无游梁长冲程抽油机控制系统PLC设计报告

无游梁长冲程抽油机控制系统PLC设计报告
无游梁长冲程抽油机控制系统PLC设计报告

无游梁长冲程抽油机

控制系统

姓名:康代涛

学号:1090610106

班级:0906151

2012年11月

目录:

1.项目背景、目的及意义 (3)

1.1背景 (3)

1.2目的 (3)

1.3意义 (3)

2.系统需求及功能分析 (3)

3.方案设计、系统选型 (3)

3.1方案设计 (3)

3.2 PLC选型 (4)

3.3变频器选型 (4)

3.4其他器件选型 (4)

4.系统连线设计、接线 (4)

4.1 PLC I/O连接设计 (5)

4.2变频器连接设计............................................................................... 错误!未定义书签。

4.3其他连接设计................................................................................... 错误!未定义书签。

4.4接线图 (6)

5.系统构建、编程......................................................................................... 错误!未定义书签。

5.1系统构建........................................................................................... 错误!未定义书签。

5.2程序设计 (8)

6.系统调试 (10)

6.1 运行调试 (10)

6.2 运行中自动复位调试 (10)

6.3 自检调试 (10)

6.4 停止按钮调试.................................................................................. 错误!未定义书签。

6.5 故障程序调试.................................................................................. 错误!未定义书签。

6.6 点动运行调试.................................................................................. 错误!未定义书签。

7.项目总结..................................................................................................... 错误!未定义书签。

8.系统操作说明书 (10)

无游梁长冲程抽油机控制系统设计报告

1.项目背景、目的及意义

1.1背景:

世界石油资源开发至今,机械采油方式仍占有主导地位,而有杆抽油机井又占机械采油井的90 %以上。就目前国内油田而言, 在机械采油井中, 游梁抽油机仍为主要机型。它以结构简单、使用维护简便、宜于在全天候状态下工作等优点而被广泛应用。然而,常规游梁式抽油机冲程短,冲次快,而且冲程不可调,载荷小,能耗大,不能适应油井深抽工艺的需要, 已成为困扰油田生产及增效节支的一大问题。长冲程抽油机具有较好的抽油性能,能提高产量、降低采油成本、提高经济效益等优点,是抽油机发展的主流和方向。

1.2目的:

无游梁长冲程抽油机控制系统采用可编程控制器(PLC)为控制核心,通过控制变频器实现电动机正反转的直接驱动方案,有效简化了机械结构,大大提高了总体效率。利用PLC实现长冲程、低冲次,冲程、冲次、上下行速比可调、节能、大载荷和适应性强、可靠性高等特点。本次设计试验的目的就是以PLC 为核心,设计编写无游梁长冲程抽油机控制系统的程序。

1.3意义:

无游梁长冲程抽油机是一种无游梁式塔架结构长冲程抽油机,没有游梁、不采用曲柄连杆机构换向,不采用增大冲程机构,利用抽油机本身的机构特性,实现长冲程抽油和超长冲程抽油。除了保持游梁抽油机原有的诸多优点外,还具有长冲程、低冲次、节能、大载荷、适应性强、抽油杆磨损小、排量稳定、动载荷小等特点。采用电动机直接驱动滚筒缠绕或放开皮带实现抽油杆的上下抽油运动,克服了链条式抽油机链条易磨损需润滑密封等问题,也解决了机械换向和液压换向抽油机换向机构易损坏的问题,具有传动结构简单,效率高,系统可靠性高的优点。

2.系统需求及功能分析

(1)变频器参数设置及启动/停止,正/反转控制,点动控制;

(2)电磁抱闸控制,在电动机旋转时解开抱闸,停止时刹车抱闸;

(3)运行时,变频器按照电动机运行曲线控制电动机运行频率;

(4)在悬点负载/配重超出行程范围时进行保护;

(5)运行时,运行指示,故障时报警指示;

(6)行程重新定位功能,在每次冲程开始时重新回到零位,消除行程累计误差;

(7)自动归零,按下运行按钮,配重自动回到零位;(优化功能)

(8)自检,可以自动检测系统传感器是否正常;(优化功能)

3.方案设计、系统选型

3.1方案设计

使用变频器控制电机,以达成令电机按照要求的运行曲线调整转速,并且利用变频器的点动控制功能来完成电机的点动动作。使用PLC控制整个系统,通过顺序逻辑控制、计时器、变频器控制、模拟量输入、输出完成对抽油机模型往复运动实现抽油的功能。

无游梁长冲程抽油机模型与实际系统的机械结构相同,包括电动机、电控刹车、滚筒、皮带、换向轮、零位开关、软件及硬件行程开关,利用汽缸和活塞真实地模拟了井下的负载。控制上通过面板上的停止、运行、自检、点动上下按钮以及零位光电开关、上下软行程开关来进行数字量输入,数字量输出包括电控刹车控制继电器,停止、运行、自检指示灯以及变频器的正反转、点动正反转控制。模拟量均采用0~10V的电压,包括控制变频器频率输出以及变频器反馈电流。系统的硬件保护包括上下硬行程开关以及电控刹车,当系统运行出现故障时抱死电机,当配重超出行程范围时自动切断系统电源。

3.2选择I/O模块的数量及类型

本次试验需要数字量的输入和输出,以及控制变频器的模拟量输入和输出,因此需要数字量输入模块、数字量输出模块、模拟量输入模块和模拟量输出模块共四个I/O模块。

数字量输入模块:1756-IB16I

数字量输出模块:1756-OB16E

模拟量输入模块:1756-IF8

模拟量输出模块:1756-OF8

3.2.1选择网络数量及类型

本实验通过计算机以太网卡与PLC的EtherNet(EtherNet/IP)相连,具体选型为:

网络模块:1756-ENBT

3.2.2选择控制器数量及适当的内存容量

本实验选用控制器:1756-L1 Logix5550

3.2.3在同一个框架中配置通讯网桥模块、控制器及I/O、安插模块

1756-L1:0槽

1756-PA72C:1槽

1756-IB16I:4槽

1756-OB16E:5槽

1756-IF8:6槽

1756-OF8:7槽

电源选用1756-PA72/C

框架选用1756-A10/A

3.3变频器选型

本实验选用罗克韦尔自动化PowerFlex70驱动器,具体型号为:20A C 2P1 A 0 AYNANC0。

3.4其它器件选型

根据方案设计,本实验控制系统还需要以下器件:

按钮5个,其中包括停止、运行、自检按钮,以及点动上、点动下按钮,均不带自锁。运行、自检按钮应互有颜色上的区别,与各自指示灯对应。

指示灯3个,其中包括故障、运行、自检指示灯,其中运行、自检指示灯互有颜色上的区别,与各自按钮对应,故障指示灯作为警示标志,应采用红色。

光电开关1个,作为零位检测开关。

行程开关4个,两两一组,分别作上行程开关组、下行程开关组,每组包括软硬行程开关。

4.系统连线设计、接线

4.1 PLC I/O连接设计

4.1.1数字量输入

各种按钮和传感器连接到1756-IB16I模块上。

(1)停止按钮常闭触点连接到In8通道(接点17)上;

(2)运行按钮常开触点连接到In9通道(接点19)上;

(3)自检按钮常开触点连接到In10通道(接点21)上;

(4)点动上按钮常开触点连接到In11通道(接点23)上;

(5)点动下按钮常开触点连接到In12通道(接点25)上;

(6)配重下行程开关常闭触点连接到In13通道(接点27)上;

(7)配重上行程开关常闭触点连接到In14通道(接点29)上;

