数理统计

数理统计
数理统计

一、针对数据1请回答以下问题:

1.试验组与对照组年龄水平有无差异?

(1)建立假设,确定检验水准

H0:age1=arg2,实验组与对照组的平均年龄相等

H1:age1≠age2,实验组与对照组的平均年龄不等

α=0.05

(2)统计计算

正态性检验

两组Kolmogorov-Smirnov正态性检验结果P=0.200,实验组与对照组Shapiro-Wilk正态性检验结果P值分别为0.604、0.778,说明两组年龄符合正态分布

成组t检验

描述性结果

检验结果

Levene’s方差齐性检验结果P=0.164,符合方差齐性条件,选择第一行方差齐对应的t检验结果:t=2.182,df=54,p=0.033,差值的均数为7.538,不能认为两组年龄有统计学差异。

2.试验组与对照组性别构成有无差异?

由于对性别构成为无序分类资料的统计分析,多用Pearson χ2检验

(1)建立假设,确定检验水准

H0:实验组和对照组的性别构成是一致的

H1:实验组和对照组的性别构成不一致

α=0.05

(2)统计计算

列出四格表

χ2检验结果

表格中从第2列开始,从左到右分别对应:检验统计量(Value)、自由度(df)、双侧近似概率(Asymp.Sig-sided)、双侧精确概率(Exact Sig.2-sided)、单侧精确概率(Exact Sig.1-sided);从第2行起,从上到下对应Pearson2χ(Pearson Chi-Square)、连续性校正的2χ值(Continuity Correction)、对数似然比方法计算的2χ(Likelihood Ratio)、Fisher’s确切概率法(Fisher’s Exact Test)、线性相关的2χ值(Linear by Linear Association)、有效纪录数(N of Valid Cases)。

表格下方注解”a.”说明本例有0%格子的期望频数小于5,最小的期望频数为11.29,故不需校正,采用未校正2χ检验结果即可,即采用第1行Pearson2χ检验对应的双侧近似概率结果,P>0.05,不能认为两组性别构成有统计学差异。3.试验组治疗前后白细胞有无变化?

用SPSS软件进行统计分析

计算差值,并进行正态性检验

差值的Shapiro-Wilk检验P<0.1,提示差值对应总体为非正态分布。进一步通过Wilcoxon配对符号秩和检验的非参数检验方法分析。

(1)建立假设,确定检验水准

00=d M H :,差值的总体中位数为0 01≠d M H :,差值的总体中位数不为0 05.0=α (2)统计计算 统计描述结果

Wilcoxon 配对符号秩和检验

检验统计量b

白细胞2 - 白细

胞1 Z

-4.121a

渐近显著性(双侧) .000

a. 基于正秩。

b. Wilcoxon 带符号秩检验

结果统计量Z=-4.121,P<0.05,拒绝H 0,可认为试验组前后白细胞差别有统计学意义。

4.对照组治疗前后白细胞有无变化?

用SPSS 软件进行统计分析

计算差值d ,并进行正态性检验

差值的Kolmogoroy-Smirnov 和Shapiro-Wilk 检验P 值分别均大于0.1,提示差值对应总体为正态分布。

(1)建立检验假设,确定检验水准。

00=d H μ:,对照组治疗前后白细胞没有变化 01≠d H μ:,对照组治疗前后白细胞有变化 05.0=α

(2)使用配对t 检验计算统计量

成对样本统计量

均值 N

标准差 均值的标准误

对 1

白细胞1 11.7976 29 8.55855 1.58928 白细胞2

6.5493

29

2.36810

.43975

结果为t=3.761,df=28,p=0.001,差值的总体均数与0有统计学意义,即能认为对照组治疗前后白细胞有差异。

5.试验组与对照组治疗前后白细胞变化程度有无差异?请用两种方法回答。并用恰当的统计 图表达结果。

方法一:对试验组和对照组的白细胞变化值做两独立样本定量资料的统计分析

正态性检验

a. Lilliefors 显著水平修正

*. 这是真实显著水平的下限。

可见对照组P=0.541>0.05,而治疗组P=0.011<0.05,前者服从正态分布,后者不符合,接下来选择秩和检验

(1)建立检验假设,确定检验水准。

H0:试验组和对照组治疗前后白细胞变化程度总体分布相同

H1:试验组和对照组治疗前后白细胞变化程度总体分布不相同

α

05

=

.0

(2)统计计算

group N 秩均值秩和

d 对照组28 27.36 766.00

治疗组27 28.67 774.00

总数55

检验统计量a

d

Mann-Whitney U 360.000

Wilcoxon W 766.000

Z -.303

渐近显著性(双侧) .762

a. 分组变量: group

上表给出了Mann-Whitney U统计量、Wilcoxon W统计量和Z值,下方分别给出了近似法计算的P值>0.05,不能认为试验组和对照组治疗前后白细胞变化值有统计学差异。

