等离子点火技术在鲁北电厂的应用

等离子点火技术在鲁北电厂的应用
等离子点火技术在鲁北电厂的应用

等离子点火技术在鲁北电厂的应用

本文介绍了等离子点火技术的发展过程和基本原理,以及在鲁北电厂实际应用的情况。

标签:等离子点火应用原理

1 等离子点火技术的意义

我国的能源结构是煤多油少,这就决定油价的起伏,制约着发电企业的成本,节约石油就显得十分重要。特别是能源危机的来临,使用清洁、可替代的能源就更为重要。等离子点火技术,就为我们电力企业节约锅炉启动及低负荷助燃油提供了解决办法。事实表明,等离子点火技术在新建机组上,节约效果特别明显。有资料显示:内蒙古托克托电厂600MW机组投产中采用了等离子点火,从首次点火到1号机组“168满负荷试运”完成,节约燃油达2000t以上。

2 等离子点火技术的发展过程

2000年12月,等离子点火技术在佳木斯发电厂100MW中储式制粉系统燃用烟煤的锅炉中,成功的实现了冷态点火,是我国等离子点火技术在工程上的首次应用。2001年3月以来,等离子点火技术有了明显的发展。首先将直流主燃烧器改造为等离子燃烧器,然后将该技术应用于直吹式双进双出磨煤机制粉系统锅炉的旋流燃烧器上。随着技术发展,该技术逐渐应用于200MW、300MW及600MW.2003年,等离子点火技术实现首台褐煤600MW机组的点火,拓展了等离子点火技术煤种适应范围。2006年,等离子点火技术成功应用于玉环电厂1000MW机组,是目前我国最大火电机组应用此技术的典范。

3 等离子点火技术原理

等离子点火装置是利用直流电流在0.004MPa~

0.03MPa介质气压的条件下接触引弧,并在强磁场控制下获得稳定功率的定向流动空气等离子体,该等离子体在专门设计的燃烧器中心燃烧筒中形成温度T 大于4000K的梯度极大的局部高温火核,煤粉颗粒通过该等离子体火核时,受到高温作用,在1*10-3s内迅速释放出挥发物,并破裂粉碎而再造挥发分,迅速燃烧。

4 鲁北电厂等离子点火系统的组成

鲁北电厂等离子点火系统由等离子发生器、点火燃烧器及其输粉系统,直流电源柜及控制系统,辅助系统和热工监视系统组成。

以鲁北电厂安装的DLZ-MA-300-B等离子体发生器为例,等离子体发生器在电源、冷却水和介质气等条件具备的情况下产生高温等离子体。电源系统提供保证等离子体稳定运行的恒定电流,最大功率可达200KW。

鲁北电厂等离子点火装置的辅助系统由冷却水和空气的供给系统组成。

空气系统通过介质气管路提供用于电离产生等离子体的洁净稳定的工作气体;冷却水管路对阴阳极进行冷却,冷却水进回水压差的大小直接影响阴阳极乃至整个发生器的使用寿命。空气系统的来源:鲁北电厂等离子压缩空气由仪用压缩空气出口母管的管道分别送到等离子体发生器附近。然后每根压缩空气管道分成两路,分别提供发生器所需的一、二级介质气。两路压缩空气管道上均设有压力表(浮子流量计)和压力开关。压力开关把压力满足信号送回电源柜。空气系统同时设计有备用吹扫管路,吹扫空气取自图像火检探头冷却风机出口母管,用于保证在锅炉高负荷运行、等离子体发生器停用时对发生器内部进行吹扫,使其

等离子体技术的应用

等离子体技术的应用 -------废气处理及航天推进器 等离子体是一种电离气体,由电子、离子、中性粒子等组成,属于物质的高能凝聚态。等离子体中含有大量的带电粒子,使得它与普通气体有着本质的区别,具有很多普通气体没有的特性。对等离子体的研究己发展成为一门独立的物理学分支——等离子体物理学,等离子体物理学在工程技术中的应用形成了大有发展前景的专门技术,即等离子体技术。近年来,等离子体技术的实际应用获得了快速的发展,应用领域越来越广泛。目前,世界各国正加紧研究把等离子体技术用于武器系统隐身、通信和探测、火炮发射、飞行器拦截、环境污染、航天推进等方面,等离子体技术的应用对未来具有深远的意义 一、环境污染 近几年来,等离子体技术在能源、信息、材料、化工、物理医学、军工、航天等领域中大量应用,同时,国外许多研究机构不断将等离子体技术应用在环境工程中。目前,等离子体技术处理废水、废气及固体废弃物的研究已经取得了一定进展。在环境监测中电感耦合等离子体原子发射光谱法和质谱法已广泛应用于生态环境监测体系中(包括大气、水、土壤等)微量元素的测定。在大气污染治理中主要应用于烟气净化、脱硫、脱硝等方面。在水污染治理中主要应用于高浓度有机废液、垃圾渗滤液等废水的治理。在固体废物处理方面,等离子体技术逐渐取代传统的焚烧法应用于城市固体废弃物及生物武器、化学武器、化学毒品等特种固体废物的处理。1997年,美国开始采用等离子体废物处理系统处理军方废弃武器,1999年初,美国、欧盟、日本等逐渐关闭焚化炉后开始转向等离子废物处理系统,目前,瑞典、美国、德国、日本等国已建立了一定规模的城市固体废物的等离子体处理厂。 随着工业现代化的不断进步和发展,排放到大气中的硫氧化物、氮氧化物及有机废气等不断增加,大气污染造成的大气质量的恶化、酸雨现象、温室效应及臭氧层破坏足以威胁人类在地球上的生存和居住,其后果十分严峻,废气排放造成的环境污染问题逐渐引起人们的广泛重视。大气压等离子体技术是一门新兴的环境污染处理手段,其在废气处理应用中具有成本低,效果好、操作简单,无需高价格的真空系统等特点,具有广泛的应用前景。大气压等离子体技术的实质也就是气体放电原理,气体在电场作用下被击穿而导电,由此产生的电离气体叫做气体放电等离子体。大气压等离子体分解气态污染物的机理为:等离子体中的高能电子在大气压等离子体分解气体污染物中起决定性的作用,数万度的高能电子与气体分子(原子)发生非弹性碰撞,巨大的能量转换成基态分子(原子)的内能,发生激发、离解以及电离等一系列物理和化学变化使气体处于活化状态。电子能量小于10ev时产生活性自由基,活化后的污染物分子经过等离子体定向链化学反应后被脱除。而当电子平均能量超过污染物分子化学键结合能时,污染物气体分子键断裂,污染物分解,在大气压等离子体中可能发生各种类型的化学反应,反应程度取决于电子的平均能量、电子密度、气体温度、污染物气体分子浓度及共存的气体成分。大气压等离子体在废气处理中应用的机理是在等离子体中的高能电子、离子、自由基、激发态分子和原子等的作用下,将NOx与SO2被氧化成更易参与反应和更易吸收的NO2和SO3,从而实现对废气的净化处理。大气压等离子体降解污染物是一个十分复杂的过程,而且影响这一过程的因素很多,虽然目前已有大量有关低温等离子体降解污染物机理的研究,但还未形成能指导实践的理论体系,使其工业应用缺乏理论保障。其