(8)零位开关常闭触点连接到In15通道(接点31)上。

4.1.2数字量输出

指示灯、电磁刹车及变频器通过1756-OB16E模块进行控制。

(1)电磁刹车继电器由Out8通道(接点11)控制;

(2)故障指示灯连接到Out9通道(接点12)上;

(3)运行指示灯连接到Out10通道(接点13)上;

(4)自检指示灯连接到Out11通道(接点14)上;

(5)变频器正转运行(Out4)由Out12通道(接点15)控制;

(6)变频器反转运行(Out5)由Out13通道(接点16)控制;

(7)变频器点动正转(Out6)由Out14通道(接点17)控制;

(8)变频器点动反转(Out7)由Out15通道(接点18)控制。

4.1.3模拟量输入

变频器电流反馈连接到1756-IF8的电压输入2通道上。

(1)VIO连接到In4接点(接点12)上;

(2)VICOM连接到In5接点(接点14)上。

4.1.4模拟量输出

变频器频率控制连接到1756-OF8的电压输出2通道上。

(1)VOO连接到Vout-2接点(接点11)上;

(2)VOCOM连接到RTN接点(接点15)上。

4.2变频器连接设计

4.2.1数字量输入

变频器正转运行(Out4)连接到变频器数字量通道1(接点1)上;

变频器反转运行(Out5)连接到变频器数字量通道2(接点2)上;

变频器点动正转(Out6)连接到变频器数字量通道3(接点3)上;

变频器点动反转(Out7)连接到变频器数字量通道4(接点4)上。

4.2.2模拟量输入

PLC控制输入为0~10V模拟量;

VOO连接到变频器模拟量输入通道1正电压接点(接点15)上;

VOCOM连接到变频器模拟量输入通道1负电压接点(接点14)上。

4.2.3模拟量输出

PLC反馈输出为0~10V模拟量;

VIO连接到变频器模拟量输出通道正电压接点(接点23)上;

VICOM连接到变频器模拟量输出通道公共端接点(接点22)上。4.3其它连接设计

根据设计方案,系统电气接线要求如下:

(1)三相电源经空气开关1接至变频器;

(2)接入变频器的线路其中一相经空气开关2接至PLC-L;

(3)三相电源其中一相经空气开关3接至电磁刹车输入端;

(4)电磁刹车继电器由PLC的Out8通道控制,与空气开关3并联;

(5)上、下硬行程开关常闭接点以及保护继电器的线圈串联至三相电源一相上;

(6)保护继电器触点串在空气开关1与变频器之间;

(7)变频器三相输出端接至三相异步笼型电机;

(8)电磁刹车输入端经晶体管整流接至电磁刹车;

(9)各按钮以及开关输入共阳极连接;

(10)各指示灯以及电磁刹车继电器共阴极连接;

(11)其余各接地、接中性线位置正确连接。

4.4接线图

电气接线图如下:

5.系统构建、编程5.1系统构建

5.1.1通信配置

利用RSLinx软件进行驱动配置,选择Ethernet Devices,命名为AB_ETH-1,地址为10.2.0.106。确认完成配置后,打开监视确认各个模块型号版本。

5.1.2建立项目

打开RSLogix5000软件,新建工程,选择控制器为1756-L1 Logix5550,版本号为12(RSLinx显示版本号12.28,RSLogix设置后默认为12.27),位置为0槽。

5.1.3 I/O配置

在已经建立的工程中,右键I/O Confguration,按照上述设计添加I/O模块,按照不同模块版本号完成设定:

1756-IB16I,版本号2.1,位置为4槽,其余默认。

1756-OB16E,版本号2.4,位置为5槽,其余默认。

1756-IF8,版本号1.5,位置为6槽,使能通道2,输入范围为0~10V,模拟量0~10V对应工程量为0~1.7(单位:A),其余默认。

1756-OF8,版本号1.5,位置为7槽,使能通道2,输出范围-10~+10V,模拟量0~+10V对应工程量为0~50(单位:Hz),工程量上下限值为0~50,其余默认。

5.2程序设计

根据实际要求,将程序分成3个部分:

(1)主程序:用于实现主要功能,包括相应按钮的自锁,电动机点动正反转,电磁刹车的解抱闸,系统故障出现时的亮灯与解除,系统停止;

(2)运行子程序:用于令电机按照规定运行曲线往复运行,以及相应的附加功能;

(3)自检子程序:用于令电机按照要求检测上下行程开关以及光电开关是否正常运作。

5.2.1主程序设计

考虑到运行与自检按钮均为点动按钮,因此在两行语句中分别加入自锁结构,实现松开按钮后的持续亮灯并成功跳转进入子程序。

当运行子程序和自检子程序运行时,电机运转,此时电磁刹车应该解抱闸,同样的,在点动正反转输出时,电磁刹车也应该解抱闸,故设定并联条件控制电磁刹车输出,当任意一条满足时,电磁刹车解抱闸。

在配重到达下行程开关之前,电动机点动正转有效,由于行程开关为常闭节点,故将点动正转(点动上)按钮输入与配重下行程开关串接,控制变频器正转输出。考虑到子程序可能使用点动命令,在点动正转按钮输入处并联一个中间量,定义为程序控制点动正转。同样地,对电动机点动反转进行上述编程。

当按下停止按钮时,停止全部程序,并且清零所有会导致停止按钮松开后使程序继续运行的标志位,以及所有会导致下一次启动不正常的标志位,使正反转以及点动运行全部停止,熄灭各指示灯,电机抱闸,实现完全的复位。将清零各标志的语句并联做输出,串接在停止按钮按下的非这一判断条件后。

至此,主程序应有的功能设计完毕,检测各行无错误,跳转子程序可以在子程序中先使用指示灯检测。确保成功跳转后,开始编写子程序。

5.2.2运行子程序设计

当按下运行按钮后,进入运行子程序,立即跳入第一次运行子程序。设定单脉冲指令,进入该子程序后,标志第一次运行,标志正转,此后在系统停止之前再次按下运行按钮无效。

首先考虑运行开始前的情况,如果配重不在零位开关位置,则需要自动回归零位之后再开始运行。

运行子程序规定每次定时器计时时间为80秒,目的是给自动复位的过程尽可能长的时间,保证复位的完成。其中,0~30秒为上电复位阶段,这一时间内配重向上运行直至回到初始位置触发光电开关为止。

30~50秒为正转过程,3秒加速,3秒减速,最大频率为20赫兹。

50~70秒为反转过程,3秒加速,3秒减速,最大频率为20赫兹。

70~80秒的时间为返回复位时间。这一期间配重继续向上运行直至触发光电开关为止。这一时间是为了防止负载返回时出现返回位移不足的问题,从而校正了误差。

每次运行返回时都要触发光电开关以确保回到初始位置,触发光电开关后对定时器重新赋值30000,从30秒处执行,如此反复。

因为实际频率数值较小,采用大整数(双字)进行基值计算,再除以频率因数获得实型数频率模拟量输出。

当系统在运行时出现碰上下行程开关,或者自检时光电开关无效,或者运行反馈电流过大时,系统提示故障,点亮故障指示灯,故障灯具有自锁功能。当停止按钮按下后,故障灯熄灭,系统复位。故并联故障条件,并注意各条件的先决情况,再加上自锁语句,去自锁命令为串联停止按钮输入。当系统出现故障时,立即停止当前程序运行,并且抱闸防止配重误动作,并且清零所有会导致故障灯熄灭后使程序继续运行的标志位。将清零各标志的语句并联做输出,串接在故障指示灯亮这一判断条件后。

