等比数列题型归纳总结

等比数列题型归纳总结
等比数列题型归纳总结

课题:等比数列

教学目标:掌握等比数列的定义,通项公式和前n 项和的公式,掌握等比数列的有关性质,

并能利用这些知识解决有关问题,培养学生的化归能力.

教学重点:等比数列的判断,通项公式和前n 项和的公式以及等比数列的有关性质的应用.

(一) 主要知识:

1.

n 2.等比数列的有关性质; 3.等比数列的充要条件:

()1{}n a 是等比数列1n n

a q a +?=(q 为非零常数);

()2{}n a 是等比数列n

n a cq ?

=(0,0c q ≠≠) ()3{}n a 是等比数列2

12n n n a a a ++?=? ()4{}n a 是等比数列n

n S kq k ?

=-(11

a k q =

-,0k ≠,1q ≠)

(二)主要方法:

1.涉及等比数列的基本概念的问题,常用基本量1,a q 来处理;

2.已知三个数成等比数列时,可设这三个数依次为2

,,a a q a q 或

,,a

a a q q ;四个数时设为3a

q

、a q

、aq 、3

aq

3.等比数列的相关性质:

()1若{}n a 是等比数列,则m n

m

n a a q

-=?;

()2若{}n a 是等比数列,,,,*m n p t N ∈,当m n

p t +=+时,m n p t a a a a ?=?

特别地,当2m n p +=时,2

m n p a a a ?=

()3若{}n a 是等比数列,则下标成等差数列的子列构成等比数列;

()4若{}n a 是等比数列,n S 是{}n a 的前n 项和,

则m S ,2m m S S - , 32m m S S -…成等比数列.

()5两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n n a b ?、?????

?n n b a 、?

??

???n b 1仍为等比数列. 【典型例题】

题型一:基本量运算

例1、已知{}n

a 为等比数列,3

2a

=,24203

a a +=

,求{}n a 的通项公式;

例2、在等比数列{}n a 中,318a a -=,64216a a -=,40n S =,求公比q 、1a 及n

问题2.()1已知数列{}n

a 是等比数列,且>0n

a

,n N ∈*

,354657281a a a a a a ++=,

则46a a +=

()2(06苏州调研)在等比数列{}n a 中,3

2a =,5a m =,78a =,则m = .A 4±

.B 5

.C 4

-

.D 4

()3(06湖北文)在等比数列{}n a 中,1

1a =,103a =,则23456789a a a a a a a a =

.A 81 .B 2.C .D 243

()4(05全国Ⅱ文)在8

3和

272

之间插入三个数,使五个数成等比数列,则插入的三个数的

乘积是

()5(07南京高三期末调研)在等比数列{}n a 中,已知12

31a a a ++=,4562a a a ++=-,

则该数列前15项的和15S =

问题3.(04

全国Ⅱ)数列{}n a 的前n 项和记为n S ,已知11a =,12n n

n a S n

++=

(1,2,3,n =???) 证明:()1数列n S n ??

????

是等比数列,()214n n S a +=

问题4.已知数列{}n

a 中,n

S

是它的前n 项和,且142n n S a +=+()1,2,n =???,11a =.

()1设12n n n b a a +=-()1,2,n =???,求证:数列{}n b 是等比数列;()2设2

n n n

a c =()1,2,n =???,

求证:{}n c 是等差数列;()3求{}n a 的通项公式n a 及前n 项和公式n S

问题5.(06陕西)已知正项数列{}n

a ,其前n 项和n

S 满足2

1056n n n S a a =++且1a ,3a ,

15

a 成等比数列,求数列{}n a 的通项n

a

(四)巩固练习:

1.(07湖南文)在等比数列{}n a (*

n N ∈)中,若11a =,418

a =

,则该数列的前10项和

为 .A 4

122

- .B 9

122

-

.C 10

122

-

.D 11

122

-

2.(07海南文)已知a 、b 、c 、d 成等比数列,且曲线2

23y x x =-+的顶点是(),b c ,

则a d 等于 .A 3

.B 2

.C 1

.D 2

-

3.(07重庆)设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程2

4830x x -+=的两

根,则20062007a a +=______.