等离子点火技术word版

目录 1 前言———————————————————————————————1 2 等离子点火技术工作原理——————————————————————1 2.1 点火机理———————————————————————————1 2.2 等离子发生器工作原理—————————————————————2 2.3 燃烧机理———————————————————————————2 3 等离子点火系统组成————————————————————————3 3.1 等离子燃烧器—————————————————————————3 3.2 等离子发生器————————————————————————-- 4 3.3 等离子电气控制系统——————————————————————4 3.4 等离子压缩空气系统——————————————————————4 3. 5 等离子冷却系统————————————————————————5 3. 6 壁温检测系统—————————————————————————6 3. 7 风烟在线监测系统———————————————————————7 3.8 图像火焰监测—————————————————————————7 4 影响等离子点火的燃烧因素—————————————————————8 4.1 煤粉浓度对燃烧特性的影响———————————————————8 4.2 一次风对燃烧特性的影响————————————————————8 4.3 二此风对燃烧特性的影响————————————————————9 4.4 拉弧功率对燃烧特性的影响———————————————————9 5 等离子燃烧器与传统油燃烧器对比的优点———————————————9 6 等离子点火的不足之处———————————————————————10 7 等离子点火运行中出现的问题————————————————————10 8 解决方法—————————————————————————————11 9 结论———————————————————————————————12 参考文献———————————————————————————————13

等离子体的应用

等离子体技术与应用 学号 队别 专业 姓名

摘要 等离子体作为物质存在的一种基本形态,自18世纪中期被发现以来,对它的认识和利用不断深化。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。目前,等离子体技术已被广泛的用于国防、工业、农业、环境、通信等一系列国民经济发展领域,极大地推动了信息产业的发展,促进了工业科技进步。 关键词等离子体微波放电隐身技术材料的表面改性微波等离子灯 引言 等离子体是由带电的正粒子、负粒子(其中包括正离子、负离子、电子、自由基和各种活性基团等)组成的集合体,其中正电荷和负电荷电量相等故称等离子体。他们在宏观上呈电中性的电离态气体(也有你液态、固态)。当温度足够高时,构成分子的原子也获得足够大的的动能,开始彼此分离,这一过程称为离解。在此基础上进一步提高温度,就会出现一种全新的现象,原子的外层电子将摆脱原子核的束缚而成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离。等离子体指的就是这种电离气体,它通常由光子、电子、基态原子(或分子)、激发态原子(或分子)以及正离子和负离子六种基本粒子构成的集合体。因此,等离子体也被称为物质的第四态。 内容 一、等离子的性质 物质的第四态等离子体有着许多独特的物理、化学性质。只要表现如下: 1) 温度高、粒子动能大。 2) 作为带电粒子的集合体,具有类似金属的导电性能。等离子体从整体上看是一种导体电流体。 3) 化学性质活泼,容易发生化学反应。 4) 发光特性,可以作光源。 二、等离子技术的应用 2.1微波放电等离子体技术与应用 通常,低气压、低温等离子体是在1~100pa的气体中进行直流或射频放电产生的。直流辉光发电首先被研究和应用,但该等离子体是有极放电,而且密度低、电离度低、运行气压高,这就限制了其应用的广泛性。随后,射频放电技术逐步被发展起来,这是一种无极放电,且等离子体工作与控制参数比辉光放电有所提高,因而获得了较广泛的应用。但是其密度和电离度仍较低,应用范围依然受到限制。 微波放电初始阶段的物理过程如下。微波引入反应腔中建立起电磁场,反应气体中的电子在微波场作用下获得能量,与气体分子碰撞使其电离,从而得到更多的