至此,运行子程序基本设计完毕,启动程序检测,注意防止频率设置错误导致电机高速运行。

5.2.3自检子程序设计

自检过程设计为先下行触发下行程开关,再上行经过光电开关,之后触发上行程开关,随后再次经过光电开关后停止。在上下软行程开关失效时硬保护启动,系统将断电,可以明显分辨故障。如果经过光电开关后正常停止,则证明光电开关工作正常,反之光电开关失效。为了防止检测时出现意外触发,设定上下行程开关检测标志,令系统按照顺序检测各个元件。上下运转均使用这两个状态检测标志作为正反转标志。

设定单脉冲指令,进入自检子程序后,清零三个开关检测标志,标志正转,此后在系统停止之前再次按下自检按钮无效。

当自检指示灯亮时,自检程序有效:首先正反转标志清零,由于控制正反转的开关一个是常开一个是常闭,因此都为0时正转有效,配重下行。当下行程开关触发后,置位正反转标志,配重上行。随后触发上行程开关时,再次清零两个标志位,配重下行。经过光电开关后停止,则光电开关检测完毕,自检指示灯熄灭。

启动程序检测,注意三个开关触发顺序对程序结果的影响,以及是否存在输出条件的冲突冲突。

6.系统调试

6.1 运行调试:

将程序下载到处理器中,调到运行状态。点击运行按钮,抽油机自动复位后开始运行,运行指示灯亮。自动复位后,抽油杆先经过三秒加速频率达到20Hz,匀速运行14秒后开始减速,3秒后减速至0Hz。随后以相同的过程返回。

6.2 运行中自动复位调试:

第二次向下运行过了零位开关时,手动断开零位开关一次,观察配重返回时是否会回到初始位置。经过观察,每次配重均自动返回初始位置,直至触发零位开关后,开始下一次运行。

6.3 自检调试:

系统停止后,按下自检按钮,自检指示灯点亮,配重以10Hz的频率先向下运行,观察配重触碰下行程开关后是否反向,如不反向则程序错误。配重反向运行后观察其触碰上行程开关后是否反向,如不反向则程序错误。反向后观察配重经过光电开关是否停止,如不停止则程序错误,停止且自检指示灯熄灭则自检程序调试完毕。

6.4 停止按钮调试:

运行中按下停止按钮,程序停止运行,电机抱闸,运行指示灯熄灭。自检过程中按下停止按钮,程序停止运行,电机抱闸,自检指示灯熄灭。

6.5 故障程序调试:

运行途中触碰上(下)行程开关,程序、变频器停止运行,电机抱闸,运行指示灯熄灭,故障指示灯点亮。

6.6 点动运行调试:

停止状态下,按住点动上(下)按钮,抽油杆点动向上(下)运行,松开按钮后停止运行,电机抱闸。

7.项目总结

在老师为我们上完第一节课后,剩余的时间老师都交给我们自己自由上机进行试验了。说实话,刚开始心里不是很有底,因为刚开始自己什么都不会,只在上学期的实验中接触过两次RSLinx和RSLogix5000,几乎一切都要从零学起。可是过了几周后我发现,通过这种自学方式,虽然初期会很艰苦,但是一旦明白后就很难忘记,学得比以往更加扎实,现在使用这些软件编程已经轻车熟路了,甚至编程PLC还成为了我每周开始的乐趣。不得不说这种自学的方式给了我很大的鼓舞,认识到了自己是有潜力的。当然,这次编程过程中还是遇到了不少的问题的。首先就是自己考虑的不是很全面,经常以为已经都做的很好了,可是还会出现意想不到的问题。比如我第一次验收时,自以为该做的都做了,可是老师上来就发现了我的两个漏洞,我之前竟然一点都没有想到。还有就是我写程序不爱加注释的坏习惯也带到了PLC的编程中,老师也批评了我这一点,以后不论编什么程序,一定要加上注释。总之,这次编程让我学到了很多,也发现了自己的潜力和不足,对于自己学习上的提高有很大的帮助。

8.系统操作说明书

运行按钮——抽油机抽油杆自动回到初始位置,开始按既定速度曲线往复运行。(可在运行子程序中更改变频器速度因子调整冲程和速度)

自检按钮——系统自动上电自检,配重先向下运行监测下限位开关,下限位

开关监测正常后配重向上运行,监测上限位开关和零位开关。

点动上按钮——抽油杆以10Hz的频率点动向上运行。

点动下按钮——抽油杆以10Hz的频率点动向下运行。

停止按钮——系统停止当前动作,熄灭各指示灯,机器抱闸。

故障——出现配重触碰上(下)形成开关,电流超过变频器额定电流时,系统报错,程序停止运行,电机抱闸,故障指示灯点亮。

游梁式抽油机安全操作规程标准版本

文件编号:RHD-QB-K3235 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 游梁式抽油机安全操作规程标准版本

游梁式抽油机安全操作规程标准版 本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.1.1启动游梁式抽油机操作规程 1.1.1.1操作前准备 1.1.1.1.1穿戴好劳动保护用品。 1.1.1.1.2准备工具、用具:管钳、活动扳手、绝缘手套、试电笔、钳型电流表、润滑脂、细纱布;班报表、记录笔。 1.1.1.2操作步骤 1.1.1. 2.1启动前检查 1.1.1. 2.1.1检查流程是否正确、畅通,井口零部件及仪表是否齐全、完好且符合要求,悬绳器及方卡

子是否牢固。 1.1.1. 2.1.2检查抽油机各连接部位紧固螺栓是否牢固可靠及各润滑部位油量、油质是否符合要求。 1.1.1. 2.1.3检查刹车各部件连接完好,灵活好用。 1.1.1. 2.1.4检查皮带松紧合适,无老化、无蹿槽、无打扭、无油污现象。盘皮带无卡阻现象。 1.1.1. 2.1.5检查电器设备是否完好,处于备用状态,电线无老化、裸露现象。 1.1.1. 2.1.6检查和排除抽油机周围妨碍运转的物体。 1.1.1. 2.2启动抽油机 1.1.1. 2.2.1取下刹车锁销,松开刹车,合上铁壳开关,检查抽油机周围无障碍物,用试电笔检测电控柜外壳确认安全,戴绝缘手套,打开电控柜门,侧身