方法二:采用协方差分析

1.绘制散点图(协变量给药前白细胞1与因变量给药后白细胞2)

2.正态性检验、方差齐性检验

不符合正态性条件,无法计算。

3.回归线是否平行

4.协变量和分组变量是否有交互作用

5.协方差分析

6.试验组治疗前后中性粒细胞有无变化?用SPSS软件进行统计分析

计算差值d1,并进行正态性检验

正态性检验

差值的Kolmogoroy-Smirnov 和Shapiro-Wilk 检验P 值分别均大于0.1,提示差值对应总体为正态分布。

(1)建立检验假设,确定检验水准。

00=d H μ:,试验组治疗前后中性粒细胞没有变化

01≠d H μ:,试验组治疗前后中性粒细胞有变化 05.0=α

(3)使用配对t 检验计算统计量

t =5.906, df=26,P<0.05,可以认为试验组治疗前后中性粒细胞有统计学差异

7.对照组治疗前后中性粒细胞有无变化?

用SPSS 软件进行统计分析

差值的Kolmogoroy-Smirnov 和Shapiro-Wilk 检验P 值分别均大于0.1,提示差值对应总体为正态分布。

(1)建立检验假设,确定检验水准。

00=

d H μ:,对照组治疗前后中性粒细胞没有变化 01≠d H μ:,对照组治疗前后中性粒细胞有变化 05.0=α

t =3.635, df=28,P<0.05,可以认为对照组治疗前后中性粒细胞有统计学差异

8.试验组与对照组治疗前后中性粒细胞变化程度有无差异?请用两种方法回答。并用恰当的统计图表达结果。

方法一:对试验组和对照组的白细胞变化值做两独立样本定量资料的统计分析

正态性检验

试验组与对照组的P值分别为0.656、0.299,均大于0.05,可认为满足正态分布(1)建立假设,确立检验水准

H0:试验组与对照组治疗前后中性粒细胞变化值相同

H1:试验组与对照组治疗前后中性粒细胞变化值不相同

(2)进行两独立样本t检验,计算统计量

Levene 检验,P=0.04>0.01,认为方差齐,t=0.002, df=53, P=0.998>0.05,不能认为试验组和对照组的中性粒细胞变化值有统计学差异。

方法二:协方差分析

(1)绘制散点图(协变量给药前中性粒细胞1与因变量给药后中性粒细胞2)