等离子体化学的基本原理及应用

等离子体化学的基本原理及应用等离子体化学是20世纪六十年代发展起来的一门新兴交叉科学。经过40多年的研究发展,已经广泛地引用于化工、冶金、机械、纺织、电子、能源、半导体,医药等不同领域。本文对等离子体化学在材料、电子、光学、医药、化学合成、环境保护几个方面的一些应用进行综述。[1-2] 1理论概述[3] 对常温常压条件下的气体通过高温加速电子加速离子给物质以能量,物质被解离成阴、阳离子的状态,由于整个体系阴、阳离子总电荷相等,故称为等离子体。而从通常的能量排布:气体>液体>固体的角度来说,等离子的能量比气体更高,能表现出一般气体所不具有的特性,所以也被称为物质的第四态。 当气体电离生成电子正离子一般在段时间内发生结合,回到中性分子状态,这个过程产生的电子、离子的一部分能量以电磁波等不同形式消耗,在分子离解时常生成自由基,生成的电子结合中性原子,分子形成负离子。因此,整个等离子体是电子正负离子激发态原子,原子以及自由基的混合状态。因为各种化学反应都是在高激发态下进行的,与经典的化学反应完全不同。这样使等离子体的原子或分子的本性通常都发生改变,即使是较稳定的惰性气体也会变得具有很强的化学活泼性。 在放电气体中发生的反应称为等离子体化学反应,用电子温度Te和离子温度Ti作为参数。若Te ≈Ti称为平衡等离子体或高温等离子体。若Te >>Ti称为非平衡等离子体或低温等离子体。这两种不同的情况在不同的领域都有广泛的运用。 2设备与装置[3-4] 可以将等离子的产生理解为:一定的真空度,外加电场/磁场,通电条件下射频放电产生的特殊物质。各国学者一直努力研制一种能得到均匀稳定的等离子的设备。可以通过(1)解光放电、(2)电晕放电、(3)寂静放电、(4)RF放电、(5)微波放电这5种放电方式(基本特征见图1)来得到等离子体,但为了保证反应产物不分解,一般采用辉光放电形式。这类仪器通过外加电场可以有效地把能量直接传递给反应体系中的气体分子,反应腔里将发生气体放电,产生非平衡等离子体,这种能量传递方法不仅经济有效,而且产生的等离子体具有能量高密度大的特点,所以应用较为广泛。根据反应器的结构不同分为内部电极方式的反应器、外部电极方式的反应器、直流放电反映器、采用商业频率的反映器、微波放电反映器(见图2)。而大多数工业活动需在常压或加压(高气体浓度)条件下进行,尤其化学工业、环境工程和材料工业等还不具备在低气压条件下进行化学反应的工艺条件。

等离子点火特点

东胜发电有限公司(以下简称东胜公司)锅炉系上海锅炉厂制造的亚临界压力参数、自然循环汽包炉,单炉膛、一次中间再热、燃烧器摆动调温、平衡通风、四角切向燃烧、紧身封闭、固态排渣煤粉炉。锅炉燃用东胜本地烟煤。锅炉的制粉系统采用冷一次风机、正压直吹式制粉系统,配置5台液压变加载中速磨煤机。锅炉启动点火系统采用烟台龙源——DLZ-200型等离子体煤粉燃烧器,配有2层等离子体点火系统,配置在A、B层燃烧器上,无燃油系统。 磨煤机选型为:ZGM95G型中速、液压变加载、辊盘式磨煤机,出力10~46t/h。该型磨煤机特点适合低煤量长时间运行,主要原因:磨煤机加载压力可以较大范围变化调整,以保持对煤种、煤量的适应性。 等离子体煤粉燃烧器选型为烟台龙源电力技术股份有限公司的DLZ-200型等离子体煤粉燃烧器,采用直流空气等离子体做为点火源,可直接引燃煤粉,实现锅炉的冷态启动。该系统主要有以下几部分组成: 等离子体发生器——产生电功率为50~150kW的空气等离子体; 直流电源柜(含整流变压器)——用于将三相380V电源整流成直流电,用于产生等离子体; 等离子体煤粉燃烧器——用于与等离子体发生器配套使用,以引燃烧煤粉; 等离子体点火机理: 原煤主要来自内蒙古东胜周边地区,燃煤水份大,挥发份高,易着火,易磨制。 两年来累计启动15次,低负荷稳燃56次(负荷低于120MW),锅炉灭火后恢复3次,等离子在上述事件发生时,其应用特点: 经济:采用等离子体点火技术,2008年至2009年全年使用等离子体点火系统耗时329小时,阴极头更换6次。若使用柴油,平均每小时耗油4t/h,则消耗柴油1316t。两者比较,其维护费仅是使用柴油费用的10%以下,对于电厂,其经济费用节省是相当可观的; 环保:由于点火时不燃用油品,电除尘装置可以在点火初期投入,因此,减少了点火初期排放大量烟尘对环境的污染;另外,电厂采用单一燃料后,减少了油品的运输和储存环节,亦