游梁式抽油机节能新技术

游梁式抽油机节能新技术 摘要:探讨游梁式抽油机节能的新方法,即在采用优化游梁式抽油机电动机及控制装置、四连杆机构、悬点载荷平衡装置和传动元件的基础上,来提高这些子系统的效率达到节能的目的,并提出了计算系统效率的方法。 关键词:游梁式抽油机节能新技术综述 1 电动机节能方法 对于抽油机的电动机,节能的关键是提高其负荷率。其一,人为的改变电动机的机械特性,以实现负荷特性的柔性配合,主要是改变电源频率,提高系统效率,实现节能。其二,从设计上改变电动机的机械特性,改善电动机与抽油机的配合,提高系统运行效率。其三,通过提高电动机的负荷率、功率因数,实现节能。使用的节能电机主要有:变频调速电动机,电磁调速电机,超高转差电动机。在使用超高转差电动机时,应对抽油机系统进行优化设计,才能达到预期目的。试验表明,超高转差电动机能与变几何形状抽油机(如异相抽油机)和前置式抽油机配合使用,效果很好。另外还有电磁滑差电动机、稀土永磁同步电动机、双功率电动机和绕线式异步电动机。游梁式抽油机用电动机节能是一个非常复杂的问题,选择方案时要考虑电动机效率、功率因数、系统增效、成本投入、可靠性及现场管理等问题。 2 改进抽油机的节能方法 国外抽油机的技术发展总趋势主要有七个方面:朝着自动化、智能化;高适应性;节能;精确平衡;无游梁长冲程;大载荷、长冲程、低冲次;大型化方向发展。研制与应用了各种新型节能抽油机:异相型抽油机、前置式抽油机、前置式气平衡抽油机、大圈式抽油机、轮式抽油机、自动化抽油机、智能抽油机、无游梁长冲程抽油机、低矮型抽油机、液压缸式抽油机、玻璃钢抽油杆抽油机等。同时,还研制了节能抽油机部件,例如:超高转差率电动机、电动机节能控制柜、窄V型联组带和齿型胶带等。我国的抽油机种类已能适应各种工作状况的要求,主要有常规式、前置式、偏置式、链条式和增矩式五种。在抽油机皮带、减速箱和平衡方式等方面研究,使的抽油机效率达到90%以上。研究出了以大载荷、长冲程、低冲次、精平衡、高效节能、高适应性、自动化、智能化、通用化和系列化为代表的先进的抽油机。 3 改进抽油杆的节能方法 采用新型材料和新热处理工艺和强化处理工艺制造抽油杆;各种新型抽油杆的研究、开发和应用、抽油杆的发展和改进也是提高系统效率的主要措施。由于国外新材料抽油杆和连续抽油杆有了很大发展,出现了多种形式的抽油杆,大大地提高了抽油杆的适应性、经济性、可靠性和先进性。国外也发展了连续抽油杆和连续油管。俄罗斯和瑞典分别研制了钢带式超长冲程抽油机,采用了钢带抽油杆,在地面抽油机滚筒上面缠绕着这种抽油杆,在钢带抽油杆的另一端直接连接着井

塔架式数控抽油机介绍

塔架式数控抽油机介绍 产品介绍 油田专用节能设备塔架式组合传动系列抽油机、是自主研发的专利产品。根据油田的需求推出了塔架式组合传动抽油机系列,并开发出与之配套的TYCTZDX永磁同步电机拖动系统和TYBTZDX异步伺服电机拖动系统,具备了系列化、规模化、产业化的生产条件。 塔架式组合传动抽油机属无游梁式电机换向重力平衡变频调速机电一体化的抽油机,它的特点是: 1长冲程、低冲次更加适合采油工况的要求,延长抽油杆、抽油泵的使用周期,提高泵效。 2选择性强,可针对不同油田区块采油的条件选择一款最适合的塔架式组合传动抽油机和相对应的拖动系统,系统效率、泵效、功率因数高,降低能耗、节约用电。 3既有高端的永磁同步拖动系统,也有价位适中的异步伺服拖动系统,都能实现智能控制稳定运行,运行状态一目了然。 4安全耐用,组合传动优化了传动结构延长了使用寿命,降低了维护难度,减少了维修费用。 5电脑调整冲程、冲次简便易行, 更方便调整到合理的动液面。 6上下行冲程分别调速,适合上行、下行不同速的使用工况要求。 7不平衡自测功能,高速运行时不平衡自动降至中速报警不停机;卡井时停机保护;失载自动制动,控制配重缓慢落地。

8塔架式组合传动抽油机修井不用移机让位的距离是700-1000mm以上,符合无游梁抽油机的行业标准。 9适合不同自然环境(包括水淹地区) 塔架式组合传动抽油机选型说明: 1一般油井需根据具体情况(泵挂、泵径、综合指标)确定最大悬点载荷,再计算出该区块或油井的液柱总重量,对照塔架式组合传动抽油机所标明的推力和所需每分钟总冲程确定型号。 2稠油井需根据油液粘稠度加大塔架式组合传动抽油机拖动力。 3根据具体区块油井最大排液量确定每分钟总冲程(冲程X冲次)选择油井所需运行速度的抽油机。抽油机每个型号分为最高运行速度0.5m\S每分钟12米冲程内无级调节(适用于选用38mm-56mm泵径,日产液量在10-25方内的较低排液量的油井选用);最高运行速度在0.75m\S 每分钟16米内无级调节;最高运行速度在1m\S每分钟21米冲程内无级调节适用于高排液量油井。举例说明: 1、该油井泵挂在1700m泵径38mm排液量10方,最大悬点载荷67kn,配重5.6T左右达到平衡运行,油柱重1.92T,按照1/2平衡原则,抽油机在平衡运行状态下需大于9.6kn,热洗井后配重上行和下行电流差是1-12A(增大到13.5kn,经24小时运行恢复平衡状态,应选运行拖动力在14kn卸载能力在33kn以上的抽油机;设定抽油机实际冲程4.5m,每分钟总冲程9m。WCYJSKZ10-4-12-20Z型抽油机运行拖动力20kn,拖动利用率67.5%最大卸载能力35kn,每分钟总冲程12米理论排量19.56方泵效50%,可以满足运行的需要。

无梁长冲程抽油机设计

2013届本科毕业设计(论文) 摘要 无梁长冲程抽油机是一种大载荷、长冲程、低冲次及自动化程度高、方便节能的抽油机。因此,研究它对于提高采油效率,降低采油成本有相当重要的作用。 本次设计采用双电机轮流工作,从而控制抽油杆的上升和下降。所选用的两个电磁调速电机之间用同步齿形带连接。由于电机空载启动,其启动电流较小,减小了电机对电网的冲击,抗电网电流波动能力增强,功率因数提高。电机输出的功率通过V带轮传递给减速器,并且通过减速器对电机输出功率进行调整,然后通过链轮链条传递给抽油杆,最终把电机的旋转运动转化为抽油杆的上升和下降运动。因此,本次设计的主要内容有换向装置方案的选取,电磁调速电机的选取,以及同步齿形带和减速器的设计:其主要包括V带设计、齿轮设计和轴的设计。并且通过以上设计达到最终提高采油效率,降低采油成本的目的。所以,本次设计的无梁长冲程抽油机是目前较为理想的机电一体化产品。 关键字:无梁长冲程抽油机;电磁调速电机;同步齿形带;减速器;机电一体化

2013届本科毕业设计(论文) ABSTRACT The beamless long stroke pumping unit is a big load, long stroke a nd low times and high degree of automation, energy-saving convenience of the pumping unit. Therefore, the study has helped to raise production efficiency, lower production costs are an important role. This case is that two motors work alter natively. Then,they can control rod up and down. Selected two electromagnetic speed synchronous motors with toothed belts connected. As empty motor launch, starting current smaller, reducing the electrical power grid for the impact Anti - Electricity grid fluctuations capacity and improve power factor. Exports of electrical power through the V-pulley transmission to the reducer, and by the motor reducer output adjustment then transmitted to the sprocket chain rod and eventually motor rotating rod into the rise and fall c ampaign. Therefore, the current design of the main contents of the program for device selection, speed electromagnetic motor selection, and the synchronous belt and gear reducer design : its main V-belt design, the design and gear shaft design and calculation. Through the above, design and enhance the ultimate recovery efficiency and lower production cost. Therefore, the current design of the beam without long stroke pumping unit is the ideal integration of mechatronic products. Keywords:beamless long-stroke pumping unit; solenoid operated speed regulating motor; timing belt; Reducer; Mechatronic.