4.(07湖北)若数列{}n a 满足

2

12

n n

a p a +=(p 为正常数,*n N ∈),则称{}n a 为“等方比数

列”.甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则

.A 甲是乙的充分条件但不是必要条件.B 甲是乙的必要条件但不是充分条件

.C 甲是乙的充要条件 .D 甲既不是乙的充分条件也不是乙的必要条件

(五)走向高考:

1.(07陕西)各项均为正数的等比数列{}n a 的前n 项和为n S 为,若2n S =,314n S =,

则4n S 等于 .A 80 .B 30 .C 26 .D 16

2.(06辽宁)在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则

n S 等于 .A 1

2

2n +- .B 3n .C 2n .D 31n

-

3.(05湖北)设等比数列}{n a 的公比为q ,前n 项和为n S ,若1n S +,n S ,2n S +成等差数列,

则q 的值为

4.(07全国文Ⅱ)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,

求{}n a 的通项公式.

5.(07北京)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n = ,,,),且123,,a a a

成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{}n a 的通项公式.

6.(07山东)设数列{}n a 满足2

1

123333

3

n n n a a a a -++++=

…,a N ∈*

(Ⅰ)求数列{}n a 的通项;(Ⅱ)设n n

n b a =,求数列{}n b 的前n 项和n S .

7.(06福建文)已知数列{}n a 满足*

12211,3,32().n n n a a a a a n N ++===-∈

(Ⅰ)证明:数列{}1n n a a +-是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若数列{}n b 满足121

1

1

*

4

4 (4)

(1)(),n n b b

b b n a n N ---=+∈证明{}n b 是等差数列。

最新等比数列知识点总结及题型归纳(1)

等比数列知识点总结及题型归纳 1、等比数列的定义: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?= ?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= =-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)数列{}n a ,{}n b 为等比数列,则数列{}n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 为非零常数)均为等比数列。 (5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++???仍为等比数列 (6)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列 (8)若{}n a 为等比数列,则数列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比数列

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

等比数列知识点总结及题型归纳

等比數列知識點總結及題型歸納 1、等比數列の定義: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m m a a a a q q q a a ---=?=?= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =± 注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個 (2)數列{}n a 是等比數列211n n n a a a -+?=? 4、等比數列の前n 項和n S 公式: (1)當1q =時,1n S na = (2)當1q ≠時,() 11111n n n a q a a q S q q --==-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠?為等比數列 (3)通項公式:()0{}n n n a A B A B a =??≠?為等比數列 6、等比數列の證明方法: 依據定義:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?為等比數列 7、等比數列の性質: (2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t mn st N +=+∈, 則n m s t a a a a ?=?。特別の,當2m n k +=時,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)數列{}n a ,{}n b 為等比數列,則數列{ }n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 為非零常數)均為等比數列。 (5)數列{}n a 為等比數列,每隔*()k k N ∈項取出一項23(,,,,)m m k m k m k a a a a +++???仍為等比數列 (6)如果{}n a 是各項均為正數の等比數列,則數列{log }a n a 是等差數列 (7)若{}n a 為等比數列,則數列n S ,2n n S S -,32,n n S S -???,成等比數列 (8)若{}n a 為等比數列,則數列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比數列