等离子点火技术

等离子点火技术 发电分公司王鹏恒 引言 从我国目前的能源结构中分析,油资源短缺是一个不争的事实,我国每年所消耗的石油都要大量依靠进口来满足国内日益增长的需要,这是一项耗费巨额资金的经济活动!面对国内油资源短缺这一严峻事实,我们迫切需要节约燃油来减少进口!当前情况下石油已成为影响我国能源安全和经济发展的重要战略物资,通过节约和寻找燃油替代品来保证国家能源和经济安全已经被提上了重要日程。为了满足燃煤机组的无油点火,等离子燃烧技术应运而生! 随着科技的发展,等离子点火技术已经得到很大的进步,在国内很多电厂中得到使用,而且使用效果良好,可以在保证机组安全的基础上为发电企业节约部分发电成本,已经逐渐成为电厂的主流点火方式。 当前,等离子系统主要涉及到发电行业的大型燃煤火力发电厂,主要应用于发电厂煤粉锅炉的启动、点火和稳燃。当然,也涉及应用于其他行业或者类似领域的煤粉锅炉的点火和稳燃。通过等离子点火技术的广泛使用,逐渐代替了传统的燃油点火,从而实现了节能减排,对企业的经济效益有了很大提高。同时在等离子点火中运用电除尘技术,使得颗粒物的排放明显减少,这项技术也适应了当前对燃油这一紧缺资源的节约,在国家提倡绿色能源的今天,等离子技术定将得到进一步发展,从而实现良好的社会和经济效益。 1 等离子点火系统 1.1 等离子点火系统的原理 等离子点火技术是一种新型的锅炉点火燃烧技术,等离子体直接点燃煤粉替代燃料油的原理是:它利用电弧电离空气流(也可以是其它气体)形成高温等离子体,利用水冷通道、自身磁场、外磁场以及气体旋流等稳弧方法来控制该等离子体,使其定向流动则形成了高温等离子射流。让煤粉通过此高温等离子射流,煤粉颗粒则在瞬间析出挥发份,再造挥发份、爆燃,在完全没有任何

等离子体技术在大气污染防治中的应用

等离子体技术在大气污染防治中的应用 等离子体技术在大气污染防治中的应用 发布时间:2010-09-19 08:51:48 1 等离子体概况 1.1 等离子体及等离子体技术的基本概念等离子体是由大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性非凝聚系统,整个体系呈电中性,具有与一般气体不同的性质, 容易受磁场、电场的影响它为化学反应提供必须的能量粒子和活性物种,在化学工业、 材料工业、电子工业、机械工业、国防工业、生物医学和环境保护等方面有着广泛的应用。它是物质存在的基本形态之一,与固态、液态、气态并列,成为物质第四态。 1.2 等离子体产生的机理及方法当气体分子以一定的方式在外部激励 源的电场被加速 获能时, 能量高于气体原子的电离电势时, 电子与原子间的 非弹性碰撞将导致电离而产生离子电子,当气体的电离率足够大

时,中性粒子的物理性质开始退居次要地位。整个系统受带电粒子的支配,此时电离的气体即为等离子体。等离子体发生器有以下两大类共计八种产生方法。 等离子包括放电等离子和化学等离子,放电等离子可分 为有电极和无电极两类。有电极有电弧放电、辉光放电、电晕放电 和无声放电。无电极有高频感应、微波放电和激波 放电。其中电弧放电、辉光放电和高频放电分直流和交流两种。电弧 直流放电有内极和外极之分。 1.3 等离子体的分类及特点应用按热力学状态不同和中性气体温度的 高低,等离子体可分为高温等离子体和低温等离子体,按温度可将等 离子体划分为热力学平衡态等离子体和非热力学平衡态等离子体。当 电子温度(Te)与离子温度(Ti)、中性粒子温度(Tg)相等时,等离子体处于热力学平衡状态,称之为平衡态等离子体(Equilibrium Plasma) 。因为温度一般在5000K 以上,故而又称其为高温等离子体(Thermal Plasma) 。当Te>>Ti 时,称之为非平衡态等离子体(Non—thermal Equilibrium Plasma) 。其电子温度高达10 的四次方K 以上,而其离子和中性粒子的温度却低至300~500 K ,因此,整个体系的表观温度还是很低的,故又称之为低温等离子体(Cold Plasma), 而低温等离子体可分为热等离子体、冷等离子体和燃烧等离子体。热等 离子体为局域热力学平衡态等离子体,是由高强度直流电弧放电与高频感应耦合放电产生的,其特点是重粒子(原子、分子、离子)温度接近于电子温度;冷等离子体是非平衡等离子体,是由辉光放电、微波放电、电晕放电或无声放电产生的,其特点是电子温度远远高于重粒子温度;燃烧等离子体通过燃烧形成,其特点是电离度极

等离子燃烧技术

等离子燃烧技术在泰州电厂2*1000MW超超临界燃煤机组中的应用 泰州电厂蒋德勇摘要:本文介绍了等离子燃烧技术的原理,结合泰州电厂选用的设备,从运行的角度介绍了等离子燃烧技术在煤粉锅炉中的应用情况。 关键词:等离子燃煤机组超临界 等离子燃烧技术是采用空气等离子体作为点火源,在电弧的作用下,将一定压力的空气电离为高温等离子体,从而点燃煤粉的一种新型燃烧技术。它的出现改变了大型煤粉锅炉点火和稳燃依靠重油、轻油或天然气等燃料来实现的历史。近年来能源紧张,燃油价格不断上涨,为等离子燃烧技术的应用提供了契机。泰州电厂作为国内首批1000MW机组,成功的将等离子燃烧技术应用到实践,实现了锅炉的无油或少油启动,既节约了电厂的成本,又改善了电厂的生态环境。 等离子燃烧器利用直流电流在介质气压0.01~0.03MPa的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的一次燃烧筒中形成T>5000K 的梯度极大的局部高温区。煤粉颗粒通过该等离子“火核”受到高温作用,并在 10-3秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧。由于反应是在气相中进行,使混合物组分的粒级发生了变化。因而使煤粉的燃烧速度加快,也有助于煤粉的燃烧。为保护等离子装置本身,需用水冷却阴、阳极和线圈。所需冷却水采用闭式循环水,水压在0.6MPa 左右,经等离子冷却水泵加压后进入等离子装置。 等离子点火装置的结构和组成及原理如图1~2所示: 图 1 等离子装置的结构和组成