无梁长冲程抽油机设计开题报告

无梁长冲程抽油机设计 一.题目来源及类型 题目来源:教师科研课题 题目类型:毕业设计 二.研究目的及意义 随着油田的开发和铸、注水,使得下泵深度和排液量不断增加,同时经常出现较为复杂的开采条件:稠油、高粘、多蜡、多砂、水淹和强烈腐蚀等情况,因此,采油工艺对有杆抽油设备提出了低冲次大泵深抽的要求,游梁式抽油机由于其四连杆机构的传动形式,显示它不能适应上述要求。第一,游梁式抽油机减速器输出轴扭矩和抽油机冲程长度成正比,冲程长度大,减速器输出轴扭矩大,生产制造成本上升。第二,游梁式抽油机四连杆传动机构,决定了驴头运动的不均匀性,抽油机工作时悬点有较大的加速度。为了避免加速度过大,四连杆机构的游梁摆角以及曲柄—连杆比都不能太大,整机的轮廓尺寸和重量显著增大。 为了减小抽油机的轮廓尺寸和重量,改善技术性能和提高技术经济指标,满足低冲次长冲程的要求,早在50年代各国就已开始研制无游梁抽油机。无梁长冲程抽油机是一种无游梁,带有链条增程机构的长冲程抽油机,属于石油开采生产设备。其运动性能优,整机重量小,调整平衡容易、节约用电、结构紧凑、减速器小等优点。 因此,如何从增大抽油机的冲程和无梁的设计,提高工作效率,设计的合理性、可靠性入手,同时在设计时考虑如何在允许的情况下简化结构设计,提高工作可靠性等方面来对机械设计是现代机械设计理论的重要内容之一,也是本次设计的重要内容之一。而且在当今社会正面临着资源紧张,能源短缺的现实问题,所以此次设计也必须考虑设计的经济性和对环境的保护等问题。 三.国内外现状和发展趋势与研究的主攻方向。

国内外现状: (1)近几年来,我国抽油井数量逐年增多,用常规游梁抽油机开发抽油,采油量、泵消耗能、采油成本等各项技术的经济指标较差,因而阻碍了常规游梁抽油机的技术发展.为了更经济更合理地开发我国储油资源,必须大力开发我国的无游梁长冲程抽油机。 (2)对于低压油田,可用小泵深抽的方法提高原油产量。胜利油田十年前实施深抽的油井有好几百口,增产原油选几十万吨.此外,江苏、中原、华北等油田应用深抽技术也取得了较好的经济效益.为满足小泵深抽的需要,我国急需发展无游梁长冲程抽油机。 (3)采用大泵可提高采油量.从大泵提液的要求来看,我自也急需发展大载荷无游梁长冲程抽油机。 (4)日前.我国使用的无游梁长冲程抽油机有链条抽油机和增距式抽油机。这两种抽油机还不能完全满足我国开采石油的需要.此外,我国的无游梁长冲程抽油机正处于发展阶段,种类与规格不全,使用数量不多。因此,既要大力发展新型无游梁长冲程抽油机,还应对现有的几种无游梁长冲程抽油机加以改进和完善。 (5)近年来,国外对常规式抽油机作了某些重要改进,改进后的抽油机,改善了抽油系统的平稳性,降低能耗和减少产生机械事故的机率。另一种前置式抽油机可降低上冲程的光杆加速度,降低曲柄轴峰值扭矩,也可节约能耗。按API减速器规格分档的常规型、托马斯特型、马克Ⅱ型和前置式气平衡等几种机型成熟的系列产品,代表了美国当前游梁式抽油机的较高水平。此外,围绕着体积小,重量轻,节能等,还研制了各种游梁式抽油机的变型产品。无游梁长冲程液压抽油机的共同特点是占地面积小,重量轻,调节冲程、冲次、平衡力灵活方便,并配有较完善的监控和记录仪,不仅适用于陆上采油,更适用于海洋平台群体作业,有些机种还能适应稠油、斜井、丛式井开采。 研究的主攻方向:

游梁式抽油机设计计算

游梁式抽油机设计计算 卢国忠编 05-04 游梁式抽油机的主要特点是:游梁在上、下冲程的摆角相等,即上下冲程时间相等。且减速器被动轴中心处游梁后轴承的正下方。 一、几何计算 1.计算(核算) 曲柄半径R和连杆有效长度P 己知:冲程S、游梁后臂长C、游梁前臂长A、极距K(参见图1)由余弦定理推导可得:

公式: () b t CK K C CK K C R ψψcos 2cos 22 12222 -+--+= ------(1) R CK K C P t --+=ψcos 222 -------(2) 式中:1090δφψ+-=t 2090δφψ--=b H I tng 1 -=φ A S mas πδδ4360021?== 22H I K += 2. 计算光杆位置系数R P : PR 是在给定的曲柄转角θ时,光杆从下死点计算起的冲程占全冲程的百分比。(图2)(图3) 公式:10?--='= b t t mas S s PR ψψψ ψ% -----------(3) 曲柄 max S PR s ?=' ()121δδ?-=PR 式中: b t ψψ, 分别代表下死点和上死点的ψ角的值 ρ χψ-= ()?? ? ? ??-=-J R φ?ρsin sin 1 βcos 22 2 PC C P J -+= ??? ? ??-+=-CJ P J C 2cos 2221 χ

??? ? ??---++=-CP R K KR P C 2)cos(2cos 22221 ?θβ ()φθψβα--+= 上冲程 ()[]φθψβα--++=360 下冲程 二运动计算 己知:曲柄角速度ω、曲柄转角θ,分析驴头悬点的位移s 、速度v 、加速度a 的变化规律。 1. 假定驴头悬点随u 点作简谐振动: ()? ω? ω?con C AR a C AR v C AR s ??=??=-?= 2sin cos 1 以C AR S 2max =代入得: ()?ω? ω?c o s 21s i n 21 c o s 121 2m a x m a x m a x S a S v S s ==-= 2max max 2 1 ωS a = 2.接严格的数学推导 ?? ? ? ?+=P R S a 12 1max 2max ω 三动力计算 1.从示功图上求悬点载荷W 示功图是抽油机悬点载荷W 与光杆位置PR 的关系曲线图。是用示功仪在抽油机井口实测出来的。设计中无法实测,只好用理论公式计算并绘制------称为人工示功图,为以后的受力分析、强度计算提供主要依据。 2. 光杆载荷W 加在曲柄轴上的扭矩的计算(见图2 ,图3)

丛式井智能长冲程抽油机简介

丛式井智能长冲程抽油机

一、前言 现今,我国及世界上普遍使用的抽油机大多为“游梁式抽油机”,这种传统的抽油机在世界上已应用了100多年,其特点是:皮实耐用,但耗能高、效率低、操作不便、“大马拉小车”是造成采油成本居高不下的重大原因之一。 随着油田开发的不断深入,国内外大多数油田已经进入开采中后期,开采难度越来越大,开采成本越来越高,开采深度不断加深,含水不断增加等等油田开发面临的现状,迫切要求研发一种能够取代“游梁式抽油机”的机电一体化高效、节能型、长冲程、低冲次、大负荷抽油机,以最低成本最大限度地适应油田开发的需要。丛式井智能长冲程抽油机就是在上 述背景下,自主研制的具有独立自主知识产权的新型石油采油设备。已申请国家专利共21项,其中发明专利5项,发明专利均已公告,取得授权的实用新型专利10项。技术处于国际领先 地位,行业内没有同类产品。 该抽油机包括两大类型,一种是取代常规抽油机基于 “一机一井”设计的单井智能长冲程抽油机;一种是应用 于丛式井基于“一机多井”设计的丛式井智能抽油机,该 抽油机实现了一台电机同时带动两口油井抽油杆抽油,彻 底改变了目前国内外丛式井采油的现状,填补了国内外丛 式井低成本采油技术的空白。 目前,公司已经完成2项专利的产品开发,研制出样机两台,样 机在油田现场运行1年,运行证明,其性能指标远远高于现今油田普 遍应用的常规游梁式抽油机和其它塔架式抽油机,节能,智能化程度 高,机械效率高,操作简便,皮实耐用,已通过科技成果鉴定和油田 质检部门的相关检测,得到了专家及油田的充分肯定,被专家誉为“采 油机械的一场革命”。 经国家权威部门检验以及使用单位的测试证明:功率因数为1, 吨液提升百米有功耗电量0.45kWh/t100m,比常规游梁式抽油机节能60%以上,机械效率达到80%以上,系统效率达52.9%。每年可节约费用分别达到7.8万元和12万元。 二、丛式井智能长冲程抽油机的特点 1、节能 本机装机容量低,常规10型游梁式抽油机功率为37kW,而本机仅为15kW。现场运行