(2)正态性检验、方差齐性检验

结果符合正态分布

P=0.035>0.01,可认为符合方差齐性(3)统计分析

去掉交互项重新分析,结果表明校正给药前影响后,试验组和对照组给药对中性粒细胞变化没有显著性影响。

9.3个中心患者的年龄有无差异?请分别对age和age2两个年龄变量进行比较。

对计量资料age年龄变量可利用多组独立定量资料的统计分析

(1)建立假设,确定检验水准

H0:3中心患者年龄均数相等

H1:3中心患者年龄均数不全相等

(2)计算统计量

正态性检验

方差齐性检验结果,Levene统计量为1.799,P值均大于0.05,可认为样本所在各

方差分析结果P=0.003<0.05,说明三中心的总体年龄存在差异

(3)解释结果

对于无序分类资料age2可进行多个独立样本的卡方检验(1)建立假设,确定检验水准

H0:3中心年龄段分布相同

H1:3中心年龄段分布不全相同

(2)计算统计量

3 11 11 0 22

合计16 25 14 55

2

检验结果

由于存在2单元格理论频数少于5,采用校正卡方检验,P<0.05,可认为三中心年龄分布不全相同。

10.治疗前后中性粒细胞变化程度与白细胞变化程度是否存在相关性?若存在相关性,请用恰当的方法定量表达两者之间的数据关系,并解释。

对二者进行线性相关分析

(1)作散点图,y轴为中性粒细胞变化量d1,x轴为白细胞变化量d,可见随着白细胞变化的增大,中性粒细胞变化量减小

(2)相关性分析

相关性

d d1

d Pearson 相关性 1 -.975**

显著性(双侧).000

N 55 55

d1 Pearson 相关性-.975** 1

显著性(双侧).000

N 55 55

**. 在.01 水平(双侧)上显著相关。

估计相关系数r=-0.975,对相关系数进行假设检验,P<0.001,认为治疗前后中性粒细胞变化程度与白细胞变化程度两变量间存在负相关。

注意:进行组间比较时需同时提供各组的指标描述性统计量。

二、针对数据2,请绘制不同治疗组患者的生存曲线图,并根据患者的生存情况,比较试验治疗方案疗效是否与对照方案不同?若有差异,请详细说明。

1.生存曲线

两条生存曲线基本不相交,可以采用Logrank检验结果。

2.Logrank 检验结果

经Logrank检验,P<0.05,可认为试验组和对照组的生存率有统计学差异。结合生存分析图,试验组的生存率高于对照组患者。

数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体 ),,(~2 N X 已知,则在求均值 的区间估计时,使用的随机变量为 n X 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0 p 6、某地区的年降雨量),(~2 N X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 的矩估计值为 。 1430.8 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS ,已知)4(~),20(~22 2221 ,则__________, b a 。 用 )1(~)1(22 2 * n S n ,1,5 b a 8、假设随机变量)(~n t X ,则 2 1 X 服从分布 。)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2 X P ,则____ 。 用),1(~2 n F X 得),1(95.0n F

一、《数理统计》题目 1. 某车间承担了生产额定抗拉强度为Pa 710105?的合金线的任务,从该车间生产出的合金线成品中随机地抽出100根,测得抗拉强度的均值Pa x 7105.104?=,标准差为Pa s 7108.1?=。问这批合金线是否符合标准(α=0.05)? 2. 有一批木材小头直径),2.6N(~X 2μ,按规格要求,μ>12cm 才能算一等品,现随机抽测100根,计算得小头直径平均值12.8cm x =,问能否认为木材属一等品(α=0.05)? 3. 设有一批产品,从中任取100件,经检验有正品92件,问能不能说这批产品的正品率高于90%(α=0.05)? 4. 怎样区分所讨论的问题是方差分析还是回归分析?为了研究某一化学反应过程中温度X 对产品得率Y 的影响,测得数据如下: 温度x i /℃ 100,110,120,130,140,150,160,170,180,190 得率y i /% 45, 51, 54, 61, 66, 70, 74, 78, 85, 89 [1] 求产品得率Y 关于温度x 的回归方程。 [2] 检验回归效果是否显著(α=0.05)。 [3] 用F 检验法,检验回归效果(α=0.01)。 [4] 求温度x 0=145℃时产品得率y 0的预报值和预测区间(α=0.05)。 二、《随机过程》题目 1.设马尔可夫链{X n ,n ∈T }的状态空间为 I={0,1,2,…},转移概率为 I i p i ∈===+,2 1,21p ,21p 01i i,00。 (1)写出状态转移概率矩阵P ; (2)画出状态转移图; (3)说明状态0的常返性和周期性; (4)如何确定其他状态的常返性和周期性? 2.一质点在1,2,3点上做随机游动,若在时刻t 质点位于这三个点之一,则在[t , t +h )内,它以概率o(h)h 21+分别转移到其它二点之一,求该质点随机游动的柯尔莫洛夫方程,转移概率P ij (t )及平稳分布。

---------------------------------------- 说明:本试卷总计100分,全试卷共 5 页,完成答卷时间2小时。 ---------------------------------------- 一、填空题(本大题共8小题,每题4分,共32分) 1、随机事件A 、B 互不相容,且A =B ;则()P A = 2、已知,10/1)/(,5/1)(,5/2)(===B A P B P A P 则=+)(B A P 3、同时掷三枚均匀硬币,则恰有两枚正面向上的概率为 。 4、若随机变量)2.0,20(~B X ,则X 的最可能值是 。 5、若n X X X ,...,,21为来自泊松分布)(λP 的一个样本,2,S X 分别为样本均值和样本方差,则 =)(X E ,=)(2S E 。 6、样本0,5,10,-3样本均数为 ,样本方差为 。 7、2σ已知时检验假设0100:;:μμμμ≠=H H ,应构造统计量为 ,拒绝域为 。 8、考查4个3水平的因子A,B,C,D 及其交互作用A ×B 与A ×C ,则做正交实验设计时,可选用的行数最少的正交表为 。 二、单项选择题(本大题共8小题,每题4分,共32分) 1、设随机事件A 、B 互不相容,且()0,()0,P A P B >>则下列结论只有( ) 成立。 A 、A 、 B 是对立事件; B 、A 、B 互不相容; C 、A 、B 不独立; D 、 A 、 B 相互独立。 2、射击三次,事件i A 表示第i 次命中目标(i =1,2,3),下列说法正确的是( )。 A 、321A A A 表示三次都没击中目标; B 、313221A A A A A A ++表示恰有两次击中目标; C 、313221A A A A A A ++表示至多一次没击中目标;D 、321A A A 表示至少有一次没击中目标。 3、随机变量),(~2σμN X ,则随着σ的减小,)|(|σμ<-X P 应( )。 A 、单调增大; B 、单调减少; C 、保持不变; D 、增减不能确定

