把y=m 代入y=ax 2+bx+c 得ax 2+bx+c=m ,即ax 2+bx+(c-m )=0

此时方程的判别式△=b 2-4a(c-m)。

△>0,则抛物线y=ax 2+bx+c 与直线y=m 有两个交点;

△=0时有一个交点;

△<0时无交点。

②特殊情形:

抛物线y=ax 2+bx+c 与直线y=0(x 轴)的交点问题:

令y=0,则ax 2+bx+c=0

此时方程的判别式△=b 2-4ac

△>0,则抛物线y=ax 2+bx+c 与x 轴有两个交点;

△=0时有一个交点;

△<0时无交点。

2、抛物线y=ax 2+bx+c 与直线y=kx+b 的交点问题:

令ax 2+bx+c=kx+b ,整理方程得:ax 2+(b-k)x+(c-b )=0

此时方程的判别式△=(b-k)2-4a (c-b )

△>0,则抛物线y=ax 2+bx+c 与直线y=kx+b 有两个交点;

△=0时有一个交点;

△<0时无交点。

总结:判别式△的值决定抛物线与直线的交点个数。

3、 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的交点位置问题:

若ax 2+bx+c=0的两根为x 1、x 2,则抛物线y=ax 2+bx+c 与x 轴的交点为(x 1,0)、(x 2,0)

① 若x 1x 2>0、x 1+x 2>0,则抛物线y=ax 2+bx+c 与x 轴的两个交点在原点右侧

② 若x 1x 2>0、x 1+x 2<0,则抛物线y=ax 2+bx+c 与x 轴的两个交点在原点左侧

③ 若x 1x 2<0,则抛物线y=ax 2+bx+c 与x 轴的两个交点分居于原点两侧

4、 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的两个交点距离公式

若ax 2+bx+c=0的两根为x 1、x 2,则抛物线y=ax 2+bx+c 与x 轴的两个交点(x 1,0)、(x 2,0)的距离为

︱x 1-x 2︱=a

ac b 42 练习

1.一元二次方程ax 2+bx +c =0的两根是-3和1,那么二次函数y =ax 2+bx +c 与x 轴的交点是

____________.

2.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( )

A .k >-47

B .k <-47且k ≠0

C .k ≥-47

D .k ≥-47且k ≠0

3.若抛物线y =x 2-8x +c 顶点在x 轴上,则c 的值等于( ).

A .4

B .8

C .-4

D .16

4.二次函数y =ax 2+bx +c 的值恒为负值的条件是( ).

A .a >0, b 2-4ac <0

B .a <0, b 2-4ac >0

C .a >0, b 2-4ac >0

D .a <0, b 2-4ac <0

5.直线y=3x -3与抛物线y=x 2-x+1的交点的个数是______

6.若抛物线y=(m-1)x2+2mx+m+2恒在x轴上方,则m_______.

7.抛物线顶点C(2,),且与x轴交于A、B两点,它们的横坐标是方程2x2-7x+1=0的两根,则S△ABC=.

8.直线y=2x1与抛物线y=x2的公共点坐标是

______________.

9、不等式x2-9>0的解集为_________________;x2>2x+1的解集为_____________.

10.利用二次函数的图象求一元二次方程x2+2x-10=3的根.

11.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).

(1)求该二次函数的解析式;

(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后

所得图象与轴的另一个交点的坐标.

12.已知抛物线y=x2+ax+a-2.

(1)证明:此抛物线与x轴总有两个不同的交点;

(2)求这两个交点间的距离;(用关于a的表达式来表达)

(3)a取何值时,两点间的距离最小?

13.已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0)两点,交y?轴正半轴于C点,且x1│x2│,OA2+OB2=2OC+1.