图2 等离子点火原理图 泰州电厂选用的是哈锅在日本三菱公司技术支持下设计制造的超超临界变压运行直流锅炉。本锅炉采用三菱重工(MHI)开发的低NOx的改进型PM主燃烧器和MACT燃烧技术。燃烧器采用无分隔墙的八角双火焰中心切圆燃烧大风箱结构。全摆动式燃烧器,共设六层三菱低NOx PM一次风喷口,三层油风室,一层燃烬风室、十层辅助风室和四层附加风室(Addition Air)。等离子燃烧器布置在A层燃烧器中,在锅炉点火及稳燃期间,可以替代油枪起到点火和稳燃的作用。在锅炉正常运行中,具有主燃烧器的功能,其出力及燃烧工况与其他层燃烧器一致。由于安装等离子燃烧器,在燃烧器摆角改变时,A层燃烧器不参与摆动,但这并不影响燃烧器摆角对过热器及再热器及过热器的调节。 燃烧器的结构布置如图3所示:

课程论文(等离子点火与微油点火技术比较)

等离子点火与微油点火技术比较 摘要:锅炉启动及低负荷助燃用油是构成发电厂成本的重要组成部分,利用等离子点火技术和微油点火技术,可以使启、停炉的燃油消耗大大减少,经济效益较好。 关键词:等离子点火微油点火节能 当今世界能源资源日益紧张,国内外均积极开展电站燃煤锅炉节油技术的研究,我国也先后开发了“节省燃用油、燃油锅炉改烧煤、推广劣质煤燃烧技术、以煤代油”等技术。这些技术的应用对电站节油起到了明显的作用,但燃煤机组节油降耗仍具有很大的空间。等离子点火技术的突破性进展以及微油点火技术的出现,使我国的电站节油技术又迈向了新阶段。在短短几年时间内,等离子点火技术和微油点火技术已成为现代大型机组锅炉点火和稳燃过程中的主流节油技术。 1.等离子点火技术 1.1 等离子点火系统构成 等离子点火系统主要有以下几部分构成:等离子发生器;等离子燃烧器;电源柜及供电系统;辅助系统(包括冷却水系统、压缩空气系统,图像火检系统);控制系统以及风粉系统等。 1.2 等离子点火系统工作原理 1.2.1 等离子发生器工作原理 等离子发生器由线圈、阴极、阳极组成。其中阴极和阳极由高导电率、高导热率及抗氧化的特殊材料制成,以承受高温电弧冲击。线圈在高温情况下具有抗直流高压击穿能力。电源采用全波整流并具有恒流性能。其点火原理为:在一定输出电流条件下,当阴极前进同阳极接触后,系统处在短路状态,当阴极缓缓离开阳极时产生电弧,电弧在

线圈磁场的作用下被拉出喷管外部。压缩空气在电弧的作用下,被电离为高温等离子体,进入燃烧器点燃煤粉。 直流电流在一定介质气压的条件下引弧,并在强磁场控制下获得稳定功率的定向流动空气等离子体,该等离子体在点火燃烧器中形成T>4000K的梯度极大的局部高温火核,煤粉颗粒通过该等离子“火核”时,迅速释放出挥发物、再造挥发份,并使煤粉颗粒破裂粉碎,从而迅速燃烧,达到点火并加速煤粉燃烧的目的。等离子体内含有大量的化学活性粒子,如原子(C、H、O)、离子(O2-、H+、OH-)和电子等,它们可加速热化学转换,促进燃料完全燃烧。

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

第二章 等离子点火煤粉燃烧器工作原理

第二章等离子点火煤粉燃烧器工作原理 2.1 点火机理 本装置利用直流电流(280---350A)在介质气压0.01-0.03Mpa的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的一次燃烧筒中形成T>5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受到高温作用,并在10-3秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧。由于反应是在气相中进行,使混合物组分的粒级发生了变化。因而使煤粉的燃烧速度加快,也有助于加速煤粉的燃烧,这样就大大地减少促使煤粉燃烧所需要的引燃能量E(E等=1/6E油)等离子体内含有大量化学活性的粒子,如原子(C、H、O)、原子团(OH、H2、O2)、离子(O2-、H2-、OH-、O-、H+)和电子等,可加速热化学转换,促进燃料完全燃烧,除此之外,等离子体对于煤粉的作用,可比通常情况下提高20% ~80%的挥发份,即等离子体有再造挥发份的效应,这对于点燃低挥发份煤粉强化燃烧有特别的意义。 变,当阴极缓缓离开阳极时,电弧在线圈磁力的作用下拉出喷管外部。一定压力的空气在电

图2.2 燃烧机理图

采用提前补氧强化燃烧措施,提前补氧的原因在于提高该区的热焓进而提高喷管的初速达到加大火焰长度提高燃尽度的目的,所采用的气膜冷却技术亦达到了避免结焦的目的(1998年获专利)。 第四区为燃尽区,疏松碳的燃尽率,决定于火焰的长度。随烟气的温升燃尽率逐渐加大。 第三章 等离子点火燃烧系统组成 3.1 等离子点火燃烧系统 3.1.1 燃烧系统 等离子燃烧器是借助等离子发生器的电弧来点燃煤粉的煤粉燃烧器,与以往的煤粉燃烧器相比,等离子燃烧器在煤粉进入燃烧器的初始阶段就用等离子弧将煤粉点燃,并将火焰在燃烧器内逐级放大,属内燃型燃烧器,可在炉膛内无火焰状态下直接点燃煤粉,从而实现锅炉的无油启动和无油低负荷稳燃。 如图3.1所示,等离子发生器产生稳定功率的直流空气等离子体,该等离子体在燃烧器的中心筒中形成T >5000K 的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受 II III 等 离 子 发 生 器 一次风 I 气膜风 等离子弧 图3.1 等离子燃烧器示意图 风箱 中心筒 撞击式浓淡块