第一部分统计基础与概率计算(共10题,10分/题) 1.某人在每天上班途中要经过3个设有红绿灯的十字路口。设每个路口遇到红 灯的事件就是相互独立的,且红灯持续24秒而绿灯持续36秒。试求她途中遇到红灯的次数的概率分布及其期望值与方差、标准差。 解:读题可知每个路口遇到红灯的概率就是P=24/(24+36)=0、4 假设遇到红灯的次数为X,则,X~B(3,0、4),概率分布如下 0次遇到红灯的概率P0=(1-0、4)3=0、216 1次遇到红灯的概念P1=(1-0、4)2*0、4=0、432 2次遇到红灯的概念P2=(1-0、4)*0、42=0、288 3次遇到红灯的概念P3=0、43=0、064 期望:E(x)=nP=0、4*3=1、2 方差:D(X)=δ2=nPq=0、4*3*(1-0、4)=0、72 标准差: 2、一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用): (1)至少获利50万元的概率; (2)亏本的概率; (3)支付保险金额的均值与标准差。 解:设被保险人死亡数为X,X~B(20000,0、0005) 2.总收入为2万×50=100万,要获利至少50万,则赔付的保险金额应该不超过50万,也就就 是被保险的人当中死亡人数不能超过10人,精确点就就是用二项分布来做,但就是由于20000这个数比较大,就可以用正态近似来做,就就是认为死亡人数服从与原二项分布的均值方差相同的正态分布,结用正态函数表示。概率为P(X≤10)=0、58304

概 率 统 计 在 电 子 专 业 的 应 用 姓名:储东明 学号:1305062023 专业班级:电子信息工程 成绩: 教师评语:

论概率统计在电子专业中的应用 概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.的概率论与数理统计学实际应用背景很广范。正如世界知名概率学家、华裔数学家钟开莱于1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科。”概率论与数理统计学应用于自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识。近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中。尤其在电子信息通信方面尤为重要,甚至是通信原理的基础课程。可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一。在此文中,进一步讨论概率统计在电子信息方面的应用。 概率论与数理统计在电子电路的随机信号处理及实验中有着广泛的应用,通信工程中信号的接收和发射,都需要概率论与数理统计学的理论作为基础。因为,信号是信息的载体。信号源的输出都是随机的,怎样在随机信号中找出我们所需要的信息,就需要使用统计方法来描述。同时,对于接收者来说怎样从一个不缺定或不可预测的信号中获取我们所需要的信息,仍然需要再次利用统计学中的知识。 根据概率论与数理统计中的知识所描述,事件的概率就是对于一次随机试验E,S是它的样本空间,那么对于随机试验E中的每一个

数理统计考试试卷 一、填空题(本题15分,每题3分) 1、总体得容量分别为10,15得两独立样本均值差________; 2、设为取自总体得一个样本,若已知,则=________; 3、设总体,若与均未知,为样本容量,总体均值得置信水平为得置信区间为,则得值为________; 4、设为取自总体得一个样本,对于给定得显著性水平,已知关于检验得拒绝域为2≤,则相应得 备择假设为________; 5、设总体,已知,在显著性水平0、05下,检验假设,,拒绝域就是________。 1、; 2、0、01; 3、; 4、; 5、。 二、选择题(本题15分,每题3分) 1、设就是取自总体得一个样本,就是未知参数,以下函数就是统计量得为( )。 (A) (B) (C) (D) 2、设为取自总体得样本,为样本均值,,则服从自由度为得分布得统计量为( )。 (A) (B) (C) (D) 3、设就是来自总体得样本,存在, , 则( )。 (A)就是得矩估计(B)就是得极大似然估计 (C)就是得无偏估计与相合估计(D)作为得估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验得拒绝域为( )。 (A) (B) (C) (D) 5、设总体,已知,未知,就是来自总体得样本观察值,已知得置信水平为0、95得置信区间为(4、71,5、69),则取显著性水平时,检验假设得结果就是( )。 (A)不能确定(B)接受(C)拒绝(D)条件不足无法检验 1、B; 2、D; 3、C; 4、A; 5、B、 三、(本题14分) 设随机变量X得概率密度为:,其中未知 参数,就是来自得样本,求(1)得矩估计;(2)得极大似然估计。 解:(1) , 令,得为参数得矩估计量。 (2)似然函数为:, 而就是得单调减少函数,所以得极大似然估计量为。 四、(本题14分)设总体,且就是样本观察值,样本方差,