(1)求抛物线的解析式;

(2)是否存在与抛物线只有一个公共点C的直线?如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

抛物线与直线交点问题

课题:抛物线与直线的交点问题 教学目标: 1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。 2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进 一步培养学生数形结合思想。 3、 通过学生共同观察和讨论,进一步提高合作交流意识。 教学重点:1、体会方程与函数之间的联系。 2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。 教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。 讲授方法: 讲授与讨论相结合 教学过程: 一、抛物线与x 轴的交点问题 例1:已知:抛物线322 --=x x y ,求抛物线与x 轴的交点坐标。 练习: 1、已知:抛物线)1(3)2(2 ++-+-=m x m x y (1)求证:抛物线与x 轴有交点。 (2)如果抛物线与x 轴有两个交点,求m 的取值范围。 2、(2013房山一模23前两问) 已知,抛物线2 y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式. (2)若直线y kx b =+(k ≠0)与抛物线交于点A (3 2 ,m )和B (4,n ),求直线的解析式. 方法总结: 1、 抛物线与x 轴相交: 抛物线c bx ax y ++=2 的图象与x 轴相交)(002 ≠=++a c bx ax 2.抛物线与x 轴的交点的个数 (1△抛物线与x 轴相交 (2△抛物线与x 轴相切 (3△抛物线与x 轴相离 二、抛物线与平行于x 轴的直线的交点

例2:求抛物线322 --=x x y 与y=1的交点坐标 练习: 已知:抛物线c x x y ++=22 (1) 如果抛物线与y=3有两个交点,求c 的取值范围。 (2) 如果对于任意x ,总有y>3,求c 的取值范围 方法总结: 1、抛物线与平行于x 轴的直线相交 抛物线c bx ax y ++=2 的图象与平行于x 轴的直线相交 ?? ?=++=m y c bx ax y 2新的一元二次方程m c bx ax =++2 2.抛物线与平行于x 轴的直线的交点的个数 (1△抛物线与直线相交 (2△抛物线与直线相切 (3△抛物线与直线相离 三:抛物线与直线的交点问题 例3:若抛物线2 2 1x y =与直线y=x+m 只有一个交点,求m 的值 练习: 已知:抛物线),(和点0,1-3-2 A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式 方法总结:

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 1.(2014?北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可; (2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 解答: 解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4), 代入得:, 解得:, ∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1; (2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4, 由函数图象得出D纵坐标最小值为﹣4, 设直线BC解析式为y=kx+b, 将B与C坐标代入得:, 解得:k=,b=0, ∴直线BC解析式为y=x,

当x=1时,y=, 则t的范围为﹣4≤t≤. 点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键. 2.(2011?石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4). (1)求抛物线顶点D的坐标; (2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:(1)先设出过A(﹣2,0)、B(4,0)两点的抛物线的解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴的交点坐标即可求出a的值,进而得出此抛物线的解析式; (2)先用待定系数法求出直线CD解析式,再根据抛物线平移的法则得到(1)中抛物线向下平移m各单位所得抛物线的解析式,再将此解析式与直线CD的解析式联立,根据两函数图象有交点即可求出m的取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4), ∵C点坐标为(0,4), ∴a=﹣,(1分) ∴解析式为y=﹣x2+x+4, 顶点D坐标为(1,);(2分) (2)直线CD解析式为y=kx+b. 则,,

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 2 1. (2014?北京)在平面直角坐标系xOy中,抛物线y=2x+mx+ n经过点A (0, - 2), B (3, 4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A, B之间的部分为图象G(包含A, B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 5 4 ? (1) 将A与B坐标代入抛物线解析 式求出m与n的值,确定出抛物线 解析式,求出对称轴即可; (2) 由题意确定出C 坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 2 解答:解:(1 )???抛物线y=2x +mx+ n经过点 A (0,- 2), B (3, 4), f n=-2 L 18+3nr^n=4 ???抛物线解析式为y=2x2- 4x - 2,对称轴为直线x=1; 2 (2)由题意得:C (- 3,- 4),二次函数y=2x - 4x- 2的最小值为-4, 由函数图象得出D纵坐标最小值为-4, 设直线BC解析式为y=kx+b , 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析: 解得:* :-4 n= - 2 代入得: 将B与C坐标代入得: 3k+b=4 -3k+b二- 解得: k= , b=0, 3 ?直线BC解析式为y=-x, 当x=1 时,y=J

点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待 定系数法是解 本题的关键. 2. (2011?石景山区二模)已知:抛物线与 x 轴交于A (- 2, 0)、B (4, 0),与y 轴交于C ( 0, 4). (1) 求抛物线顶点 D 的坐标; (2) 设直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线 CD 于点F ,将抛物线沿其对称轴上下平移,使抛物线 与线段EF 总有公共点?试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度? (1) 先设出过A (- 2, 0)、B (4, 0)两点的抛物线的解析式为 y=a (x+2) (x - 4),再根据抛物线与 y 轴 的交点坐标即可求出 a 的值,进而得出此抛物线的解析式; (2) 先用待定系数法求出直线 CD 解析式,再根据抛物线平移的法则得到 ( 1)中抛物线向下平移 m 各单位 所得抛物线的解析式,再将此解析式与直线 CD 的解析式联立,根据两函数图象有交点即可求出 m 的取值范 围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位. 考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