抽油机大体结构设计

第一章绪论 1.1 选题的目的和意义 随着油田的开发,我国大多数油田已进入开发的后期,逐渐丧失自喷能力,需要从自喷转向机采,而目前,我国开采石油耗电指标与国外先进水平相比,还有很大差距,我国抽油机的运行效率特别低,平均效率仅为25.96%,而国外平均水平为 30.05%,年节能潜力可达几十亿千瓦时,尽管研制和应用了一些节能抽油机,但是由于使用数量不多,其总耗电量还是很大的,近年来,我国研制的新型抽油机,几乎都具有高效节能特点,目前,在用的抽油机系统效率一般在20%~30%之间,因此,开展新型抽油机,替换常规机型是大势所趋,随着油田的不断开发,地层能量逐渐消耗,为了保证原油的稳产、高产,机械采油己经成为广泛采用的一种方法。我国有机采油井 5 万多口,占油井总数的80%左右,抽油机井的耗电量占总耗电量的四分之一,由于抽油机井的系统效率较低,大量的能量(70%以上)在传递过程中损失掉,如果将抽油机井的系统效率提高 5%,年节电 20×10e8 千瓦时,这不仅可节约大量资金,而且,还可以缓解油田电力紧张状况。当今世界,资源日益匮乏,“节能减排”已成为已成为一个不可忽视的方面,也是为了人类的继续生存而思考的,“节能减排”将成为永远不变的一个主题。而我国广泛使用的游梁式抽油机虽然结构简单、操作方便和可靠耐用,但机械效率和采油综合效率低、平衡度差、耗电量过高、机体过重和冲程的长度受到限制等不易克服的缺点。 1.2 链条式抽油机的发展现状 抽油机的产生和使用已有一百多年的历史。应用最多,使用最广的属游梁式抽油机。目前在世界产油国仍在大量使用。美国拥有40万台,我国拥有近三万台,一百多年来,游梁式抽油机的结构和原理没有实质性的变化。我国抽油机制造业已有50年的历史,经过进口修配、仿制试制、设计研制三个阶段。近几年我国的链条式抽油机发展比较快,但游梁式抽油机还占有主要地位,根据国情,我国现在应该改造优良式抽油机,研发新型节能抽油机。 抽油机的发展及节能抽油机的发展趋势主要朝以下几个方向:(1) 低能耗方向为了减少能耗,提高经济效益,近年来研制与应用了许多节能型抽油机。如异相双驴头抽油机、摆杆抽油机、渐开线抽油机、摩擦换向抽油机、液压抽油机及各种节能装置和控制装置。(2)大型化方向随着世界油气资源的不断开发,开采油层深度逐年增加,石油含水量也不断增大,采用大泵提液采油工艺和开采稠

游梁式抽油机专用电动机的设计

游梁式抽油机专用电动机的设计

0 引言 利用游梁式抽油机采油是世界石油工业传统的采油方式之一,也是迄今在采油工程中一直占主导地位的采油方式。游梁式抽油机具有:惯性力矩较大,启动困难;周期性冲击载荷;连续工作在室外环境等特点。因此,要求用于拖动该设备的电动机应具有较大的启动力矩、较软的机械特性、全天候连续工作等基本条件。 API规范11L6《游梁式抽油机用电动机规范》将NEMA设计 D电动机作为基本设计,并对转差率、温升作出了明确要求。国家发展和改革委员于2005年发布了中华人民共和国石油天然气行业标准SY/T 6636-2005《游梁式抽油机用电动机规范》,本标准修改采用API规范11L6:1993《游梁式抽油机用电动机规范》(英文版),包括其《游梁式抽油机用电动机规范增补》的内容。 1 产品的型号表示方法 根据BG4831-2000《电动机产品型号编制方法》的规定,并考虑与已有的YH系列高转差率电动机相区别,国产游梁式抽油机专用电动机型号的表示方法如下: ─□ 极数 中心高

游梁式抽油机专用高转差电动机代号 2 产品的主要特点 API规范11L6对电动机的基本设计(包括标准电动机规范、电气性能和特性执行标准、工作条件、启动特性、绝缘系统、机械结构及材料选择等)、试验内容及方法均作了详细的规定。依据这个标准生产的YCH系列游梁式抽油机专用电动机,与依据JB/T 6449-92生产的YH系列(IP44)高转差率三相异步电动机相比,其主要性能、结构特点如下: ⑴连续工作制、转差率5-8%、F级绝缘不超过B级温升; ⑵堵转转矩倍数≥2.75; ⑶使用系数为1.15; ⑷堵转电流符合NEMA设计 D; ⑸每相绕组内至少安装一个密封的温度检测器进行保护,当绝缘系统达到最高工作温度时驱动打开电动机控制电路,停止电动机运行; ⑹ 9根绕组引出线,可形成4种不同的输出转矩,使电动机与负载达到合理的匹配; ⑺电机中装有空间加热带,保证电机停止运行状态下内部温度比环境温度高5℃,防止凝露; ⑻端盖上设有润滑油注入孔和废油排除孔,可在不拆卸电机的情况下更换润滑脂;

游梁式抽油机安全操作规程

编号:CZ-GC-09369 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 游梁式抽油机安全操作规程 Safety operation regulations for beam pumping units

游梁式抽油机安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 1.1.1启动游梁式抽油机操作规程 1.1.1.1操作前准备 1.1.1.1.1穿戴好劳动保护用品。 1.1.1.1.2准备工具、用具:管钳、活动扳手、绝缘手套、试电笔、钳型电流表、润滑脂、细纱布;班报表、记录笔。 1.1.1.2操作步骤 1.1.1. 2.1启动前检查 1.1.1. 2.1.1检查流程是否正确、畅通,井口零部件及仪表是否齐全、完好且符合要求,悬绳器及方卡子是否牢固。 1.1.1. 2.1.2检查抽油机各连接部位紧固螺栓是否牢固可靠及各润滑部位油量、油质是否符合要求。 1.1.1. 2.1.3检查刹车各部件连接完好,灵活好用。 1.1.1. 2.1.4检查皮带松紧合适,无老化、无蹿槽、无打扭、无油

污现象。盘皮带无卡阻现象。 1.1.1. 2.1.5检查电器设备是否完好,处于备用状态,电线无老化、裸露现象。 1.1.1. 2.1.6检查和排除抽油机周围妨碍运转的物体。 1.1.1. 2.2启动抽油机 1.1.1. 2.2.1取下刹车锁销,松开刹车,合上铁壳开关,检查抽油机周围无障碍物,用试电笔检测电控柜外壳确认安全,戴绝缘手套,打开电控柜门,侧身合闸送电。观察保护器正常,电源指示灯亮。 1.1.1. 2.2.2半握拳用食指点按启动按钮,在曲柄旋转到一定位置时(约与垂直位置15°~20°),按下停止按钮。等到曲柄回摆方向与启动方向一致时,再次按下启动按钮,利用惯性2-3启动抽油机,关好电控柜门,记录开抽时间。 1.1.1. 2.3启动后检查 1.1.1. 2. 3.1听:抽油机各部位运行声音是否正常,各连接部位有无异常声响。 1.1.1. 2. 3.2看:抽油机各连接部位,如曲柄销、冕形螺母、平衡