数理统计学作业 专业:飞行器设计 姓名:刘炜华 学号: 20130302002 2013年9月

1.数据的采集及说明 1.1数据的搜集方法及说明 当复合材料结构开始大量应用之后,在实际使用中可以积累大量的故障统计数据,航空公司在对故障数据进行收集和统计之后,可以对故障数据作故障率直方图和故障频率分布图来进行故障频率信息的统计和分析。 表 1是一架飞机在某段时间内故障间隔飞行小时,下面以该数据集为基础简单估计该架飞机在该时间段内的故障率曲线分布。 表1某飞机一段时间内故障间隔飞行小时 1.2.数据整理 1.表中共有 100 个维修数据,找出其中的最大值为max 652L =小时,最小值为 min 1L =小时; 2.计算组数: 根据经验公式:1 3.32lg k n =+, 计算得1 3.32lg 1 3.32lg1008k n =+=+≈, 所以将数据分为8组; 3.计算组距: max min 6521 828 L L t k --?= =≈; 4.根据公式计算并将所得的结果列成表2: 频率:/j j W f n =

表2故障频率分析过程计算结果 5.计算得:202.98X =,167.0697S =; 根据公式3 1 13 () 1.1035(1)n i i X X V n S =-= =-∑ 6.计算峰度: 根据公式4 1 24 () 3.4853(1)n i i X X V n S =-= =-∑ 1.3.直方图与折线图 图1-1故障频数直方图

图1-2故障频率折线图 图1-3故障频率直方图 图1-4累计频率折线图

从频率直方图即图3中可以看出,靠近左侧的数据出现较多。通过比较频率曲线和指数分布曲线可以看出,该图显示故障呈现典型的指数分布,所以说明趋势方程是指数函数。趋势线方程代表故障频数随时间的发展趋势,据此可以预测未来某一时间段内的故障数,来实现故障相关维修成本的估算。 1.4.经验分布函数 根据定义得出,总体X 的经验分布函数为: 0,1 (),1652,1,2,...,991001,652 n x k F x x k x

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

数理统计第二次作业 ? 1. 某百货公司连续40 天的商品销售额如下(单位:万元): 41 46 35 42 25 36 28 36 29 45 46 37 47 37 34 37 38 37 30 49 34 36 37 39 30 45 44 42 38 43 26 32 43 33 38 36 40 44 44 35 根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。(数据见练 习1 数据.xls —练习 1.1 )解:频数分布表及直方图如下:由直方图可以看出,该百货公司连续 40 天的销售额近似服从单峰对称的正态分布。 2. 为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100 只进行测试,所 得结果如下: 700 706 716 715 728 712 719 722 685 691 709 708 691 690 684 692

705 707 718 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 (1) 利用计算机对上面的数据进行排序; (2) 以组距为10 进行等距分组,整理成频数分布表,并绘制直方图;(3) 绘制茎叶图,并与直方图作比较. 解( 1)排序如下 (2)频数分布表及频数分布直方图如下:从直方图可以看出,灯泡的使用寿命近似服从单 峰对称的正态分布。 (3)茎叶图如下 与频数分布表比较可知:当频数分布表频数分布间隔为10,且从整10 开始,则茎叶 图各茎所含叶片数与对应频数区间所含项数相等。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产 5 件产品全部达到优质。问该企业决策者会倾向于如何决策? 解:设A =优质率达95%, C =优质率为80%, B =试验所生产的5件全部优质。 P(A) = 0.4 , P(A ) = 0.6 , P(B|A)=0.955 , P(B|A )=0.85 ,所求概率为:P (A I B ) P(A) ?P(B I A) P(A) ?P(B II A)+P(A ) ?P(B I A ) 0.50612 0.30951 0.6115 决策者会倾向于采用新的生产管理流程。