等离子体及其技术的应用

等离子体及其技术的应用 摘要: 随着等离子体技术的迅速发展,逐渐形成了一个新兴的等离子体化工体系。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。这势必会造就很多性能优良的新物质,其也将会有广泛的应用前景。 关键词:等离子体;喷涂;焊接;尾气处理;隐身技术

Plasma and its technical application ABSTRACT With the rapid development of plasma technology, and gradually formed a new plasma chemical system.We know, the common chemical reaction and chemical engineering equipments only produce two thousand degrees temperature.The temperatures that in low temperature plasma electronic produced by all forms of gas discharge up to ten thousand degrees or above,more enough to fracture all sorts of the chemical bonds, or make the gas molecule ionization, produce many chemical reactions that can't happened in usual conditions , get compound or chemical products that can't achieved in usual conditions , and the products won't occur thermal decomposition.It will produce a lot of new substances that performance excellent ,and have a broad application prospect. keywords:plasma;flame plating;soldering;tail gas treatment;invisible technology

最新培训资料等离子点火技术基本原理与系统-1

培训资料等离子点火技术基本原理与系统- 1

等离子点火技术基本原理 与系统 烟台龙源电力技术股份有限公司 2008年7月

目录 1.概述 (3) 1.1 等离子点火技术的开发背景及功能 (3) 1.2 等离子点火技术的发展历程 (4) 2.等离子发生器及其辅助系统 (5) 2.1 等离子发生器工作原理 (5) 2.2 等离子冷却水系统 (7) 2.3 等离子载体风系统 (9) 2.4 等离子电源系统 (13) 3.等离子燃烧器及其工作原理 (15) 3.1 等离子燃烧器结构特点 (15) 3.2 等离子燃烧器点火原理 (16) 4.等离子点火风粉系统 (17) 4.1 中储式制粉系统等离子点火一次风粉来源及其解决方案 (17) 4.2 直吹式制粉系统等离子点火一次风粉来源及其解决方案 (18) 4.2.1直吹式制粉系统蒸汽加热器制备热风方案 (18) 4.2.2直吹式制粉系统燃油加热器制备热风方案 (20) 5.等离子点火监控系统 (23) 5.1 等离子燃烧器壁温测量系统 (24) 5.2 一次风风速测量系统 (24) 5.2.1一次风在线测速装置的组成 (24) 5.2.2测速管的选择 (25) 5.3 图像火焰监视 (26) 6.等离子点火控制系统与锅炉FSSS、DCS的连接 (27) 6.1 等离子点火控制系统 (27) 6.2 等离子点火系统与锅炉的连接 (28)

1.概述 1.1 等离子点火技术的开发背景及功能 火力发电机组中的煤粉锅炉,其点火及低负荷稳燃的传统方法是燃用柴油、重油或燃气。这种方法运行成本高,以一台670t/h锅炉为例,在冷态启动过程中,要耗费约50t轻质柴油。据统计,每年全国仅电站锅炉因点火及低负荷稳燃就消耗数百万吨燃油。大量的燃油消耗,以及因此而带来的燃油采购、运输、储存、硬件设备等方面的费用,无疑加大了发电成本。同时,由于油煤混烧,使锅炉的技术和经济指标下降。据有关资料表明:锅炉燃煤过程中,同时燃烧具有高反应性能的燃油将降低锅炉机组的经济生态效益,主要表现在增加燃料固体未燃尽热损失10%~15%,降低锅炉机组的传热系数2%~5%,增加水冷壁高温腐蚀速度,降低锅炉设备的运行可靠性,在一定条件下增加NO X、SO X等污染物的排放量30%~40%。而且在煤油混烧期间电除尘器不能投入,造成了一系列的环保和社会问题。 为了解决上述问题,开发无油或少油煤粉直接点火燃烧器便成了一直公认的一条途径。近三十年来,世界各国科技人员在这方面做了大量的工作,开发了一些新式煤粉直接点火燃烧器,取得了一些成果。例如从上世纪80年代以来相继开发研制的浓、淡分流,大速差等多种形式预燃、稳燃燃烧装置、小流量油枪及主燃烧器改进(钝体、夹心风)等煤粉点火稳燃装置,但工业应用表明:以预燃室为特征的少油煤粉直接点火燃烧器在不同程度上还存在易结渣、烧损,使用期短等弊端而影响了它的广泛推广应用。同时,开发出来的煤粉直接点火燃烧器没有把点火技术和稳燃技术有机地结合起来,障碍了这一技术的推广。 煤粉锅炉等离子点火与稳燃技术实现了点火技术与稳燃技术的有效结合。该技术是一项以热等离子体作为煤粉激发热源,直接点燃煤粉,启动锅炉,并可在锅炉低负荷时稳定锅炉燃烧的新技术。其基本原理是:将具有4000℃以上的高温直流电弧空气等离子体输送到专门设计的等离子燃烧器内,使流经该燃烧器的煤粉在等离子体高温和热化学作用下瞬间被点燃,煤粉在燃烧器内着火后喷入炉膛,从而达到了锅炉点火和助燃不用燃油的目的。 煤粉锅炉等离子点火技术主要由等离子发生器、等离子燃烧器、冷炉制粉系统、图像火焰检测系统、一次风速测量系统和相应的控制系统组成。