抛物线与直线交点问题经典讲义教案

抛物线与直线交点问题 教学目标: 1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。 2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进 一步培养学生数形结合思想。 3、 通过学生共同观察和讨论,进一步提高合作交流意识。 教学重点:1、体会方程与函数之间的联系。 2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。 教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。 讲授方法: 讲授与讨论相结合 教学过程: 一、抛物线与x 轴的交点问题 例1:已知:抛物线322 --=x x y ,求抛物线与x 轴的交点坐标。 练习: 1、已知:抛物线)1(3)2(2 ++-+-=m x m x y (1)求证:抛物线与x 轴有交点。 (2)如果抛物线与x 轴有两个交点,求m 的取值范围。 2、(2013房山一模23前两问) 已知,抛物线2 y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式. (2)若直线y kx b =+(k ≠0)与抛物线交于点A (3 2 ,m )和B (4,n ),求直线的解析式. 方法总结: 1、 抛物线与x 轴相交: 抛物线c bx ax y ++=2 的图象与x 轴相交 )(002 ≠=++a c bx ax 2.抛物线与x 轴的交点的个数 (1 △>0 抛物线与x 轴相交 (2 △=0 抛物线与x 轴相切 (3 △<0 抛物线与x 轴相离

二、抛物线与平行于x 轴的直线的交点 例2:求抛物线322 --=x x y 与y=1的交点坐标 练习: 已知:抛物线c x x y ++=22 (1) 如果抛物线与y=3有两个交点,求c 的取值范围。 (2) 如果对于任意x ,总有y>3,求c 的取值范围 方法总结: 1、抛物线与平行于x 轴的直线相交 抛物线c bx ax ++=2 的图象与平行于x 轴的直线相交 ?? ?=++=m y bx ax y 2 新的一元二次方程m c bx ax =++2 2.抛物线与平行于x 轴的直线的交点的个数 (1 △>0 抛物线与直线相交 (2 △=0 抛物线与直线相切 (3 △<0 抛物线与直线相离 三:抛物线与直线的交点问题 例3:若抛物线2 2 1x y =与直线y=x+m 只有一个交点,求m 的值 练习: 已知:抛物线),(和点0,1-3-2 A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式

高中数学抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -== A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD

点、直线与抛物线之间的位置关系(学生用)

点、直线与抛物线之间的位置关系(学生用) 一.点与抛物线的位置关系: 已知点p (x 0,y 0)和焦点为F 抛物线2y =2px (p>0) (1)点p (x 0,y 0)在抛物线2y =2px (p>0)? 2o y <2p 0x (p>0) (2)点p (x 0,y 0)在抛物线2y =2px (p>0)上? 2o y =2p 0x (p>0) (3)点p (x 0,y 0)在抛物线2y =2px (p>0)外? 2o y >2p 0x (p>0) 二.直线和抛物线线之间的关系: 已知抛物线C:2y =2px (p>0)直线l :Ax+By+C=0 抛物线C 和直线l 相离: (1)抛物线C 和直线l 相离?抛物线C 和直线l 无交点?方程组22x y =0 y px A B C =++?? ?无解,消去y 得 关于x 的方程设为 A 2x 2 +2(AC-pB)x+C=0 (1)(或消去x 得关于y 的方程,Ay 2 +2pBy+C=0… ⑵)?方程(1)(或方程(2)无解)? 方程(1)中的 判别式?<0(方程(2) 中的 判别式00. 若抛物线C 和直线l 有两个交点A (x 1,y 1),B (x 2,y 2)).C ()00,y x 是AB 的中点,则直线AB 的斜率0 y p k AB = 则 当直线l 斜率是k 时12|AB y y = =- 直线l 倾斜角为α 时1212|||AB x x y y =-=-