一、填空题(本题15分,每题3分) 1、总体得容量分别为10,15得两独立样本均值差________; 2、设为取自总体得一个样本,若已知,则=________; 3、设总体,若与均未知,为样本容量,总体均值得置信水平为得置信区间为,则得值为________; 4、设为取自总体得一个样本,对于给定得显著性水平,已知关于检验得拒绝域为2≤,则相应得备择假设为________; 5、设总体,已知,在显著性水平0、05下,检验假设,,拒绝域就是________。 1、; 2、0、01; 3、; 4、; 5、。 二、选择题(本题15分,每题3分) 1、设就是取自总体得一个样本,就是未知参数,以下函数就是统计量得为( )。 (A ) (B ) (C ) (D ) 2、设为取自总体得样本,为样本均值,,则服从自由度为得分布得统计量为( )。 (A ) (B ) (C ) (D ) 3、设就是来自总体得样本,存在, , 则( )。 (A )就是得矩估计 (B )就是得极大似然估计 (C )就是得无偏估计与相合估计 (D )作为得估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验得拒绝域为( )。 (A ) (B ) (C ) (D ) 5、设总体,已知,未知,就是来自总体得样本观察值,已知得置信水平为0、95得置信区间为(4、71,5、69),则取显著性水平时,检验假设得结果就是( )。 (A )不能确定 (B )接受 (C )拒绝 (D )条件不足无法检验 1、B ; 2、D ; 3、C ; 4、A ; 5、B 、 三、(本题14分) 设随机变量X 得概率密度为:,其中未知 参数,就是来自得样本,求(1)得矩估计;(2)得极大似然估计。 解:(1) θθθ322)()(022 ===??∞+∞-x d x x d x f x X E , 令,得为参数得矩估计量。 (2)似然函数为:),,2,1(,022),(1212n i x x x x L i n i i n n n i i i Λ=<<==∏∏==θθθθ, , 而就是得单调减少函数,所以得极大似然估计量为。

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:概率论与数理统计上课时间:2017.2-2017.5 姓名:刘振学号: 20160702031专业:机械工程教师:刘朝林 工作单位或所在行业:重庆大学 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师 (签名)

回归分析在数理统计中的应用 摘要:回归分析是数理统计中重要的一种数据统计分析的思想, 是处理变量间的相关关系的一种有效工具。其目的在于根据已知自变量的变化来估计或预测因变量的变化情况,或者根据因变量来对自变量做一定的控制. 它可以提供变量间相关关系的数学表达式, 且利用概率统计知识,对经验公式及有关问题进行分析、判断以确定经验公式的有效性,从众多的解释变量中,判断哪些变量对因变量的影响是显著的,哪些是不显著的. 还可以利用所得经验公式,由一个或几个变量的值去预测或控制个变量的值时的值,去预测或控制另一个变量的取值,同时还可知道这种预测和控制可以达到什么样的精度。 本文就是针对实际问题运用回归分析中一元线性回归分析的统计方法,来确定自变量与 另一个变量的相关关系,并确立出较为合理的回归方程,再对其的可信度进行统计检验. 关键词:回归分析;回归方程;F检验法

1.问题的提出 调查一下重庆大学学生的生活费与家庭收入的关系,看看是否家庭收入越高,学生的每月支出也越多,从而根据学生每月消费支出,进而估计学生的家庭收入情况,对学生的生活补助等问题有重要的参考意义 2.数据描述 根据调研的重庆大学学生家庭月收入与每月生活费的数据,确定两者关系。数据来源100多份问卷调查的抽样,取其中10份,绘制表1如下图所示序号家庭月收入每月生活费14800 500 25200 600 35420 650 45600 700 56000 750 66400 800 76800 900 87000 1000 97200 1200 108000 1500 表1-1 重庆大学学生家庭月收入与每月生活费的数据利用matlab软件画出家庭月收入与每月生活费的散点图,如图一所示

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

第一章 1.1 X~N(μ,2 σ) 则X~N(μ, 2 n σ ),所以X-μ~N(0, 2 n σ ) P{X-μ <1}= P{ = 0.95 N(0,1),而(0.975) 1.96 Φ= 所以n最小要取[2 1.96x2σ]+1 1.2 (1)至800小时,没有一个元件失效 这个事件等价于P{ 123456 X X X X X X>800}的概率 由已知X服从指数分布,可求得P{ 123456 X X X X X X>800}=7.2 e-(2)至3000小时,所有六个元件都失效的概率 等价与P{ 123456 X X X X X X<3000}的概率 可求得P{ 123456 X X X X X X<3000}= 4.56 (1) e- - 1.5 2 1 () n i i X a = - ∑=2 1 [()()] n i i X X X a = -+- ∑ =22 111 ()2()()() n n n i i i i i X X X a X X X a === -+--+- ∑∑∑ 因为 1 () n i i X X = - ∑=0 所以2 1 () n i i X a = - ∑=22 11 ()() n n i i i X X X a == -+- ∑∑ =22 1 () n i nS X a = +- ∑ 所以当a=X时,2 1 () n i i X a = - ∑有最小值且等于2nS 1.6 (1)由 1 1n i i X X n= =∑