抽油机国内外研究现状与发展趋势

抽油机国内外研究现状与发展趋势 一.国内抽油机研发现状 油机是有杆抽油系统中最主要举升设备。根据是否有游梁,可分为游梁式抽油机和无游梁式抽油机。经过一百多年的实践和不断的改进创新,抽油机不管是结构形式还是在使用功能上,都产生了很大的变化。特别是近几十年来,世界对原油的需求量不断加大,对油田深度开采的能力有了更进一步的要求,在很大程度上加快了抽油机技术发展的速度,催生出多种类型。目前, 国内抽油机制造厂有数十家, 产品类型已多样化, 但游梁式抽油机仍处于主导地位。根据公开发表的资料统计, 我国现有6 大类共45 种新型抽油机[ 1] , 并且每年约有30 种新型抽油机专利, 十多种新试制抽油机[2] , 已形成了系列, 基本满足了陆地油田开采的需要。各种新型节能游梁式抽油机如双驴头式抽油机、前置式抽油机、异相曲柄平衡抽油机、前置式气平衡抽油机、下偏杠铃系列节能抽油机[ 3]和用窄V 形带传动的常规抽油机等均已在全国各个油田推广应用, 并取得了显著的经济效益。长冲程、低冲次的无游梁式抽油机的研制也取得了一些进展, 如由胜利油田研制的无游梁链条抽油机, 经过国内十几个油田稠油及丛式井的推广使用[4], 在低冲次抽油和抽稠油方面已初见成效。此外, 桁架结构的滑轮组增距式抽油机、滚筒式长冲程抽油机已在某些油田进行了工业试验[5]; 齿轮增距式长冲程抽油机的研制工作也取得了新的进展; 质量轻、成本低、便于调速和调整冲程的液压抽油机经过几年的研制和工业性试采油, 也积累了一定的经验[6]。其他型式新颖的抽油机如数控抽油机、连续抽油杆抽油机、车载抽油机、磨擦式抽油机、六连杆游梁式抽油机和斜直井抽油机等也正处于不断改造和试生产过程中[7]。然而,游梁式抽油机的缺点是不容易实现长冲程低冲次的要求,因而不能满足稠油井、深抽井和吉气井采油作业的需要。同时,长冲程低冲次的无游梁式抽油机的性能尚有待完善 (如油田正在使用的链条式抽油机还存在链条寿命短、换向冲击载荷大和钢丝绳易断、导轨刚.度不足容易变形等问题),而且品种规格还很少,不能适应当前石油工业的发展[8]。液压抽油机至今仍处在研制阶段[9] 二·国外抽油机的研发现状 目前,世界上生产抽油机的国家主要有美国、俄罗斯、法国、加拿大和罗马尼亚等[10]。为了减少能耗, 提高采油经济效益, 近年来国外研制与应用了许多节能型抽油机。例如异相型抽油机节电15%~ 35%; 前置式抽油机节电368% 前置式气平衡抽油机节电35% 轮式抽油机节电50%~ 80% 大圈式抽油机节电30%; 自动平衡抽油机节电30% ~ 50%; 低矮型抽油机节电5% ~20%; ROTAFLEX 抽油机节电25% 智能抽油机节电174%; 螺杆泵采油系统节电40%~ 50% [11]。近年来国外很重视改进和提高抽油机的平衡效果, 使抽油机得到更精确平衡。近年来, 为了节约能耗、提高采油经济效益, 国外研制与应用了许多节能型抽油机, 在采油实践中, 取得较好的使用效果。如变平衡力矩抽油机, 可使上冲程平衡力矩大于下冲程力矩。前置式气平衡抽油机, 由于可在动态下调节气平衡, 平衡效果较好。气囊平衡抽油机有90% 以上载荷得到平衡[12]。双井抽油机可利用两口油井抽油杆柱合理设计得到更精确的平衡。自动平衡抽油机可保证在上下冲程每一瞬间得到较精确的平衡效果[13]。近年来国外研制与应用了多种类型长冲程抽油机, 其中包括增大冲程游梁抽油机、增大冲程无游梁抽油机和长冲程无游梁抽油机[14]。 1 前置式气平衡抽油机美国工J uf kin 公司生产的A 系列前置式气平衡抽油机具有较好的技术经济指标, 抽油机重量减轻40 %, 尺寸缩小3 5 % , 动载荷

游梁式抽油机二级传动装置设计

兰州航空工业职工大学 毕业设计(论文) 题目:游梁式抽油机二级传动装置 专业: 班级: 学生姓名: 指导老师: 年月日

摘要 通过对减速器的简单了解,开始学习设计齿轮减速器,尝试设计增强感性认知和对社会的适应能力,及进一步巩固已学过的理论知识,提高综合运用所学知识发现问题、解决问题,以求把理论和实践结合一起。 学习如何进行机械设计,了解机械传动装置的原理及参数搭配。学习运用多种工具,比如CAD等,直观的呈现在平面图上。通过对圆柱齿轮减速器的设计,对齿轮减速器有个简单的了解与认知。齿轮减速器是机械传动装置中不可缺少的一部分。机械传动装置在不断的使用过程中,会不同程度的磨损,因此要经常对机械予以维护和保养,延长其使用寿命,高效化的运行,提高生产的效率。 【关键词】:机械传动装置、齿轮减速器、设计原理与参数配置

目录 第一节设计任务------------------------------------(3)第二节方案设计分析--------------------------------(3)第三节轴承的选择及寿命计算------------------------(17)第四节设计结果------------------------------------(22)第五节心得体会------------------------------------(23)第六节附录----------------------------------------(25)

引言 1.1 减速器的主要型式及其特性 减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机械中应用很广。 减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 电动机联轴器高速轴中间轴低速轴 减速器系统框图 以下对几种减速器进行对比: 1)圆柱齿轮减速器 当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。 圆柱齿轮减速器在所有减速器中应用最广。它传递功率的范围可从很小至40 000kW,圆

游梁式抽油机简介

游梁式抽油机简介 来源:西部石化网时间:2010-6-15 字体大小:大中小 游梁式抽油机具有性能可靠、结构简单、操作维修方便等特点。技术参数符合中华人民共和国行业标准SY/T 5044《游梁式抽油机》和美国石油协会API标准,技术成熟。 主要特点: 1、整机结构合理、工作平稳、噪音小、操作维护方便; 2、游梁选用箱式或工字钢结构,强度高、刚性好、承载能力大; 3、减速器采用人字型渐开线或双圆弧齿形齿轮,加工精度高、承载能力强,使用寿命长; 4、驴头可采用上翻、上挂或侧转三种形式之一; 5、刹车采用外抱式结构,配有保险装置,操作灵活、制动迅速、安全可靠; 6、底座采用地脚螺栓连接或压杠连接两种方式之一。 游梁式抽油机按照结构不同可分为普通式抽油机和前置式。 按平衡方式可分为:机械平衡(游梁平衡、曲柄平衡、复合平衡)、气动平衡。 按曲柄结构分:常规式和偏心异向节能式。