高中数学专题讲解之抛物线

高中数学专题讲解之 抛物线 考点1 抛物线的定义: 平面上与一个定点F 和一条直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 抛物线的定义中条件“F 不在l 上”不可遗漏,否则,如果F 在l 上,则轨迹为过F 且与l 垂直的直线。 题型: 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 例1、(1)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 (2)抛物线y=4上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. B. C. D. 0 例2、求平面内到原点与直线20x y --=距离相等的点的轨迹方程,并指出轨迹所表示的曲线。 例3、求到点A ()2,0-的距离比到直线:3l x =的距离小1的点的轨迹方程。 巩固练习: 1.已知抛物线的焦点为,点,在抛物线上,且、、成等差数列, 则有 ( ) A . B . C . D. 2.已知点F 是抛物线的焦点,M 是抛物线上的动点,当最小时, M 点坐标是 ( ) 2 x 16 17161587 2 2(0)y px p =>F 111222()()P x y P x y ,,,333()P x y ,||1F P ||2F P ||3F P 321x x x =+321y y y =+2312x x x =+2312y y y =+),4,3(A x y 82 =MF MA +

A. B. C. D. 3.已知方程()2 20x py p =->的抛物线上有一点M (),3m -,点M 到焦点F 的距离为5, 求m 的值。 4、在正方体1111D C B A ABCD -的侧面11A ABB 内有一动点P 到直线11B A 与直线BC 的距 离相等,则动点P 所在的曲线的形状为…………( ) 考点2 抛物线的标准方程 题型:求抛物线的标准方程 例4、求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线上 巩固练习: 1、若抛物线的焦点与双曲线的右焦点重合,则的值 2、对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号) )0,0()62,3()4,2()62,3(-240x y --=2 2y px =2 213 x y -= p A B 1 B A (A) A B 1 B (B) A B 1 B (C) A B 1 B A (D)

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 或P px y y x 2),(2 =其中 5一般情况归纳: 方程 图象 焦点 准线 定义特征 y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. C N M 1 Q M 2 K F P o M 1 Q M 2 K F P o y x

高中数学抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2124 p x x = 2 12y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

高中数学抛物线题型归类(全)

高中数学抛物线题型归类 目录 曲线与方程 题型1:曲线的方程的判断 题型2:直接法求曲线的方程 题型3:定义法求曲线的方程 题型4:相关点法求曲线的方程 题型5:参数法求曲线的方程 题型6:交轨法求曲线的方程 抛物线 题型1:求轨迹(抛物线)方程 题型2:抛物线的标准方程 题型2。1:求抛物线的标准方程 题型2.2:已知抛物线的标准方程 题型3:抛物线的定义 题型4:抛物线的焦半径 题型5:抛物线的焦点弦 题型6:抛物线的弦中点 题型7:抛物线的弦长、三角形面积 题型8:直线与抛物线的位置关系 题型8.1:直线与抛物线的位置关系 题型8.2:抛物线的切线问题 题型9:抛物线的求值问题 题型10:抛物线中求取值范围问题 题型11:抛物线中求最值问题 题型12:抛物线的定值问题 方法是先猜后证。猜法:取特殊情况或极端情况。 题型12.1:和差相消为定值 题型12.2:乘除相约为定值

题型13:抛物线的定点问题 方法是先猜后证。猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上。 题型13.1:直线恒过定点 题型13.2:曲线恒过定点 题型14:探究证明问题 题型1:曲线的方程的判断 1.已知曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则“f 1(x 0,y 0)=f 2(x 0,y 0)”是“点M(x 0,y 0)是曲线C 1与C 2的交点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 2.方程|y|-1=表示的曲线是 ( ) A. 两个半圆 B. 两个圆 C. 抛物线 D. 一个圆 3.方程x 2 -xy+2y+1=0表示的曲线经过点A(1,-2),B(2,-3),C(3,10),D 中的( ) A. 1个 B. 2个 C. 3个 D. 4个 4.方程(x+y-1)=0所表示的曲线是 ( ) A. B. C. D. 题型2:直接法求曲线的方程 1.到(0,2)和(4,-2)距离相等的点的轨迹方程___________ 2.设动点P 到点F(-1,0)的距离是到直线y=1的距离相等,求点P 的轨迹方程,并判定此轨迹是什么图形. 3.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ), 求动点P 的轨迹方程? 题型3:定义法求曲线的方程 1.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=, 则动点P 的轨迹方程为 .

相关文档
最新文档