有等式的左边= 221 12n n i i i i X X n μμ==-+∑∑ 等式的右边= 22221122n n i i i i X X X nX nX nX n μμ==-++-+∑∑ = 22 2 2 211 22n n i i i i X nX nX nX X n μμ==-++-+∑∑ = 221 1 2n n i i i i X X n μμ==-+∑∑ 左边等于右边,结论得证。 (2) 等式的左边= 22 11 2n n i i i i X X X nX ==-+∑∑=221 n i i X nX =-∑ 等式的右边= 221 n i i X nX =-∑ 左边等于右边,结论得证。 1.7 (1)由11n n i i X X n ==∑ 及 22 1 1()n n i n i S X X n ==-∑ 有左边=1111111111()1111 n n n n n i i n i i i i X X X X X X n n n n ++++=====+=+++++∑∑∑ 111 ()111 n n n n n nX X X X X n n n ++= +=+-+++=右边 左边等于右边,结论得证。 (2)由 左边=12 21 11 1()1n n i n i S X X n +++==-+∑ 121111[()]11 n i n n n i X X X X n n ++==---++∑ 121111[()()]11 n i n n n i X X X X n n ++==---++∑ 12 2112 1121[()()()()]11(1) n i n i n n n n n i X X X X X X X X n n n +++==----+-+++∑

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

一、填空题(本大题共有10个小题,每小题3分,共30分) 1.设C B A 、、是3个随机事件,则“三个事件中至少有两个事件发生” 用 C B A 、、 表示为 ; 2.设P (A )=0.3,P (B )=0.6,若A 与B 独立,则)(B A P ?= ; 3.设X 的概率分布为C k k X P k ?-= =21 2)(,4,3,2,1=k ,则=C ; 4.设随机变量ξ~),(p n B ,且4=ξE ,2=ξD ,则n = ; 5.设随机变量ξ的密度函数为????? ≤ =其他,02||,cos )(πx x C x f ,则常数 C = ; 6.设n X X X ,,,21 是来自),(2σμN 的样本,则=)(X E ; 7.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则 D (Z )= ; 8.n X X X ,,,21 是取自总体),(2 σμN 的样本,则∑== n i i X n X 1 1 ~ ; 9.若总体),(~2σμN X ,且2σ未知,用样本检验假设0H :0μμ=时,则采用的统计量是 ; 10.设总体)(~λP X ,则λ的最大似然估计为 。

二、单项选择题(本大题共10小题,每小题2分,共20分) 1.若 A 与 B 互为对立事件,则下式成立的是 ( ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C. P (AB )=φ D. P (A )=1-P (B ) 2.已知一射手在两次独立射击中至少命中目标一次的概率为0.96,则该射手每次射击的命中率为 ( ) A.0.04 B.0.2 C.0.8 D.0.96 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,5 3)A |B (P =,则P (B )=( ) A. 5 1 B. 5 2 C. 5 3 D. 5 4 4. 随机变量X )3(~E ,则=)(X D ( ) A. 31 B. 91 C. 271 D. 81 1 5. 设随机变量X ~N (2,32),Φ(x )为标准正态分布函数,则P { 2

1、设总体X 服从正态分布),(2 σμN ,其中μ已知,2 σ未知,n X X X ,,,21 为其样本, 2≥n ,则下列说法中正确的是( ) 。 (A ) ∑=-n i i X n 1 2 2 )(μσ是统计量 (B ) ∑=n i i X n 1 22 σ是统计量 (C ) ∑=--n i i X n 1 2 2 )(1μσ是统计量 (D ) ∑=n i i X n 1 2 μ 是统计量 2、设两独立随机变量)1,0(~N X ,)9(~2 χY ,则 Y X 3服从( )。 )(A )1,0(N )(B )3(t )(C )9(t )(D )9,1(F 3、设两独立随机变量)1,0(~N X ,2 ~(16)Y χ )。 )(A )1,0(N )(B (4)t )(C (16)t )(D (1,4)F 4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ). ) (A ∑ -=-1 1 1 1n i i X n )(B ∑=-n i i X n 1 11 )(C ∑=n i i X n 21 )(D ∑-=111n i i X n 5、设4321,,,X X X X 是总体2 (0,)N σ的样本,2 σ未知,则下列随机变量是统计量的是 ( ). (A )3/X σ; (B ) 4 1 4 i i X =∑; (C )σ-1X ; (D ) 4 221 /i i X σ=∑ 6、设总体),(~2 σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则 下列正确的是( ). 2() ~(,)A X N μσ 2() ~(,) B n X N μσ 222 1 1 () ()~()n i i C X n μχσ=-∑ () ~()D t n 7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ???是来自总体的简单随机样本,则下列随机变量不是统计量为( ) ( A ) . 12X X + ( B ) {}max ,15i X i ≤≤

) 数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体σσμ),,(~2 N X 已知,则在求均值μ的区间估计时,使用的随机变量为 n X σ μ - 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u ?± ; 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0≤p 6、某地区的年降雨量),(~2 σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 σ的矩估计值为 。 ~ 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~22 2221χχχχ,则__________,==b a 。 用 )1(~)1(22 2 *--n S n χσ,1,5-==b a 8、假设随机变量)(~n t X ,则 21 X 服从分布 。)1,(n F