等离子体及其技术应用

等离子体及其技术应用 生化系化学教育姓名:蒋敏学号:20101420 摘要:通过介绍等离子体的概念、分类、特性、原理及其在化学工业、材料工业、电子工业、能源方面和机械工业、国防工业、生物医学及环境保护方面的技术应用。 关键词:等离子体、概念、特性、原理、应用 前言:等离子体是宇宙中物质存在的一种状态。物质除固、液、气三态外,还有第四种状态即等离子态。所谓等离子体就是气体在外力作用下发生电离,产生电荷相反、数量相等的电子和正离子以及游离基(电子、离子和游离基之间又可复合成原子和分子),由于在宏观上呈中性,故称之为等离子体。处于等离于态的各种物质微粒具有较强的化学活性,在一定的条件下可获得较完全的化学反应,物质的各态之间是可以相互转化的。 1. 等离子体 等离子体是由电子、离子等带电粒子以及中性粒子(原子、分子、微料等)组成的, 宏观上呈现准中性, 且具有集体效应的混合气体。所谓准中性是指在等离子体中的正负离子数目基本相等, 系统在宏观上呈现中性, 但在小尺度上则呈现出电磁性, 而集体效应则突出地反映了等离子体与中性气体的区别。 1.1等离子体的含义 由电子、离子和中性粒子三种成分组成。其中电子和离子的电荷总数基本相等,因而作为整体是电中性的。等离子体是由大量带电粒子组成的有宏观空间尺度和时间尺度的体系。 1.2等离子体的产生 对液体加热使之温度升高,可以使它转化为气体。在通常的气体中,物质的最小单元是分子。如果对气体再加热使气体温度升高时,分子会分解成单个原子,这种以原子为基本单元而组成的气体叫做原子气体。使原子气体的温度再升高,原子运动的速度增大。通过相互碰撞使之电离出自由电子和阳离子,当许多原子被电离之后,会形成一个电离过程、电离成的离子与电子复合成中性微粒过程之间的动态平衡,因此

等离子点火技术在鲁北电厂的应用

等离子点火技术在鲁北电厂的应用 本文介绍了等离子点火技术的发展过程和基本原理,以及在鲁北电厂实际应用的情况。 标签:等离子点火应用原理 1 等离子点火技术的意义 我国的能源结构是煤多油少,这就决定油价的起伏,制约着发电企业的成本,节约石油就显得十分重要。特别是能源危机的来临,使用清洁、可替代的能源就更为重要。等离子点火技术,就为我们电力企业节约锅炉启动及低负荷助燃油提供了解决办法。事实表明,等离子点火技术在新建机组上,节约效果特别明显。有资料显示:内蒙古托克托电厂600MW机组投产中采用了等离子点火,从首次点火到1号机组“168满负荷试运”完成,节约燃油达2000t以上。 2 等离子点火技术的发展过程 2000年12月,等离子点火技术在佳木斯发电厂100MW中储式制粉系统燃用烟煤的锅炉中,成功的实现了冷态点火,是我国等离子点火技术在工程上的首次应用。2001年3月以来,等离子点火技术有了明显的发展。首先将直流主燃烧器改造为等离子燃烧器,然后将该技术应用于直吹式双进双出磨煤机制粉系统锅炉的旋流燃烧器上。随着技术发展,该技术逐渐应用于200MW、300MW及600MW.2003年,等离子点火技术实现首台褐煤600MW机组的点火,拓展了等离子点火技术煤种适应范围。2006年,等离子点火技术成功应用于玉环电厂1000MW机组,是目前我国最大火电机组应用此技术的典范。 3 等离子点火技术原理 等离子点火装置是利用直流电流在0.004MPa~ 0.03MPa介质气压的条件下接触引弧,并在强磁场控制下获得稳定功率的定向流动空气等离子体,该等离子体在专门设计的燃烧器中心燃烧筒中形成温度T 大于4000K的梯度极大的局部高温火核,煤粉颗粒通过该等离子体火核时,受到高温作用,在1*10-3s内迅速释放出挥发物,并破裂粉碎而再造挥发分,迅速燃烧。 4 鲁北电厂等离子点火系统的组成 鲁北电厂等离子点火系统由等离子发生器、点火燃烧器及其输粉系统,直流电源柜及控制系统,辅助系统和热工监视系统组成。 以鲁北电厂安装的DLZ-MA-300-B等离子体发生器为例,等离子体发生器在电源、冷却水和介质气等条件具备的情况下产生高温等离子体。电源系统提供保证等离子体稳定运行的恒定电流,最大功率可达200KW。 鲁北电厂等离子点火装置的辅助系统由冷却水和空气的供给系统组成。 空气系统通过介质气管路提供用于电离产生等离子体的洁净稳定的工作气体;冷却水管路对阴阳极进行冷却,冷却水进回水压差的大小直接影响阴阳极乃至整个发生器的使用寿命。空气系统的来源:鲁北电厂等离子压缩空气由仪用压缩空气出口母管的管道分别送到等离子体发生器附近。然后每根压缩空气管道分成两路,分别提供发生器所需的一、二级介质气。两路压缩空气管道上均设有压力表(浮子流量计)和压力开关。压力开关把压力满足信号送回电源柜。空气系统同时设计有备用吹扫管路,吹扫空气取自图像火检探头冷却风机出口母管,用于保证在锅炉高负荷运行、等离子体发生器停用时对发生器内部进行吹扫,使其