常用的游梁式抽油机结构 1.游梁平衡:在游梁的尾部装设一定重量的平衡板,这是一种简单的平衡方式,适用于3 吨以下的轻型抽油机。 2.曲柄平衡:是将平衡块装在曲柄上,适用于重型抽油机。这种平衡方式减少了游梁平衡引起的抽油机摆动,调整比较方便,但是,曲柄上有很大的负荷和离心力。 3.复合平衡:在一台抽油机上同时使用游梁平衡和曲柄平衡。特点:小范围调整时,可以调整游梁平衡:大范围调整时,则调整曲柄平衡。这种平衡方式适用于中深井。 4.气动平衡:利用气体的可压缩性来储存和释放能量达到平衡的目的,可用于10吨以上重型抽油机。这种平衡方式减少了抽油机的动负荷及震动,但其装置精度要求高,加工复杂。新系列游梁式抽油机代号

无游梁长冲程抽机控制系统

无游梁长冲程抽油机控制系统 世界石油资源开发至今,机械采油方式仍占有主导地位,而有杆抽油机井又占机械采油井的90 %以上。就目前国内油田而言, 在机械采油井中, 游梁抽油机仍为主要机型。它以结构简单、使用维护简便、宜于在全天候状态下工作等优点而被广泛应用。然而,常规游梁式抽油机冲程短,冲次快,而且冲程不可调,载荷小,能耗大,不能适应油井深抽工艺的需要, 已成为困扰油田生产及增效节支的一大问题。长冲程抽油机具有较好的抽油性能,能提高产量、降低采油成本、提高经济效益等优点,是抽油机发展的主流和方向。 无游梁长冲程抽油机介绍 无游梁长冲程抽油机是一种无游梁式塔架结构长冲程抽油机,没有游梁、不采用曲柄连杆机构换向,不采用增大冲程机构,利用抽油机本身的机构特性,实现长冲程抽油和超长冲程抽油。除了保持游梁抽油机原有的诸多优点外,还具有长冲程、低冲次、节能、大载荷、适应性强、抽油杆磨损小、排量稳定、动载荷小等特点。采用电动机直接驱动滚筒缠绕或放开皮带实现抽油杆的上下抽油运动,克服了链条式抽油机链条易磨损需润滑密封等问题,也解决了机械换向和液压换向抽油机换向机构易损坏的问题,具有传动结构简单,效率高,系统可靠性高的优点。 无游梁长冲程抽油机控制系统采用可编程控制器(PLC)为控制核心,通过控制变频器实现电动机正反转的直接驱动方案,有效简化了机械结构,大大提高了总体效率。利用PLC 实现长冲程、低冲次,冲程、冲次、上下行速比可调、节能、大载荷和适应性强、可靠性高等特点。 图1 现场图片图2 系统框图 1—抽油杆;2—悬绳器;3—换向轮;4—传感器;5—配重;6—电控系统;7—基础;8—电缆; 9—电动机及减速机构;

游梁式抽油机安全操作规程标准范本

操作规程编号:LX-FS-A81648 游梁式抽油机安全操作规程标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

游梁式抽油机安全操作规程标准范 本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1.1.1启动游梁式抽油机操作规程 1.1.1.1操作前准备 1.1.1.1.1穿戴好劳动保护用品。 1.1.1.1.2准备工具、用具:管钳、活动扳手、绝缘手套、试电笔、钳型电流表、润滑脂、细纱布;班报表、记录笔。 1.1.1.2操作步骤 1.1.1. 2.1启动前检查 1.1.1. 2.1.1检查流程是否正确、畅通,井口零部件及仪表是否齐全、完好且符合要求,悬绳器及方卡

子是否牢固。 1.1.1. 2.1.2检查抽油机各连接部位紧固螺栓是否牢固可靠及各润滑部位油量、油质是否符合要求。 1.1.1. 2.1.3检查刹车各部件连接完好,灵活好用。 1.1.1. 2.1.4检查皮带松紧合适,无老化、无蹿槽、无打扭、无油污现象。盘皮带无卡阻现象。 1.1.1. 2.1.5检查电器设备是否完好,处于备用状态,电线无老化、裸露现象。 1.1.1. 2.1.6检查和排除抽油机周围妨碍运转的物体。 1.1.1. 2.2启动抽油机 1.1.1. 2.2.1取下刹车锁销,松开刹车,合上铁壳开关,检查抽油机周围无障碍物,用试电笔检测电控柜外壳确认安全,戴绝缘手套,打开电控柜门,侧身

智能型长冲程抽油机简介

第一部分公司简介 公司概况 许昌思科实业有限公司成立于2003年,位于河南省许昌市经济开发区瑞祥路西段,占地面积75亩。2011年融资扩充,更名为河南思科石油环保设备有限公司,注册资本1000万元。 公司主要致力于石油钻测采设备、化工设备、石油钻测采零部件制造和销售为主,以机械加工、修理和配件销售为辅,集研发设计、生产经营于一体的石油机械制造企业。公司整合多年在变频控制、永磁电机领域研发产品的资源优势,通过与西门子公司的通力合作,融合当今两项世界范围的高科技技术,进行一体化的开发应用,研制开发了一种新型的石油工程产品——智能型长冲程抽油机,以节能、便捷、高效的突出特点深受石油工人们的喜爱。 公司将立足现在,放眼未来,实施全球化发展战略,精益生产,持续创新,积极推行“客户满意工程”,不断完善服务系统,以顾客满意为标准,以零缺陷为最高目标,持续改进,为顾客提供一流的产品和服务,共同分享“诚信双赢”成功合作带给的喜悦。

公司资质 第二部分智能型长冲程抽油机简介 传统几与智能机对比 我国油田常用的传统抽油机——游梁式抽油机,俗称“磕头机”,具有结构简单、操作简便、坚实可靠等优点,但是同时也存在能耗高、效率低、安装维修工作量大、冲程短等缺点,特别是在开采稠油、深层、高含水油田,不能实现经济、有效地开采。 河南思科石油环保设备有限公司研制的智能型长冲程抽油机,属于无游梁式抽油机,符合《中华人民共和国石油天然气行业标准》SY/T6729-2008,具有长冲程、变冲次、大载荷、高功效、低能耗、易操作的特点,适应于深井、大排量井、间抽井、稠油井等多种复杂地质状况的油井。 智能型长冲程抽油机,可以使有杆泵抽油代替电潜泵抽油。智能长冲程抽油机的长冲程、变冲次,可以使泵充满系数更高,三抽系统有更小的动载荷。

游梁式抽油机53型减速器设计

本科生毕业设计(论文) 题目:游梁式抽油机53型减速器设计 摘要 本文阐述了我国齿轮减速器的现状及发展趋势,着重对游梁式抽油机53型双圆弧齿轮减速器进行设计计算,其中包括驱动装置的选择、总传动比的设定及各级传动比的分配、齿轮传动设计和各级传动轴的设计计算,并结合设计对系统进行了动态校正和强度校核。用CAXA绘制二维装配图,Autodesk Inventor绘制三维图,最终设计出符合要求的齿轮减速器 关键字双圆弧齿轮;齿轮减速器;分流式人字齿结构;强度校核

ABSTRACT This paper expounds the present situation and development of gear reducer trend .Focusing on the beam pumping unit double-arced gear reducer 53 type design calculation, including drives choice, total ratio setting and the distribution of transmission ratio at all levels, gear transmission design and various design and calculation of the drive shaft ,and according to the design of the system dynamic correction and strength check. Using CAXA Autodesk Inventor, assembly drawing two-dimensional drawing three-dimensional graph, finally designed to meet the requirements of gear reducer Keywords: Double-arced gear ; Gear reducer ;Shunt person handwriting tooth structure ;Strength check

相关文档
最新文档