9、假设随机变量),10(~t X 已知05.0)(2 =≤λX P ,则____=λ 。 用),1(~2 n F X 得),1(95.0n F =λ 10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N , X 为子样均值,而 01.0)(=>λX P , 则____=λ 01.04)1,0(~1z N n X =?λ 11、假设子样1621,,,X X X 来自正态母体),(2 σμN ,令∑∑==-=16 11 10 1 43i i i i X X Y ,则Y 的 分布 )170,10(2 σμN % 12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2 S 分别是子样均值和子 样方差,令2*2 10S X Y =,若已知01.0)(=≥λY P ,则____=λ 。)9,1(01.0F =λ 13、如果,?1θ2?θ都是母体未知参数θ的估计量,称1?θ比2?θ有效,则满足 。 )?()?(2 1θθD D < 14、假设子样n X X X ,,,21 来自正态母体),(2σμN ,∑-=+-=1 1 2 12 )(?n i i i X X C σ 是2σ的一个无偏估计量,则_______=C 。 ) 1(21 -n 15、假设子样921,,,X X X 来自正态母体)81.0,(μN ,测得子样均值5=x ,则μ的置信度是95.0的置信区间为 。025.03 9 .05u ?± 16、假设子样10021,,,X X X 来自正态母体),(2 σμN ,μ与2 σ未知,测得子样均值 5=x ,子样方差12=s ,则μ的置信度是95.0的置信区间为 。 025.0025.0025.0)99(),99(10 1 5z t t ≈?± 17、假设子样n X X X ,,,21 来自正态母体),(2 σμN , μ与2σ未知,计算得

一.选择题(18分,每题3分) 1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ) )(A 独立; )(B 不独立; )(C 相容; )(D 不相容. 2. 已知人的血型为 O 、A 、B 、AB 的概率分别是; ;;。现任选4人,则4人血 型全不相同的概率为: ( ) )(A ; )(B 40024.0; )(C 0. 24; )(D 224.0. 3. 设~),(Y X ???<+=., 0, 1,/1),(22他其y x y x f π 则X 与Y 为 ( ) )(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为. 则射击次数的数 学期望与方差分别为 ( ) 、 )(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ) )(A 32112110351?X X X ++=μ ; )(B 32129 4 9231?X X X ++=μ ; )(C 321321 6131?X X X ++=μ ; )(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10 )(22 2 12n X i n i χμχ-= ∑=,其 拒域为(1.0=α) ( ) )(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(2 05.02n χχ≥. 二. 填空题(15分,每题3分) 1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则 =?)(B A P . 2. 设随机变量X 的分布律为??? ? ??-+c b a 4.01.02.043 21 ,则常数c b a ,,应满足的条件 ) 为 . 3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率

数理统计第一次 1、设总体X 服从正态分布),(2 σμN ,其中μ已知,2 σ未知,n X X X ,,,21Λ为其样本, 2≥n ,则下列说法中正确的是( ) 。 (A ) ∑=-n i i X n 1 2 2 )(μσ是统计量 (B ) ∑=n i i X n 1 2 2 σ是统计量 (C ) ∑=--n i i X n 1 2 2 )(1 μσ是统计量 (D ) ∑=n i i X n 1 2μ 是统计量 2、设两独立随机变量)1,0(~N X ,)9(~2 χY ,则 Y X 3服从( )。 )(A )1,0(N )(B )3(t )(C )9(t )(D )9,1(F 3、设两独立随机变量)1,0(~N X ,2 ~(16)Y χ )。 )(A )1,0(N )(B (4)t )(C (16)t )(D (1,4)F 4、设n X X ,,1Λ是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ). ) (A ∑ -=-1 1 1 1n i i X n )(B ∑=-n i i X n 111)(C ∑=n i i X n 2 1)(D ∑-=1 11n i i X n 5、设4321,,,X X X X 是总体2 (0,)N σ的样本,2 σ未知,则下列随机变量是统计量的是 ( ). (A )3/X σ; (B ) 4 1 4 i i X =∑; (C )σ-1X ; (D ) 4 221 /i i X σ=∑ 6、设总体),(~2 σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则 下列正确的是( ). 2() ~(,)A X N μσ2() ~(,)B nX N μσ 222 1 1 () ()~()n i i C X n μχσ=- ∑) () ~()X D t n S μ- 7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ???是来自总体的简单随机样本,则下列随机变量不是统计量为() ( A ).12X X +( B ){}max ,15i X i ≤≤

相关文档
最新文档