等离子体加工技术

等离子体加工技术 摘要 随着科学技术的不断发展,工业需求的不断提高,各种高新设备应运而生,然而要加工这些设备就要使用更先进的加工技术。而等离子体加工技术就是一种不断发展的新型加工技术。本文简要介绍了工业用等离子体的分类及等离子体加工技术涉及的科学工程问题。围绕材料添加与去除加工,讨论了等离子体喷涂、增强沉积、离子去除等若干典型加工工艺的技术发展和应用情况,并对一些工艺中出现的现象以及某待深入研究的潜在科学问题进行了举例说明。 关键词:等离些有子体;加工;等离子体喷涂;等离子体聚合 Abstract With the continuous development of science and technology,increasing industrial demand,a variety of high-tech equipment came into being,however, to the processing of these devices is necessary to use more advanced processing technology.The plasma processing technology is a continuous development of new processing technology.This article briefly describes the classification of industrial plasma and plasma processing technology involved in scientific engineering problems.Adding and removing surrounding material processing,Discusses the plasma spraying, enhanced deposition, ion removal, etc. Several typical processing technology development and application,And some of the processes the phenomenon appears to be in-depth study as well as some of the potential scientific issues illustrate. Key words: Plasma;Machining;Plasma spraying;Plasma polymerization 引言 随着科学与工程技术的迅速发展,对新材料、新结构、新工艺的要求日益迫切。人们不仅要对材料的表面性能进行改进,而且还要了解元素(原子)的相互作用,新相的形成,亚稳态、非晶态的形成等机制;对一些结构器件的要求已达到了μm、nm 量级。在实现这些要求的过程中,作为特种加工手段之一的等离子体加工工艺的应用越来越广泛,实际上,等离子体之所以成为现代制造技术的重要手段之一,是由其能量状态决定的。物体由固体到等离子体态的转化过程中,都伴随有足够能量的输入。所以作为一种物质形态的等离子体具有最高的能量状态,为现代材料加工提供了巨大潜力。

直吹式制粉系统满足等离子点火浓度技术的应用

收稿日期:2003-02-18 作者简介:张孝勇(1967-),男,重庆梁平人,烟台龙源电力技术有限公司工程师,硕士,现华北电力大学博士生. 文章编号:1001-2060(2003)06-0627-03 直吹式制粉系统满足等离子点火浓度技术的应用 张孝勇,张永彩,张世凯,李本伟 (烟台龙源电力技术有限公司,山东 烟台 264006) 摘 要:等离子点火技术应用于双进双出磨直吹式制粉系统时,能满足等离子点火浓度的技术及运行实况。选择合理的等离子燃烧器布置方式,调整磨煤机的运行方式,满足了锅炉等离子点火升温升压曲线的要求,重点介绍了采用撞击离心分离浓缩装置解决了等离子点火浓度的问题。关键 词:等离子燃烧器;煤粉浓度;点火 中图分类号:TK 223.23 文献标识码:A 1 等离子点火装置的基本原理 等离子点火装置的基本原理是以大功率等离子体直接点燃煤粉。一次风粉送入等离子点火装置后,浓煤粉进入等离子体核心,在该区域内经过高温等离子体,在约1/10s 内迅速着火,并稳定燃烧;经浓缩装置分离后的淡粉在适当的二次风支持下,借助于已经燃烧的煤粉火焰接力燃烧,向炉膛内喷出燃烧火焰。当达到一定的炉膛温度后,根据锅炉升温升压速度的要求,投入其它燃烧器,达到无油启停锅炉的目的。 2 双进双出磨直吹式制粉系统锅炉设备概 况 清河发电有限责任公司(以下简称清河发电厂)1号锅炉为HG-410/100-1型自然循环、悬浮式燃 烧、固态排渣煤粉炉。设计煤种为铁法烟煤,其煤质特性见表1。 表1 铁法烟煤特性 设计煤质 校核煤质 实际煤质 A ar /%2433.1833.18 FC/%34.826.66— V daf /% 4044.7435.01Q ar ,net /k J ?kg -1 17166 15407 19130 采用2台双进双出钢球磨煤机直吹式制粉系统,煤粉由球磨机两侧分配,每侧3条煤粉管道送入炉膛,每根管道可由一次风门单独关闭。A 磨供给上排6只燃烧器,B 磨煤供给下排6只燃烧器。 为了在上述双进双出磨直吹式制粉系统锅炉上应用等离子点火技术,就必须解决等离子燃烧器的结构及布置方式、煤粉的来源、满足点火浓度的技术方案以及锅炉升温升压曲线的要求等一系列技术问题,其中最重要的就是制粉系统启动初期满足等离子燃烧器的煤粉点火浓度。 3 等离子燃烧器的应用 3.1 等离子燃烧器的布置方式 根据清河发电厂的具体情况,等离子点火煤粉燃烧器设计及布置方式采用将部分下排主燃烧器增加自点火功能。其结构是将原旋流燃烧器内的中心 管直径由Φ300mm 增加到Φ400mm ,将中心管本身做成点火燃烧器,浓缩的煤粉由原旋流燃烧器外端引入。 3.2 煤粉浓度满足点火要求的措施 原油枪出力为1~1.2t/h ,为满足锅炉启动曲线要求,单只等离子燃烧器出力应为3t/h ,约相当于1只1.2t/h 的油枪,两台等离子燃烧器代替2只油枪的热出力。此时一次风管内一次风速为23m/s ,对应煤粉浓度为0.18kg/kg 。而等离子点火装置 对一次风速和煤粉浓度有一定的要求:一次风速为18~26m/s ,煤粉浓度为0.3~0.5kg/kg 。为了满足 等离子点火的要求,只有将0.18kg/kg 浓度的一次风粉进行浓淡分离,使浓煤粉浓度达到0.3kg/kg 以 第18卷第6期2003年11月 热能动力工程 JOURNA L OF E NGI NEERI NG FOR THERM A L E NERGY AND POWER Vol.18,No.6Nov.,2003

相关文档
最新文档