等比数列基本题型汇总经典讲义

9 等比数列相关概念理解及等比数列的判断 已知某种细胞分裂一次,可得到两个新的细胞,而新的细胞每个分裂一次都 可得两个新细胞,显然,分裂第n 次,可得n 2个新细胞,写成数列为: 2,4,8,16,……,该数列还是等差数列吗?它有什么特点呢? 显然,它不是等差数列,该数列的任意后一项除以前一项为同一个常数. 例 判断下列数列是否为等比数列 (1)n n n a )3()1(1--=, (2)3)2(--=n n a , (3) n n n a 2?= , (4) 1-=n a . 解: (1)为常数3)3()1()3()1(11 1-=--=-++n n n n n n a a Θ,为等比数列}{a n ∴. (2)为常数2)2()2(32 1-=--=--+n n n n a a Θ,为等比数列}{a n ∴. (3)不为常数n n n a a n n n n 12221)(n 11+=??+=++Θ,不为等比数列}{a n ∴. (4)1111=--=+n n a a Θ为常数,为等比数列}{a n ∴. 总结:判断或证明数列}{a n 是否是等比数列,可以求出n n a a 1+,再判断其是否为常数.如果是常数,是等比数列,如果不是常数,则不是等比数列. 思考:数列,判断下列数列是等比为项数相等的等比数列}{},{n n b a (1)}b {a n n (2)}{2n a (3)}{1+n n a a (4)}{n ka (5)}{n n b a + (6)}{1++n n a a (7)}1{n a (8)}{n n b a (9) }2{+n a (10) }{2+n a 解:(1),(2),(3),(7),(8),(10)是等比数列,(4), (5),(6),(9)不是等比数列,其中(4)中,若0=k ,则不是等比数列,若0≠k ,则是等比数列.

等比数列知识点总结与典型例题(精华word版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若* (,,,) m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d及a n+1 =qa n (d,q为常数) 例1、? 已知{a n }满足a n+1 =a n +2,而且a 1 =1。求a n 。 例1、解? ∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2 的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{} n a满足 1 1 2 n n a a + =,而 1 2 a=,求 n a=? (2)递推式为a n+1 =a n +f(n) 例3、已知{} n a中 1 1 2 a=, 12 1 41 n n a a n + =+ - ,求 n a. 解:由已知可知 )1 2 )(1 2( 1 1- + = - +n n a a n n ) 1 2 1 1 2 1 ( 2 1 + - - = n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2 -a 1 ) +(a 3 -a 2 )+…+(a n -a n-1 ) ★说明 ?只要和f(1)+f(2)+…+f(n-1)是可求的, 就可以由a n+1 =a n +f(n)以n=1,2,…,(n-1)代入,可得 n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把 n-1 个 等 式 累 加 得 : ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )3 2(23-= ∴n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的 类型。

数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

等比数列知识点总结及题型归纳

1 等比数列知识点总结及题型归纳 1、等比数列的定义: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?= ?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= =-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)数列{}n a ,{}n b 为等比数列,则数列{}n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 为非零常数)均为等比数列。 (5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++???仍为等比数列 (6)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列 (8)若{}n a 为等比数列,则数列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比数列

等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴ .选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以 故,选B 3.(2009江西卷文)公差不为零的等差数列 的前项和为.若 是的等比中项, ,则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 212 22q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2 111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

高考数列常考题型归纳总结

高考数列常考题型归纳总结 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(1121+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-= 所以n a a n 1 11-=- 211=a Θ,n n a n 1231121-=-+=∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 解:由条件知1 1+=+n n a a n n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即 1342312-??????????n n a a a a a a a a n n 1 433221-??????????=n a a n 11=? 又321=a Θ,n a n 32 =∴

例:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:12 31 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437526 33134 8531n n n n n --= ????= ---L 。 变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1, 1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的通项1 ___ n a ?=? ? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a , n a a a a a a a a a n n =???====∴-13423121,,4,3,1, 1,将以上n 个式子相乘,得2 ! n a n =)2(≥n 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=?-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且 233 11=++=++n n n n a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=?=n n n b ,所以321-=+n n a . 变式:(2006,重庆,文,14) 在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________

等比数列知识点总结

等比数列 知识梳理: 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m n m m m a a a a q q q a a ---=?= ?= 3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2 A ab =或A ab =± 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项 互为相反数) (2)数列{}n a 是等比数列2 11n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,为等比数列 (2)等比中项:2 1111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质:

相关文档
最新文档